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Abstract — The theory of transfinite graphs developed so far has been based on the
ideas that connectedness is accomplished through paths and that the infinite extremities of
the graph are specified through one-way infinite paths. As a result, a variety of difficulties
arise in that theory, leading to the need to restrict such path-based graphs in various ways in
order to obtain certain results. In this work, we present a more general theory of transfinite
graphs wherein connectedness and the designation of extremities are accomplished through
walks rather than paths. This leads to a simpler and yet more general theory wherein
new kinds of transfinite extremities are also encompassed. For instance, an ordinal-valued
distance function can now be defined on all pairs of walk-connected nodes, in contrast to
the path-based theory wherein no distance function is definable for those pairs of nodes
that are not path-connected even though they are walk-connected. Some results concerning
eccentricities, radii, and diameters are presented in this more general walk-based graph
theory. Another new result herein is the development of an electrical network theory for
networks whose graphs are walk-based. A unique voltage-current regime is established under
certain conditions. The current regime is built up from current flows in closed transfinite
walks—in contrast to a prior theory based upon flows in transfinite loops. A notable
advantage of the present approach is that node voltages with respect to a given ground node
are always unique whenever they exist. The present approach is more general in that it
provides nontrivial voltage-current regimes for certain networks for which the prior approach
would only provide trivial solutions having only zero currents and voltages everywhere.

Key Words: Transfinite graphs, transfinite walks, walk-based graphs, eccentricities,

radii, diameters, transfinite electrical networks, node voltages.



1 Introduction

The theory of transfinite graphs introduced in [3] and explored more thoroughly in [4]
and [6] used transfinite paths as the basic construct, rather than transfinite walks. This
was a natural extension of finite graphs because connectedness for finite graphs is fully
characterized by paths; indeed, any walk terminating at two nodes of a finite graph contains
a path doing the same. However, this is no longer the case for transfinite graphs, as we will
show by example later on. This has restricted the theory of transfinite graphs. For instance,
path-connectedness need not be transitive as a binary relationship among transfinite nodes,
and special conditions have to be imposed to ensure such transitivity. As a result, distances
as defined by paths will not exist between certain pairs of nodes. This limitation is also
reflected in the theory of transfinite electrical networks by the fact that node voltages need
not be uniquely determined when they are defined along paths to a chosen ground node.

These troubles disappear when transfinite walks are used as the basic construct, but the
resulting, more general kinds of transfinite graphs now encompass some strange structures
that stress intuition based upon one’s familiarity with finite graphs. Moreover, electrical
network theory is similarly ensnarled. Such complications should not be surprising because
infinite entities are mathematical abstractions involving a variety of counterintuitive phe-
nomena, as for example the antinomies of infinite sets [2]. Following theory wherever it may
lead, we now propose to explore walk-based transfinite graphs.

By the end of Sec. 7, we will have accomplished one of the objectives of this paper,
namely, to define and develop recursively transfinite graphs based upon walk-defined ex-
tremities. This opens up the possibility of establishing a variety of more general results
analogous to those already proven for path-based transfinite graphs. Such will be done in
Secs. 8 through 12, where we examine distances in walk-based transfinite graphs, and in
Secs. 13 through 18, where we examine the electrical behavior of resistive networks having
walk-based graphs. Much of those analyses are identical to the corresponding arguments for
path-based graphs, but there are significant differences. So, we shall present definitions and
arguments where the walk-based analysis differs substantially from the path-based analysis,

but we will simply refer to prior works when there are no significant differences between the



two.

We assume throughout this work all the definitions and results in [4]. In this regard, the
Errata available under “Books” in the URL: “www.ee.sunysb.edu/“zeman” should be noted.
On the other hand, we will be defining a variety of entities in this work that are analogdﬁ; ;co
the tips, nodes, sections, graphs, and path-connectedness of [3], [4], [6] but are based upon
transfinite walks rather than on transfinite paths. So as not to introduce new terminology
and some consequent unnecessary confusion, we will again use the path-based terminology

but will employ the letter“w” as a prefix to indicate that our entities are now walk-based.
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Thus, we write “wtip,” “wnode,” “wsection,” “wgraph,” and “wconnectedness.”
Let us explicate a.nofher bit of terminology: A one-ended infinite sequence {ao, a,,...,am,...}
or a two-way infinite sequence {...,@¢_,,...,8-1,a0,@1,-..,@m,...} Will be said to possess
eventually a certain property if there exists a natural number mg such that the subsequences
having. indices m with |m| > mq possess that property. Similarly, two one-way infinite se-

quences will be said to be eventually identical if, with an appropriate index renumbering of

one of them, their elements are eventually the same.

2 Some Examples

~ v ES

namena ac far avamnle the antinamisc af infinite cate 91 Fallawine thearv wharavar it mav
[4].

Example 2.1. The simplest example of a transfinite graph exhibiting the difference
between path-connectedness and walk-connectedness is the 1-graph of Fig. 1. Here we
have an infinite series circuit of pairs of parallel connected branches, a; and by, a; and b,
.... The 0-tip t2 (resp. tY) has as a representative the one-ended path along the branches

! (resp. ') is a singleton 1-node containing 1 (resp.

ai (resp. bi) for k = 1,2,3,.... =
t9). There is a 1-path along the branches a; connecting z! to the 0-node n° and another
1-path along the by branches connecting y! to n°. But, there is no 1-path connecting z!

and y'. However, there is a 1-walk passing along the branches ..., a3, as,a;,bq,b0,bs. ..

that terminates at ' and y!. Thus, z! and 3! are walk-connected but not path-connected.

1One may pronounce wtip as “walk-tip” or simply say “tip” when the prefix “w” in understood—and
similarly for the other “wentities.”



Note that there are uncountably many 0-tips, each having a representative path that
passes back and forth between the a; and bx branches infinitely often but not necessarily
in a uniform pattern. The cardinality of the set of those 0-tips is that of the continuum.
1-nodes can be defined containing those 0-tips, either as singleton 1-nodes or as shér-t—ix.lgs
.of several such 0-tips. O

Actually, the 1-graph of Fig. 1 appears in modified form within many transfinite graphs,
and, as a result, this nontransitivity of path-connectedness is a ubiquitous difficulty. Indeed,
consider the following.

Example 2.2. Fig. 2 shows a one-way infinite ladder, each of whose 0-tips is the sole
member of a singleton 1-node. z} (resp. z}) is the 1-node containing the 0-tip of the one-
ended 0-path along the branches ay (resp. bx), k = 1,2,3,.... There are, however, infinitely
many other 0-tips corresponding to paths that pass back and forth between the ay and by
branches via the branches ¢, but doing so in different ways. z:bc is a 1-node containing
one such O-tip. The others are not shown, but the set of them has the cardinality of the
continuum. There is a two-ended 1-path terminating at z. and z}; it passes along the
branches ..., as,a1,¢p,b1,b2,... . Thus, z1 and z} are path-connected. However, for no
other pair of 1-nodes does path-connectedness hold. But, walk-connectedness holds for all
such pairs. O

Thus, we are emboldened to search for greater generality in the theory of transfinite

graphs by employing walk-connectedness.

3 The Infinite Extremities of 0-graphs and the Resulting 1-
graphs

A O-graph G° = {B, A’°}, where B denotes the set of branches, and A denotes the set of
0-nodes, is a conventional graph, but we use the unconventional definition given in [4, page
10] just to conform with the definitions of transfinite graphs. It may or may not contain
a one-ended 0-path, but, when it does, it possesses at least one infinite extremity, called
as above a “0-tip” [4, page 20]. Can we define these or other kinds of extremities by using

one-ended 0-walks instead of 0-paths?



A nontrivial 0-walk W° is an alternating sequence of 0-nodes z2 and branches bp,:
W0 = {-..,zgl_l,bm_l,z?n,bm,z?n_'_l,..'} (1)

where the indices m traverse a set of consecutive integers and, for each m, the branchﬂl;; is
incident to the two O-nodes z9, and z0, ;. In contrast to a path, nodes and branches may
repeat in the sequence. We allow any branch to be a self-loop, in which case z¥, and 20, ,
are the same 0-node. If the sequence (1) terminates on either side, it terminates at a node.
The 0-walk W9 is called two-ended or finite if it terminates on both sides, one-ended if it
terminates on just one side, and endless if it terminates on neither side. We assign to W°
an orientation determined by the direction in which the indices m increase.

A trivial 0-walk is a singleton containing just one 0-node.

A sﬁperﬁuity arises when we try to define the infinite extremities of a 0-graph G° by
using O-walks. Assume that G° does have at least one such extremity—as witnessed by
the presence of a one-ended 0-path, and consider a one-ended 0-walk that keeps returning
to a fixed 0-node z° infinitely often. For the purpose of finding an infinite extremity , it
appears intuitively that each time the walk returns to z°, the walk may as well be reduced
by discarding the loop just traced. But, if we keep doing so, the entire walk will reduce
to a trivial walk. More generally, if we keep discarding loops as they are traced by any
one-ended 0-walk W°, W° may either be reduced to a finite path or to a one-ended path.
In the latter case, the walk can be used to define an infinite extremity, but it will be none
other than the 0-tip defined by that one-ended 0-path. We conclude that we may as well
stick with one-ended 0-paths when defining the infinite extremities of a 0-graph. This we
do.

It is only when we turn to the construction of graphs of higher ranks of transfiniteness
that walks provide greater generality than do paths, as we shall see. At this point of our
discussion, 0-tips and then 1-nodes and 1-graphs are defined exactly as they are in [4, pages

20-23]. Thus, a 1-graph is a triplet:
gl — {B, A)O’A;l}

where X! is the set of 1-nodes and B and A’° are as before. Moreover, a 0-section of any



transfinite graph also remains as before; it is the subgraph induced by a maximal set of
branches that are 0-connected through two-ended 0-paths [4, pagé 49]. The 0-sections of
any transfinite graph partition that graph because 0-connectedness is transitive; this is a
special case of [4, Corollary 3.5-6). o
How a one-ended 0-path reaches a 1-node is defined in [4, page 23]. That idea can be

extended to a 0-walk as follows: A one-ended 0-walk
WO = {23, bo,2%,b1,29,b2,...}

will be called eztended if its 0-nodes z0 are eventually pairwise distinct. Thus, WP is
extended if it eventually is identical to a one-ended 0-path. We say that W0 traverses a
O-tip if it is extended and is eventually identical to a representative of that 0-tip. Finally,
W0 is said to reach a 1-node z! if it traverses a 0-tip embraced by z!. In the same way, an
endless 0-walk can reach two 1-nodes (or possibly reach the same node) by traversing two
O-tips, one toward the left and the other toward the right. On the other hand, if a 0-walk
terminates at a 0-node that is embraced by a 1-node, we again say that the walk reaches
both of those nodes and does so through an elementary tip of its branch that is incident to

that 0-node.

4 The Infinite Extremities of 1-graphs and the Construction
of 2-wgraphs

Matters become more complicated when the infinite extremities of 1-graphs are considered.

Example 4.1. As was noted with respect to Fig. 1, there is a 1-walk connecting the
1-nodes z! and ', but no such 1-path. We can connect infinitely many such 1-graphs “in
series,” as shown in Fig. 3, to obtain a 1-graph with an extremity not definable through
paths. That extremity is reached through the “one-ended 1-walk” that starts at z1, passes
to 21 through an endless 0-walk, then to z1 through another endless 0-walk, and so on. More
specifically, from z! it passes along the left side of the first 0-section to, say, the 0-node
29, then along the right side of that 0-section to zl, then along the left side of the second
0-section to, say, the 0-node z3, then along the right side of that O-section to z}, and so

forth. On the other hand, there is no one-ended 1-path that passes through z},z},z3,....
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Thus, we have a new kind of extremity, something that was not considered in [3], [4], and
[6].

Before leaving this example, let us consider a variation of it. Consider the 1-graph
obtained from that of Fig. 3 by shorting together all the O-nodes z¢ (k = 1,2,3,.. ) a.long
the bottom of Fig. 3 to obtain a 0-node z° of infinite degree. Then, the “one-ended 1-walk”
described just before becomes one that keeps returning to the same 0-node z°. This time,
we will allow such a walk as a means of identifying an infinite extremity of the 1-graph. So
long as the 1-nodes through which the walk passes become eventually pairwise distinct, we
will take it that an infinite extremity of the 1-graph is being identified. Compare this with
the situation considered in the preceding Section were a 0-walk that keeps returning to the
same 0-node is reduced to a 0-path by removing loops. The important difference is that
that 0-walk never passed through 1-nodes and therefore was unsuitable for the identification
of the extremity of a 1-graph. O

Example 4.2. Extremities like this appear inherently in more familiar kinds of 1-
graphs. For example, a 1-walk reaching such a walk-based extremity is indicated in Fig. 4
for a 1-graph consisting of two infinite checkerboard 0-graphs connected together through
certain 1-nodes. z! is a singleton 1-node containing one 0-tip having as a representative
a one-ended 0-path that passes horizontally toward the left and alternating up and down
through single vertical branches, as shown. For m = 2,3,4,..., each 2} consists of two
0-tips, one for a similar 0-path toward the left and another for such a 0-path toward the
right. Pairs of such consecutive 0-paths pass through infinitely many horizontal branches in
opposite directions. Altogether, these infinitely many 1-nodes with these infinitely many 0-
paths form a “one-ended 1-walk” whose extremity cannot be reached through any one-ended
1-path because those pairs of consecutive 0-paths intersect infinitely often. However, each
walk between two consecutive 1-nodes z. and z}nH is the conjunction of two one-ended
0-paths forming an endless 0-walk passing through a 0-section (one of the checkerboards)
and reaching those 1-nodes through' 0-tips. So, perhaps, one-ended 1-walks that can be
decomposed into endless 0-walks between 1-nodes that are eventually pairwise distinct will

suffice in identifying a new kind of transfinite extremity. O



Let us implement this idea in the foliowing precise way: Because 0-tips and 1-nodes are
now defined exactly as they are for path-based transfinite graﬁphs {4, pages 20 and 22] and
because 0-connectedness is transitive, every 1-graph G! is partitioned into 0-sections, that
is, each branch belongs to exactly one 0-section. Every maximal bordering node [4, page
81] of any 0-section S° of G is a 1-node, and every maximal boundary node {4, page 49] is
a maximal bordering node of two or more 0-sections. To say this another way, a 1-node z!
is a bordering node of a 0-section S° in G! if z! embraces an elementary tip or a 0-tip of
89 also, z! is a boundary node of S° if it is a bordering ndde of S° and also a bordering
node of at least one other 0-section.

A given 0-section S° can be entered from one of its bordering nodes either along a
branch in &° (that is, along an elementary tip) or along a representative of a 0-tip of S°.
That representative is a one-ended 0-path. So, given the bordering nodes z! and y! of S°
(possibly z! = y'), there exists a 0-walk WP in S° leaving z! and reaching y'. W° enters
S0 along a branch or a representative of a 0-tip, proceeds along a 0-path, and then leaves
S® along a branch or representative of a 0-tip; but, nodes and/or branches may have to
repeat along the walk W° from z! to y'. We will say that W?° is a 0-walk through S°, that
wO starts at z! and stops at y!, and that WO reaches z! and y! through either elementary
tips or O-tips. It can happen, of course, that a particular 0-walk through S° is in fact a
0-path.

A special case occurs when z! and y' are connected through a single branch whose 0-
nodes are embraced by z! and y!. In this case, the branch set of S® consists of that branch
alone, and that branch along with its 0-nodes will also be called a 0-walk through S°.

Let s (resp. t) be the elementary tip or 0-tip through which W° reaches z! (resp. y!).
In general, there will be many 0-walks through S° reaching z! and !, but any two of them
having the same tips s and ¢ will be considered equivalent. In this way, it is only how
a 0-walk W° enters and leaves a 0-section that will be significant; the particular internal
nodes and branches it passes through within S° will not be important. We will make use
of this equivalence idea later on.

A nontrivial 1-walk W is an alternating sequence of 1-nodes and nontrivial 0-walks



through 0-sections:

Wl = {""xl Wy?z—l,x}nawgnx}n+l7"'} (2)

m-11

where, for every m, z} and z} ., are incident to the same 0-section (possibly z}, = z] ;)
and W2 is a 0-walk through that 0-section reaching z, and z}, ,; it is also required that,
for each m, at least one of W2 _, and W2 reaches z!, through a 0-tip (not an elementary
tip). If the sequence in (2) terminates on either side, it is furthermore required that it
terminate at a 0-node or 1-node. We refer to that node as a terminal node of W1, in this
case, the elementary tip (resp. 0-tip) with which the 0-walk in (2) adjacent to the terminal
0-node (resp. 1-node) reaches that terminal node will be called a terminal tip of W1. (If
(2) extends infinitely in either direction, we shall later on define another kind of “terminal
wtip” for W1.) |

Note that, if W? terminafes on either side at an internal 0-node of a 0-section, the
adjacent 0-walk in the sequence (2) can be reduced to a 0-path by removing loops.

A 1-walk is said to embrace itself, all its elements, and all the elements that its elements
embrace.

A trivial 1-walk is a singleton whose sole member is a 1-node.

A mnontrivial 1-walk W?! is called two-ended (resp. one-ended, resp. endless) if it ter-
minates on both sides (resp. terminates on exactly one side, resp. terminates on neither
side). If W1 terminates at a 0-node, the adjacent 0-walk in (2) will be either one-ended or
two-ended (not endless). However, W! may terminate at a 1-node that embraces a 0-node;
in this case, we may also say that W terminates at that 0-node.

As with 0-tips, 1-nodes, and 1-graphs, a 1-section is defined exactly as before {4, page
49]; it is a subgraph [4, page 23] induced by a maximal set of branches that are pairwise 1-
connected through 1-paths. Unfortunately, 1-sections can overlap because 1-connectedness
is not in general transitive. For example, consider Fig. 3 again; for each m = 1,2,3,...,
the subgraph between any z] and zl ,, is a l-section, and thus every two consecutive
1-sections overlap.

However, we can define a more general kind of connectedness, namely, “1-wconnectedness”.

Two branches (resp. two nodes) will be called 1-wconnected if there exists a two-ended 0-



walk or 1-walk that terminates at those branches, that is, at a 0-node of each branch (resp.
that terminates at those two nodes). We will say that two 1-walks form a conjunction if a
terminal node of one 1-walk embraces or is embraced by a terminal node of another 1-walk.
In this case, the two 1-walks taken together form another 1-walk, obviously. It follows that
1-wconnectedness is a transitive binary relationship for the branch set B and is in fact an
equivalence relationship.

Furthermore, if every two branches in the 1-graph G! are 1-wconnected, we shall say
that G! is 1-weonnected. The 1-graphs of Figs 3 and 4 are 1-wconnected. Also, a subgraph
induced by a maximal set of branches that are pairwise 1-wconnected will be called a 1-
wsection and also a component.2 Thus, if two branches or two nodes are 1-connected, they
are also 1-wconnected because a 1-path is a special case of a 1-walk.

Our next objective is to define the new kind of extremity of a 1-graph illustrated in
Examples 4.1 and 4.2. A one-ended 1-walk will be called eztended if its 1-nodes zl are
eventually pairwise distinct.> Now, consider an extended one-ended 1-walk starting at the

node zq:

W = {zo, W2, 21, W2, z}, W2, ..} (3)

For each m > 0, there exist two tips s,,, and t,, (elementary tips or 0-tips) with which W2
reaches z), and z},_, respectively. (W reaches zo with so.) Thus, we have a sequence of
tips:

{s0;%0, 51,11, 52,22, .. .} (4)

corresponding to (3), where at least one of ,,, and sp,4+1 is a 0-tip, whatever be m. When
W1 is extended, the tips in (4) are eventually pairwise distinct.
Two extended one-ended 1-walks will be called equivalent if their tip sequences are

eventually identical. This is truly an equivalence relationship for the set of all such 1-walks,

2Presently, a 1-wsection G' is the same as a component of G, but, later on, when we consider wgraphs
of higher ranks, 1-wsections will be in general different from components. In fact, 1-wsections will partition
those wgraphs in the sense that each branch will lie in exactly one 1-wsection. Also, different 1-wsections
may be wconnected through walks of higher ranks than 1. In any case, 1-wsections do not overlap. In
contrast, a component will be a maximal subgraph whose branches are wconnected by walks of arbitrary
ranks; thus, different components will not be wconnected to each other.

3Equivalently, we need merely require that each 1-node z1, appear only finitely many times in (2), for,
by removing loops, we can obtain an extended 1-walk.
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and thus that set is partitioned into equivalence classes, each of which will be called a
1-wtip. Specifically, with W! denoting the set of all extended one-ended 1-walks, we have
W! = Ujeyq, W}, where Jj is an index set for the partition of W? into 1-wtips W} For any
extended 1-walk W? in W}, we refer to )'V]1 as the terminal 1-wtip of W, or simply a.s the
1-wtip of W1,

Note that this equivalence relationship depends only on the tips s,, and t,, for all m
sufficiently large. The equivalence relationship is not disturbed by changing some branches
and 0-nodes in the 0-walks W,?L so long as the tips s,, and t,, remain unchanged except
possibly for finitely many of them. The reason for this choice of definition is that we feel
intuitively that the infinite extremities of the 1-walks illustrated in Figs. 3 and 4 should
not depend on how each 0-walk between consecutive 1-nodes extends into its 0-section; the
same infinite extremity should ensue. All this stands in contrast to the definition of 1-tips
in [4, page 30], which depended upon the choice of the 0-path between consecutive 1-nodes.
We could have developed a theory of transfinite graphs based upon the tip sequences of
one-ended 1-paths, but did not do so in [4]. There is nothing God-given in our choice
of definitions. All that is required (and hoped for) is that the definitions produce a self-
consistent mathematical structure. We believe that such has been accomplished in both [4]
and herein.

A 1-walk is said to traverse an elementary tip (resp. O0-tip or 1-wtip) if the 1-walk
embraces the branch for that elementary tip (resp. embraces the branches of a representative
of that 0-tip or 1-wtip).

The next step is to define a “2-wnode.” First, we arbitrarily partition the set P! =
{W}}jen of 1-wtips, assuming there are 1-wtips, into subsets P}: P! = U;ey, P}, where I

is the index set for the partition, P} # 0 for all ¢, and P} NP} = 0 if 1 # k. Next, for
each i € I, let N} be either the empty set or a singleton whose only member is a 0-node

or 1-node. Then, for each i € I;, we define the 2-wnode z? as
g} = PlUN (5)

so long as the following condition is satisfied: Whenever A} is not empty, its single a-node

(0 < @ £1)is not a member of any other 1-node or any other 2-wnode.
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We say that a 2-wnode z? embraces itself, all its elements including the node of A/}
if ! is not empty, the 0-node of the 1-node in A} if such a 1-node and 0-node exist,
and the elementary tips in that 0-node. More concisely, we say that z? embraces itself, all
its elements, and all the elements embraced by its elements.) We also say that z? shorts
together all its embraced elements. Furthermore, we say that an a-walk (0 < o < 1) reaches
a 2-wnode if the a-walk traverses an a-wtip embraced by the 2-wnode.*

We now define a 2-wgraph G2 as the quadruplet:
gz; — {B,Xo, XI,A)2} (6)

where B is the set of branches, X° and X! are the sets of 0-nodes and 1-nodes respectively
as defined in [4], and X2 is the set of 2-wnodes.

To save words later on, we shall also refer to the 0-nodes, l—nodes; 0-graphs, and 1-graphs
as 0-wnodes, 1-wnodes, 0-wgraphs, and 1-wgraphs, respectively.

Let us note at this point that a 2-graph, as defined in [4], is a 2-wgraph if the following
condition always holds: Let ¢! and t} be two 1-tips of G? as defined in [4], and assume that
tl and ¢} have representative 1-paths P2 and P} whose sequences of tips, as indicated in
(4), are eventually identical; then, ¢} and t] are shorted together (i.e., are members of -the
same 2-node). Note also, that G may have 1-wtips (as defined above) that are not 1-tips
(as defined in [4]); these are left open, that is, they are members of singleton 2-wnodes.

As was observed above, 1-wconnectedness is an equivalence relationship for the branch
set B of G2. Consequently, the 1-wsections partition G2, in contrast to the possibly over-
lapping 1-sections.

Again to conform with general terminology, we will refer to tips of ranks —1 or 0 as
“(—1)-wtips” (alternatively, “elementary wtips”) and “0-wtips”, respectively. Similarly, a
(—1)-wsection (resp. a 0-wsection) is understood to be a branch along with its incident
0-nodes (resp. a 0-section). An a-wtip (=1 < a@ < 1) is said to be embraced by or to be in
or to belong to a f-wsection S (@ < B < 1) if the branches of any one (and therefore of

all) of its representative paths are all in S2.

“For the special case of a single branch connected between two 2-wtips, we take that branch and its two
0-nodes as comprising a 0-walk, in which case the 0-walk reaches the 2-wnode through a (—1)-tip of the
branch.
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A bordering wnode z? of an a-wsection S (=1 < @ < 1) is a wnode of rank greater
than a (i.e., § > a) that embraces a wtip of S§. A wnode of §J that is not embraced by
a bordering wnode of 82 is called an internal wnode of S2. A boundary wnode of Sy is a
bordering wnode of S that also embraces a wtip not belonging to §J. Thus, a boundary
B-wnode must be incident to two or more a-sections, but a bordering S-wnode may be
incident to only one a-wsection.

An a-walk (0 < « < 1) through a 1-wsection S} of G2 or simply a walk through S1, from
one bordering wnode z2 of S}, to another bordering wnode y2 of S} is an a-walk whose
branches are all in ), and that reaches z% and y?.

A nontrivial 2-walk is an alternating sequence of 2-wnodes z2, and nontrivial a,,-walks

Weam (0 < ey < 1) through 1-wsections:

m

w? = {"'vx?n—l’WaTIl’zzn’W;mvzzn+17'"} (7)

such that, for each m, z2, and z2 ,, are bordering 2-wnodes of the 1-wsection through
which W2m passes, W&™ reaches z2, and 22, ,, and either W,,”7" or W2™ (perhaps both)
reaches z2, through a 1-wtip. It is also required that, if the sequence (7) terminates on
either side, it does so at a wnode z of rank 2 or less. Again, we say that (7) terminates
at a wnode y if it terminates at a wnode z that embraces or is embraced by y. Terminal
wnodes and terminal wtips are defined as before for 1-walks that terminate on either side. (If
(7) extends infinitely in either direction, W? has another kind of terminal wtip—a 2-wtip,
which will be defined when we discuss the general case of a wgraph of rank higher than 2.)

A trivial 2-walk is a singleton containing a 2-wnode.

As usual, a 2-walk is either two-ended, one-ended or endless whenever (7) terminates
on both sides, just on one side, or on neither side, respectively. A one ended 2-walk will be
called eztended if its 2-wnodes z2, are eventually pairwise distinct.

Let sgm (resp. t7m) be the o,,-wtip (resp. 7,,-wtip) with which W™ reaches z2, (resp.

xfn_H) in (7). Thus, —1 < 64, 7m < 1, and at least one of 7,,, and 0,41 equals 1 for every

m. When (7) terminates on the left, we may write the corresponding sequence of wtips as
{s0°, 80, 87", 11, 85,477, .} (8)
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Wtips can repeat in this sequence, but, if (7) is extended, the wtips eventually do not
repeat except possibly 7 = s; 74! for various m. Two extended one-ended 2-walks will be
called equivalent if their wtip sequences are eventually identical. This, too, is an equivalence
relationship, and it partitions the set of extended one-ended 2-walks into subsets, which we

refer to as the 2-wtips of G2. We now take these 2-wtips to be the “infinite extremities” of

GL.

5 The Infinite Extremities of y-wgraphs and the Construc-
tion of a (4 + 1)-wgraph

We are now ready to comstruct recursively a wgraph of any natural-number rank. We
assume that p-wgraphs G have been constructed for all natural-number ranks p up to and
including some natural-number rank u. We have done so explicitly for 4 = 2, but remember
that 0-wgraphs and 1-wgraphs are the same as 0-graphs and 1-graphs as defined in [4].

Our recursive assumptions have it that, given any ranks ¢ and g with 0 < a < 8 < u,
the a-wsections partition each S-wsection. We also have recursively the following definition:
An a-walk through a p-wsection S%, of G£ (where now 0 < a < p < p—1) from one bordering
wnode z to another bordering wnode y of S?, (the ranks of z and y being greater than p)
is an a-walk whose branches are all in S/, and that reaches z and y through the terminal
wtips of the a-walk. (Possibly, z = y.) Here, too, as a special case we may have a single
branch comprising all of S8, and incident to z and y, in which case that branch along with
its incident O-nodes is a 0-walk through S?, = SO; those 0-nodes are embraced by bordering
nodes = and y of S¥ of ranks greater than p and are reached through the (—1)-tips of the
branch.

A nontrivial y-walk W* is an alternating sequence of u-wnodes x# and nontrivial ay,-

walks W™ (0 < a,, < p— 1) through (p — 1)-wsections:

WE = {. . zh W ek W gk ) (9)
where, for each m, z/4 and z;, ,, are bordering wnodes of the (u—1)-wsection through which

Wam passes, W™ reaches z¥ and z., 41 through its terminal wtips, and either W,."7" or

Wpom (perhaps both) reaches z% through a (u — 1)-wtip; it is also required that, if the
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sequence (9) terminates on either side, it terminates at a wnode z of rank u or less. We
call that wnode z a terminal wnode of (9), and we call the wtip with which the adjacent
walk in (9) reaches that terminal wnode z a terminal wtip of (9). We shall also say that (9)
terminates at a wnode y if the wnode z embraces or is embraced by y. (Here, too, -if (9)
extends infinitely on either side, W# will have a “terminal u-wtip” on that side; it will be
defined below.)

A p-walk is said to embrace itself, all its elements, and all the elements its elements
embrace.

A nontrivial p-walk is called two-ended, or one-ended, or endless if the sequence (9)
terminates on both sides, or just on one side, or on neither side, respectively.

A one-ended p-walk is called extended if its u-wnodes are eventually pairwise distinct.

A trivial p-walk is a singleton containing a u-wnode.

We now assume that G% has at least one extended one-ended p-walk. Corresponding to

that pu-walk, we have a sequence of wtips just like (8):
{sg°, 1, 871,11, 852,132, . . .} (10)

except that now —1 < a,,,, 7y, < —1 and at least one of 73;, and o, 41 equa.lé i — 1 for every
m. Two extended one-ended p-walks will be considered equivalent if their wtip sequences
are eventually identical. This, too, is an equivalence relationship, and it partitions the set

W*# of all extended one-ended u-walks into subsets W

"> which we refer to as the p-witips

of Gf. More specifically, with J, denoting an index set for the partition, W* = Uj;¢y, WJ“ ,
where WY # 0 for all j and WY N W{ = 0 if j # k. Also, any member of a y-wtip is called
a representative of that u-wtip.

A one-ended p-walk is said to traverse a u-wtip or to have that u-wtip as a terminal
p-wiip if that py-walk is extended and is a member of that py-wtip. Similarly, an endless
p-walk is said to traverse two u-wtips (possibly the same p-wtip) if it is extended on both
sides and the two one-ended pu-walks obtained by separating the endless p-walk into two
one-ended p-walks traverse those p-wtips.

Next, we arbitrarily partition the set P* = {W¥} ¢, of u-wtips into subsets P}: P =

Uier, P, where I, is an index set for the partition, P # 0 for all i € I,,, and P¥ N P =10
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if i # ¢. Furthermore, for each i € I, let ¥ be either the empty set or a singleton whose

sole member is an a-wnode where 0 < a < p. For each i € I, we define a (u + 1)-wnode

z¥t! by L
2t = PYUNY (11)

so long as the following condition is satisfied: Whenever A/ is nonempty, its single a-wnode
z¥ is not a member of another f-wnode (a < 8 < p +1).

We define “embrace” exactly as in [4]. In particular, the sole a-wnode of V¥, if it exists,
is called the exceptional element of ¥ *+1 and that a-wnode may contain an exceptional ele-

ment (an a;-wnode with 0 < @y < a) of lower rank, which in turn may contain an exception

element of still lower rank, and so on through finitely many decreasing ranks. We say that

z#t

iT° embraces itself, its exceptional element z* if that exists, the exceptional element z™

contained in z“ if that exists, and so on down through finitely many exceptional elements.

We also say that z¥ +1 embraces its p-wtips as well as all the wtips in all those exceptional

ut+1

elements. Furthermore, we say that wf""l shorts together all its embraced elements. If z;
is a singleton, its sole u-wtip is said to be open. Also, any p-wnode =z (0 < p < p+1)is
said to be mazimal if z” is not embraced by a wnode of higher rank.®

It follows exactly as in the proof of [4, Lemma 2.2-1] that, if z* and y? are an a-wnode
and a B-wnode respectively with 0 < a < 8 and if z* and y® embrace a common wnode,

then y® embraces z*, and moreover z* = 30 if a = .

Next, we define the (u + 1)-wgraph to be

Gerl = (B X0 AT, Aty (12)

where B is a branch set and, for each p = 0,...,x+ 1, A’? is a nonempty set of p-wnodes
built up from the wnodes and walks of lower ranks as stated. Also, for each p, the subset
Gt = {B,X°,..., X"} is called the p-wgraph of G4,

Just as certain 2-graphs are 2-wgraphs (see the preceding Section), certain u-graphs as

defined in [4, page 31] are u-wgraphs.

*Of course, z¥ *1 is automatically maximal because there are no nodes of higher rank at this stage of our

recursive development.
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An a-walk (0 < a < pu) is said to reach a (u + 1)-wnode if the a-walk traverses an
a-wtip embraced by the (u + 1)-wnode, in which case we say that the a-walk reaches the
(¢ + 1)-wnode through that a-wtip. As a special case, we view a branch as traversing__tyo
(—1)-tips; thus, a branch reaches a ( + 1)-wnode through a (—1)-tip if one of its (—1)-tips
. is embraced by the (u + 1)-wnode.

We now complete this cycle of our recursive development with a few more definitions.
Let B, be a subset of the the branch set B of G£t1. Foreach p = 0,...,p+ 1, we let A’? be
the set of p-wnodes in A" each of which contains a (p — 1)-wtip having a representative all

of whose branches are in B,. (These wnodes may also contain other (p — 1)-wtips.) Then,
getl = {B,, A0, X%,..., xsthy (13)

is called the wsubgraph of G4*! induced by B;. Any one of the A’? may be empty, but there
will be a maximum rank A for which the A’? are nonempty for p = 0,..., A and empty for
p=A+1,...,u+ 1.5 It can also happen that X2 is empty or that X**? is nonempty. In
general, a wsubgraph is not a wgraph because its wnodes may contain certain wtips having
no representatives with all branches in 5;.

For each p = 0,...,u, two branches (resp. two wnodes) in GZ*! are said to be p-
weconnected if there exists a two-ended a-walk (0 < a < p) that terminates at a 0-node of
each branch (resp. at the two wnodes). Two walks W and WP with 0 < o, < p are
said to be in conjunction if a terminal wnode of W embraces or is embraced by a terminal
wnode of W#. The conjunction of W* and W¥ is a walk of rank max(a, 3), as is easily seen.
It follows that p-wconnectedness is a transitive and indeed and an equivalence relationship
for the set B of branches in G-*!.

A p-wsection S, (0 < p < p) of GE*1 is a subgraph of G#*! induced by a maximal set
of branches that are pairwise p-wconnected. Because p-wconnectedness is an equivalence
relationship between branches, the p-wsections partition G£*! (i.e., each branch is in exactly
one p-wsection). In fact, if 0 < p < A < g+ 1, any A-wsection is partitioned by the p-

wsections within it because p-wconnectedness implies A-wconnectedness. We say that an

8See {4, page 32] for the argument establishing this.

17



Do B MR T g i wea b el i ARSI e e T s b G S et G e AT R wrmre e ot aeeam e A e

a-wtip (0 < a < p) is traversed by S’, or belongs to Sf, or is in SP, if all the branches of any
representative (and, therefore, of all representatives) of that a-wtip are in S2.

A bordering wnode of a p-wsection S is a wnode of rank greater than p that emb;gp.es
a wtip belonging to §?. A wnode of S, that is not embraced by a bordering wnode of S,
is called an internal wnode of 5. A boundary wnode of S%, is a bordering wnode that also
embraces a wtip not belonging to S5,

An a-walk through a p-wsection is defined as before, but now p may equal u. We can
now define a (u + 1)-walk exactly as was a p-walk (9) except that p is replaced by p + 1.
Other definitions are so-extended, too. For instance, G#*! is said to be (i + 1)-wconnected
if, for every two branches, there exists a walk of rank less than or equal to u + 1 that
terminates at 0-nodes of those branches. The (u + 1)-wsections of G4+! are the components
of GE+1. Moreover, we have the wtip sequence of any extended one-ended (u+ 1)-walk, and
thus the equivalence between two such (u + 1)-walks as before. The resulting equivalence
classes are the (u + 1)-wtips, which are taken to be the infinite extremities of G£1+1.

We have completed one more cycle of our recursive development of wgraphs.
6 &-wgraphs

We now assume that there is a wgraph having wnodes of all natural-number ranks. That is,
the process of establishing a p-wgraph from p-wgraphs (p = 0,1,...,u — 1) has continued
unceasingly, always yielding wnodes of ever-increasing ranks. Thus, we have nonempty
wnodes sets X%, X1, ..., ¥ ... for all natural-number ranks u.

As in [4, page 4], & denotes the arrow rank that precedes the limit-ordinal rank w and
is larger than every natural-number rank g. We now define another kind of wnode =% of

rank &. z¥ is an infinite sequence of ui-wnodes z* (k= 0,1,2,...):
¥ = {zh°, 2,242, ..} (14)

where the p are increasing natural numbers: o < 1 < pa < ..., each zi* is the excep-
tional element of z,;%', and z4° does not have an exceptional element. (In the definition of

an &-wgraph given below, it is not required that there be any &-wnodes.) As usual, we say
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that =% embraces itself, all its ui-wnodes, and all the wtips in those ux-wnodes. Here, too,
it can be shown as an easy consequence of [4, Lemma 2.2-1} that, if two S-wnodes embrace
a common g-wnode of natural-number rank u, then the two &-wnodes are the same; also,
if an &-wnode z° and a p-wnode z* embrace a common wnode, then z° embraces :c“ As
with p-wnodes, we speak of z¥ as shorting together its embraced elements.

We now define an &-wgraph G2 of rank & to be the infinite set of sets:
6% = {B,X°x ... x%) (15)

where B is a set of branches, each A* (u = 0,1,2,...) is a nonempty set of u-wnodes, and
A% is a (possibly empty) set of G-wnodes.

Given any subset B, of B, we define the wsubgraph of G® induced by B, exactly as
was a wsubgraph defined in the preceding Section (see( 13)) except that now there may be
infinitely many nonempty wnodes sets A’* (u = 0,1,2,...) and perhaps a nonempty A’°
inserted into the right-hand side of (13).

Two branches (resp. two wnodes) are said to be &-wconnected if there exi'sts a two-ended
walk of any natural-number rank that terminates at 0-nodes of those two branches (resp.
at those two wnodes). &-wconnectedness is an equivalence relationshi}ﬁ for the branch set
B; indeed, it is clearly reflexive and symmetric—and also transitive because the conjunction
of two walks of natural-number ranks is again a walk with a natural-number rank.

An G-wsection is a wsubgraph of G induced by a maximal set of branches that are &-
wconnected. Because &-wconnectedness is an equivalence relationship for B, the &-wsections
partition gf’;. Presently, &-wsections are simply components of gf’), that is, there is no walk
of any rank connecting branches in two different &-wsections, but, later on when we define
w-wgraphs, there may be such walks of rank w.

Also, a p-wsection of g:j, where again p is a natural number, is defined exactly as it was
in the preceding Section. With A being any natural number with A > p, any A-wsection is
partitioned by the p-wsections within it, and so, too, is GZ.

There is no such thing as a two-ended &-walk, but we can define one-ended and endless
w-walks. In doing so, we wish to do it in such a fashion that a unique sequence of wtips,

somewhat like that of (10), identifies a one-ended &-walk as a representative of an infinite
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extremity of G%.
A one-ended &-walk is a one-way infinite alternating sequence of u,,-wnodes z4™ and

nontrivial ay,-walks W5m:
I bo oo M1 oy, M2 am—1 ,u o Bm41
WY = {zp°, Wg°, 2!, Wi, 292, .. , W, ebm W 2, L) (16)

where the p,, comprise a strictly increasing sequence of natural numbers: po < py < p2 <
...,and 0 < @y, < fimqy for each m = 0,1,2,...; moreover, W2™ reaches z&™ and z;’f‘,_*]’
through its terminal wtips, and at least one of W' and W2™ reaches z”m through a
(i — 1)-wtip. | |

An endless &-walk is the conjunction of two one-ended &-walks in the sense that the
terminal wnode of one one-ended &-walk embraces or is embraced by the terminal wnode
of the other one.

There are many ways of representing a given one-ended &-walk W* as in (16) because
the zbm and W5™ can be chosen in different ways. In order to get a unique sequence of
wtips characterizing W< as stated above, we proceed as follows. First of all, since zy° need
not be a maximal wnode, we can write (16) is such a fashion that W reaches z§° through
a 0g-wtip sg° where po = 09 + 1. Similarly, no z%™ need be maximal; therefore, we can let
W:ﬂ;l reach r4m through a 7,,_;-wtip t:,;"_‘ll and let W2m reach z%m through a a,,-wtip

som where fy = max(7T;m-1,0m)+ 1. Under this condition, we can continue to assume that
{pm}—0 is a strictly increasing sequence. Furthermore, we can let z{* be the first wnode
after z5° of rank u; greater than yy that W% meets in accordance with its representation

16). In general, for each m, we can let z:™*! be the first wnode after z#m of rank fim4q
g m+1 Bt

‘m
greater than u,, that W% meets in accordance with its representation (16). Under these
additional conditions, we refer to W¥ as a canonical G-walk. In this way, every &-walk has

a unique canonical form, and that form has a unique set of wtips:

{800, t0°,..o, tym=l som gTm L} (17)

Tty 'm-12m Y 'm

such that, for each m > 0, pp, = max(7p,—1,0m) + 1, as above. The sequence (17) charac-

terizes the way W leaves and enters wsections of increasing ranks. Indeed, there will be a
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nested sequence of wsections S%™ of increasing ranks:
Shcsbhrcsrc...cSrcC... (18)
with zh4m being a boundary wnode of S¥™. Moreover, the truncation of (16) at z#m:
{z§°, Wgo, =t , Wi, .. zhm

lies in S%m, and W¥ leaves Sm through z#m along the wtips ¢, and s%™. We shall refer
to (17) as the wtip sequence of a canonical &-walk, or simply as a canonical wtip sequence.

Let us now assume that G contains at least one canonical &-walk. Two such canonical &-
walks will be considered equivalent if their canonical wtip sequences are eventually identical.
Thus, those two &-walks “approach infinity” eventually along the same sequence of wnodes
of strictly increasing ranks, eventually passing through those wnodes via the same wtips.
This truly is an equivalence relationship for the set of canonical &-walks in GZ, and the
resulting equivalence classes will be called the &-wtips of GZ. Those &-wtips will be viewed
as the “infinite extremities” of GZ.

A one-ended &-walk is said to traverse an &-wtip if the &-walk is canonical and is a
member of the &-wtip. In the same way, an endless J-walk can traverse two &J-wtips—or

possibly the same &-wtip.
7 w-wgraphs

With y-wgraphs (u a natural number) and &-wgraphs in hand, we can define w-wgraphs as
follows. Assume that an &-wgraph G2 has a nonempty set P? of G-wtips. Partition P¢ in
any fashion to obtain Pe = Uie ID’P?, where, as before, [; is the index set for the partition,
P# is nonempty for all i € Iz, and PP NPF = Qif i # k. Also, for each 7, let N be either
the empty set or a singleton whose only member is either a g-wnode or an J-wnode. We
also require that, if Nf’ is not empty, its sole member is not the member of any other /\f;f
(k # 7). For each i € I, the set

z¥ = PPUN? (19)

is called an w-wnode. Asusual, if Aff’ is not empty, its wnode is called the ezceptional element

of . Also, as before, we say that z¥ embraces itself, all its elements, and all elements
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embraced by its exceptional element. We say that z7 shorts together all its embraced
elements. When z¥ is a singleton, its one and only &-wtip is said to be open.

The following facts can be proven: If an a-wnode (0 < a < &) and an w-wnode embrace
a common wnode, then the w-wnode embraces the a-wnode; moreover, if @ = w, then the
a-wnode and the w-wnode are the same wnode. (This is a generalization of Lemma 2.4-1
of [4].)

A one-ended a-walk W2 (-1 < a < &) is said to reach an w-wnode if the a-walk
traverses an a-wtip embraced by the w-wnode, in which case we say that W< does so
through that a-wtip.

Let A be the set of all w-wnodes. An w-wgraph G is defined to be

Ge = {B,X°X1,... 2% v} (20)

X% is the set of G-wnodes, which may be empty. All other X' (v = 0,1,...,w;r # &) have
to be nonempty in order for G2 to exist.

A wnode in G2 is called marimal if it is not embraced by a wnode of higher rank.

A wsubgraph G, of G4 induced by a subset B of the branch set B is defined exactly as
before. For instance, with p being a natural number as always, a p-wnode z# in G2 is also
a p-wnode in G, if z# contains a (u — 1)-wtip with a representative all of whose branches
are in B,. Similarly, an w-wnode 2“ in GY is an w-wnode in G, if ¥ contains an &-wtip
with a representative all of whose branches are in B,. On the other hand, if infinitely many
of the wnodes in an &-wnode are in G;, then the set of those wnodes is an &-wnode in G,.

For G2, pu-wconnectedness and &-wconnectedness are defined exactly as before, as are
p-wsections and &-wsections, too. Such wsections of a given rank partition every wsection
of higher rank and G¥, too. A bordering wnode of an &-wsection S is an w-wnode” that
embraces a wtip traversed by S¥. (As before, by traversed we mean that the wtip has a
representative whose branches are all in $%.) A wnode of S% that is not embraced by a
bordering wnode of S¥ is called an internal wnode of S%; thus, the rank of an internal

wnode of § is no greater than . A boundary wnode of an G-wsection S is a bordering

"In wgraphs of ranks higher than w, such a bordering wnode of a &-wsection can have a rank higher than
Ww.
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wnode of 2 that also embraces a wtip not traversed by SG.
A nontrivial w-walk W* is an alternating sequence of w-wnodes z% and nontrivial ay,-

walks (0 < am < &) through ay,-wsections:

W __ w Am—1 , W o w Am41 w
WY = {2 Wz, Wam 2, Wt 2l o) (21)

such that, for each m, 2% and zj,,, are bordering wnodes of the &-wsection through which

Wgam passes, W™ reaches z%, and z% ., and either W:;Tfl

or W2m (perhaps both) reaches
z% through an &-wtip; it is also required that, if the sequence (21) terminates on either
side, it does so at a wnode z of rank w or less.. The wnode z is called a terminal wnode of
Wv, and the wtip with which the adjacent walk in (21) reaches z is called a terminal wtip
of W¥. Here, too, we say that W* terminates at a wnode y if it terminates at a wnode z
that embraces or is embraced by y. We define two-ended, one-ended, and endless w-walks
in the usual way.

A trivial w-walk is a singleton whose only member is an w-wnode.

Two branches (resp. two wnodes) are said to be w-wconnected if there exists a two-ended
B-walk (0 € § < w, 3 # &) that terminates at 0-nodes of those two branches (resp. at those
two wnodes). A branch-induced wsubgraph has the usuai definition (see (13) but replace
i+ 1 by w). Also, an w-wsection is a subgraph induced by a maximal set of branches that
are w-wconnected. Without wgraphs of ranks higher than w being defined, w-wsections
are simply the components of G; that is, there is no walk of any rank terminating at the
0-nodes of two branches in different w-wsections.

A one-ended w-walk is called ertended if its w-wnodes are eventually pairwise distinct.
Corresponding to each W&™ in (21), we have two wtips s7™ and t7m with which W™ reaches
ry and z3, ., respectively. Thus, ~1 < oy, 7rn < & and, for each m > 1, max(mm-1,0m) =
&. Hence, corresponding to (21), we have a unique sequence of wtips just like (8) except

for the revised conditions on the o,, and 7,,:
o T o T (4 T
{sg%, 1>, 877, 11, 892,12, . . .} (22)

Two one-ended w-walks will be called equivalent if their sequences of wtips, as in (22),

are eventually identical. As before, this partitions the set of all one-ended w-walks into
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equivalence classes. We refer to these equivalence classes as w-wtips and view them as the
“infinite extremities” of Gy.

We have now completed one more cycle of our recursive development of transfinite
wgraphs. We could continue as in Sec. 5 to construct wgraphs of ranks w + 1,w+2,...,
then (w - 2)-wgraphs, (where w-2 = w + @) as in Sec. 6, then (w - 2)-wgraphs as in this

section, and so on through still higher ranks of wgraphs.

8 Branch-Count Distances in Walk-Based Transfinite Graphs

Under the path-based theory of distances in transfinite graphs given in [7], not all pairs
of nodes can have a distance between them because certain pairs of transfinitely distant
nodes have no transfinite paths connecting them even though they have transfinite walks
connectin.g them. Examples of this are presented below. To circumvent this difficulty,
the distance function had to be restricted to subsets of the node set. Such a subset was
called a “metrizable node set,” and in general a transfinite graph would have many different
metrizable node sets.

On the other hand, in the walk-based theory presented herein, a distance function can
now be defined on all pairs of nodes. We can also state more general results concerning
nodal eccentricities, radii and diameters of walk-based graphs. These quantities take their
values in the well-ordered set of transfinite ranks [4, page 4], [6, page 4). As before, this
is the set of all countable ordinals (including the natural numbers) augmented with “arrow
ranks.” Fach arrow rank X precedes a limit ordinal A and is larger than all the ordinals less

than \.2

9 More Examples

Example 9.1. Consider again the 1-graph of Fig. 1, which we redraw in Fig. 5 in order
to indicate other 0-tips arising from paths that switch infinitely often between the aj and
br branches. There are uncountably many such paths and 0-tips; in fact, the cardinality of

the set of 0-tips is the cardinality of the continuum. Indeed, at each 0-node encountered in

8The first arrow rank 0 is never used in the following, and, when speaking of an arrow rank, we tacitly
mean that it is not 0.
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a traversal toward the right, one makes a binary decision concerning the next branch a; or
bi to traverse; thus, each path starting at n® can be designated by a binary representation
of the real numbers between 0 and 1.

As before, let z! (resp y') denote the 1-node corresponding to the path proceedjng-grﬁliy '
along the a; branches (resp. bx branches). There is a path connecting n° to z! and another
connecting n° to y!, but there is no path connecting z! to y! because any tracing between
z! and y! must repeat 0-nodes. Thus, no distance can be assigned between z! and y! if we
define distances based upon paths as in [7]. However, there is a walk connecting z! and 3
(in fact, infinitely many of them), and a distance based upon walks can and will be assigned
between z! and 3! in Example 11.2. O

Example 9.2. The graph of Fig. 5 appears in modified forms as subgraphs of many
other 1-graphs, and thus those 1-graphs may also fail to have distances based upon paths
for certain pairs of 1-nodes. Such is the l-graph of Fig. 6, consisting of a ladder graph
with uncountably many singleton 1-nodes, each containing a 0-tip. Here, too, there are
uncountably many 0-paths starting at, say, the 0-node 2° and proceeding infinitely toward
the right. Let z! (resp. z}) denote the 1-node containing the 0-tip of the path proceeding
through all the a; branches (resp. by branches with ¢g, too). Each of the other 1-nodes
corresponds to a path that passes infinitely often through some c¢; branches. There is no
path but there is a walk connecting any one of those latter 1-nodes to any other 1-node, and
so we must resort to distances based upon walks in order to encompass all these 1-nodes in
a theory of distances for transfinite graphs. Note, however, that there are paths connecting
z} and z]. Since a path is a special case of a walk, the distance between z} and z} as
defined below will be the same as that defined in [7]. O

Example 9.3. We redraw Fig. 3in Fig. 7 to show a new kind of transfinite node of rank
2, which we have called a 2-wnode. There is no path that passes through all the 1-nodes
of Fig. 7, but there is a one-ended 1-walk that starts at the 1-node z! and passes through
all the other 1-nodes z},z},z],... in sequence. The infinite extremity for that one-ended
1-walk (called a 1-wtip) was defined in Sec. 4. Furthermore, that 1-wtip is encompassed

within the 2-wnode z2. Once again, a distance based upon walks can be defined between z2
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and any 1-node or 0-node of Fig. 7, something that is impossible if we base our definition
of distance upon paths. That distance will be w?, according to the distance definition (27)
given below.

Now, just as infinitely many replications of the graph of Fig. 1 were connected in ét;;i-es
to get the graph of Fig. 3, we can connect in series infinitely many two-way infinite replicates
of the graph of Fig. 7 at their 2-wnodes. The resulting graph will have an infinite extremity
of still higher rank (called a 2-wtip), which in turn can be encompassed within a transfinite
node z° of rank 3 (called a 3-wnode). The distance between 23 and any of the other nodes
will be defined to be w3,

This construction can be continued on to still higher ranks. O

10 Lengths of Walks

Given any walk W of any rank, |W| will denote its length. A trivial walk of any rank is
assigned the length 0. All the walks considered below are understood to be nontrivial unless
triviality is explicitly stated.

0-walks: A 0-walk W0 is simply a walk as defined in conventional graph theory. If W0 is
two-ended (i.e., finite), |W°| is the number 7 of branch traversals in it. In other words, it is
a count of th(_a branches in WP with each branch counted according to the number of times
the branch appears in W°.® We do not assign a length to any arbitrary infinite 0-walk, but,
if the 0-walk W? is one-ended and extended, we set |W°| = w. On the other hand, if W° is
endless and extended in both directions, we set |W°| = w - 2.

1-walks: These are defined by (2) and its associated conditions. We assign a length |W!|
to W1 by counting tips as follows. If W is one-ended and extended, we set |W!| = w2, If
W? is endless and extended in both directions, we set [W1| = w? - 2. If, however, W! is

two-ended, we set

Wi =3 1Wal, (23)

*This why a trivial 0-walk is assigned the length 0, and a similar reasoning is applied to trivial walks of
higher ranks.
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where the sum is over the finitely many 0-walks W2 in (2); thus, in this case, |W!| =
w -7y + 7o, where 7y is the number of 0-tips W traverses,'® and 7o is the number of branch
traversals in all the two-ended 0-walks in (2). In fact, 3°,, |[W°) is the natural sum of ordinals
yielding a normal expansion of an ordinal [1, pages 354-355]. 71 is not 0 because W‘l lsa
nontrivial 1-walk; 1o may be 0.
2-walks: These are defined by (7) and its associated conditions. If the 2-walk W? is one-
ended and extended, we set |W?2| = w3. If W2 is endless and extended in both directions,
we set |W?| = w®.2. On the other hand, if W? is two-ended, we set
w2 = 3 IWarl, (24)
m
where the summation is over the finitely many am-walks in (7). Since each ay, satisfies
0 < a, < 1, each |WSm| is defined as above; here, too, the summation in (24) denotes a
normal expansion of an ordinal obtained through a natural sum of ordinals [1, pages 354-
355]. So, |W?| = w?- 13+ w- 11 + 7o, where the 7 are natural numbers. 7 is the number of
1-wtip traversals for W? (counting each 1-wtip by the number of times it is traversed);
is not 0 because W2 is two-ended and nontrivial. Also, for k = 0,1, we obtain 74 by adding
ordinals in accordance with the natural summation of ordinals; 74 can be 0.
u-walks: We can continue recursively to define in this way the length of a u-walk, where
@ is a natural number. A p-walk W* is defined by (9) and its associated conditions. If
W* is one-ended and extended, we set |W#| = w**1. If W* is endless and extended in
both directions, we set |W?2| = w*t! . 2. If W* is two-ended, we recursively apply natural
summations to get
[W*| = ZIW"""I =+t bt 47 (25)
Here, too, the 74 (k = 0,..., ) are natural numbers. Also, 7, is not 0, but the 74 can be 0
if k< p.
w-walks: As was indicated in Sec. 6, J-walks always have canonical forms, and they are

always extended. Moreover, they are either one-ended or endless—never two-ended. The

%Bach traversal of a given O-tip adds 1 to the count for .
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length of a canonical one-ended (resp; endless) &-walk is by definition |W<| = w“ (resp.
W9 = wv - 2).

w-walks: Finally, we consider an w-walk W* defined by (21) and its associated condi-
tions. f WY is one-ended (resp. endless) and extended (resp. extended in both directi;;s;),
we set |[W¢| = w@t! (resp. [W¥| = w¥*1.2). f W is two-ended, we recursively apply
natural summation to get the normal expansion of the ordinal length |W¥|:

Wl = Y jwam] = o+ Y W (26)
m k=0

where 7, and the 7, are natural numbers. Here, too, 7, # 0. Also, only finitely many
(perhaps none) of the 7, are nonzero because W* is two-sided and therefore has only

finitely many WS™ terms.
11 Distances between Wnodes

Henceforth, we restrict the rank of the wgraph G to be no larger than w (i.e., v < w), and
we assume that G} is wconnected, that is, given any two wnodes in G}, there is a two-ended
v-walk (0 € ¥ < w,7 # &) that terminates at those two wnodes. Such a walk will have an
ordinal length in accordance with the ﬁreceding Section. Consequently, we can define the

distance dw(xg,:z:f ) between any two maximal wnodes z& and mf in G; as follows:
du(25,25) = min{|Wa/} (27)

where the minimum is taken over all two-ended walks W, , terminating at z& and zf . The
minimum exists because the ordinals comprise a well-ordered set. If, however, 2% = xf R
we get dw(zg,xf) = 0 from the trivial walk at z¢. Thus, we have a function mapping
pairs of maximal wnodes into the set of nonnegative real numbers. If z§ and/or zf are
not maximal, we define the distance between them as being the same as that between the
maximal wnodes embracing =7 and/or zf . So, unless something else is explicitly stated, we
will henceforth confine our attention to the maximal wnodes in G,.

Clearly, if z& # xf, then dw(:rg,zf) > 0; moreover, dw(m;‘,zf) = dw(:cf,:c;"). Further-

more, the triangle inequality
du(2g,2p) < du(2g,27) + du(2,2}) (28)
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holds for any three wnodes zJ, zf , and z7; it is understood here that we are using the

“patural summation” of ordinals in order to get the right-hand side of (28) as the “normal
expansion” of an ordinal [1, pages 354-355). That (28) is true follows directly from the fact
that the conjunction of two walks is again a walk. Thus, a walk from zJ to z7? followed by
a walk from z? to zf is a walk from z¢ to :zf . So, by taking minimums appropriately, we
get (28). Thus, we have '

Proposition 11.1. The distance function d,, satisfies the metric arioms.

Example 11.2. In the 1-graph of Fig. 5, the distance (27) between any 0-node and
z! (or y') is w, and the distance between z! and y! is w - 2. For distances defined only by
paths [7, Equation (7)), the distance between any 0-node and z! (or y!) is w, but there is
no distance defined between z! and y'. O

Example 11.3. In the 1-graph of Fig. 6, the distance between any 0-node and any
1-node is w. Also, the distance between any two l1-nodes is w - 2; this stands in contrast to
the path-based definition of distance for which the distance between those 1-nodes could
only be defined for the pair z} and z}. O

Example 11.4. In the 2-graph of Fig. 7, the distance dy(z],z}) is w - 2, according to
our definition (27). Similarly, d,(z},z}) = w-(2|i — k|). On the other hand, for every i,
dy(z?,z}) = w? O '

A special case is worth noting here. Since 1-wnodes and I-nodes are the same thing
and since a two-ended 1-path is a special case of a two-ended 1-walk, the distance between
two 1-nodes in a 1-graph as defined by (27) will be the same as the distance defined by
[7, Equation (7)] so long as a two-ended 0-path or 1-path exists between those 1-nodes.
However, this statement need not be true for wnodes of ranks higher than 1 because there
may be a two-ended walk terminating at two such nodes that is shorter than any path

terminating at them.

12 Eccentricities and Related Ideas

The ideas of eccentricities of wnodes, radii, diameters, centers, and peripheries for wgraphs

can be defined just as they are in [7, Sec. 6], using now the distance function d,, of (27)
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instead of the distance function d of [7, Equation (7)]. The only difference is that the
restriction to a metrizable set of nodes [7, Sec. 3] is no longer needed. All the wnodes of a
wgraph constitute a metrizable set under the distance function (27). So, let us present just
one example illustrating this generality.

Example 12.1. In order to get a result distinguishable from those relating to path-
based graphs, we shall use the 1-graph of Fig. 5 in place of a branch. Thus, in Fig. 8, a bold
line between 1-nodes (shown as solid dots) will denote that 1-graph, where it is understood
that connections to it are only made at the two 1-nodes z! and y!. Also, a one-way infinite
series connection of such 1-graphs will be denoted by three bold dashes. .

With this notation, consider the 2-wgraph of Fig. 8. Let e(v) denote the eccentricity of
any wnode v. The eccentricities of the wnodes of Fig. 8 are as follows:11 e(m}c) =w?- 24k
fork=1,2,3,...; e(3?) = w?-2; e(2}) = w?-2for k = ..,=1,0,1,...; and e{w?) = w? . 3.
Consequently, the radius of this wgraph is w? - 2, its diameter is w? . 3, its center is {2} :
k=...,-1,0,1,...}, and its periphery is {w?}. O

Three theorems concerning eccentricities, radii, diameters, and centers of transfinite
graphs were established in [7]. Those theorems can be extended readily to wgraphs. In
fact, the proofs for wgraphs are simpler because of the fact that the conjunction of two
walks is again a walk. Moreover, these results for wgraphs are stronger because they hold
for all wnodes—not just for nodes in some metrizable set. So, let us simply state the
versions of those theorems that hold for wgraphs. In the following, it is understood that
every wnode discussed is a maximal wnode. The eccentricity of any nonmaximal wnode z
is the same as that of the maximal wnode embracing z.

Theorem 12.1. Let S% be any p-wsection in the v-wgraph G, where 0 < p < v < w.
Assume that all the bordering wnodes of S2, are incident to S, only through p-wtips. Then,
all the internal wnodes of 82, have the same eccentricity.

The radius (resp. diameter) of a wgraph is denoted by rad (resp. diam). If rad is an
arrow rank, then rad* will denote the next higher limit ordinal rank.

Theorem 12.2. For any given wgraph of radius rad and diameter diam, the following

11 As always, an arrow above a symbol A (i-e., X) denotes the arrow rank X Jjust preceding the limit ordinal
A
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hold:
(i) Ifrad is an ordinal, then rad < diam < rad - 2.
(ii) If rad is an arrow rank, then rad < diam < rad* - 2.

Theorem 12.3. The v-wnodes of any wgraph G, (0 < v < w,v # &) comprise the

center of some v-graph H".

13 Walk-Based Transfinite Electrical Networks

Our objective in the rest of this work is to extend electrical network theory to networks
whose graphs are wgraphs. We refer to such networks as “Wnetworks,” just as we did for
other entities relating to wgraphs. As should be expected, the solution spaces for the current
regimes of wnetworks are larger than those for the networks considered in [3], [4], and [6],
and the solutions we now obtain can have stranger configurations. Examples of this are
given in [5, Secs. VC and VDJ; that paper only employed the first rank of transfiniteness
for walks and therefore encountered only the 0-graphs and 1-graphs considered previously
in the path-based theory-—not wgraphs. Herein, we examine the voltage-current regimes of
wnetworks at higher ranks. A notable result is that, in contrast to path-based networks,
wnetworks possess unique node voltages with respect to a given ground node whenever node
voltages exist.

We continue to assume that we have in hand a v-wgraph G} where 0 < v < w.

14 Tours and Tour Currents

Let v be an ordinal such that 0 < v < w and y # &. We define a closed y-walk as a
two-ended v-walk such that its first wnode embraces or is embraced by its last wnode.
(Thus, a vy-loop is a special case of a closed y-walk.) Also, when v = 1, a closed vy-walk will
pass through any branch only finitely many times because each 0-walk between consecutive
1-nodes in it does so.!> However, for 4 > 1, a y-tour might pass through a branch infinitely

often; this can result in infinite power dissipation for current regimes based on closed walks.

321n fact, that O-walk can be decomposed into three O-paths.
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We wish to disallow this because our fundamental Theorem 15.2, given below, is based upon
finite-power regimes. For this reason, we restrict the allowable Ac]osed walks still further:
A v-tour is defined to be a closed «-walk that passes through each branch at most finitely
many times (possibly never for some branches). As with 4any walk, every y-tour is a551gned
an orientation (i.e., a direction for tracing it). A four is a y-tour of some unspecified rank
5.

The next step is to assign an electrical structure to the v-wgraph G at hand. As was
stated above, we restrict ¥ to 0 < v < w; in addition, we now require that v < v. Let J be
the set of indices j assigned to the branches b;. J may be uncountable. All entities relating
to the branch b; will also carry the same index j. We take it that every branch b; of G, is
in the Thevenin form of a positive resistor r; in series with a pure voltage source e;. Thus,
r; is a positive real number, and e; is any real number—possibly 0. Also, every branch b;
is assigned an orientation. The current ¢; and voltage v; on b; are measured with respect

to that branch orientation. By Ohm’s law, these quantities are related by
v = 15T = €j. (29)

Thus, we are taking v; to 5 voltage “drop” and e; to be a voltage “rise” with respect to
b;’s orientation, but these quantities can be either positive, negative, or zero. ¢ = {;}ey,
v = {v;}jes, and € = {e;};jes will denote the branch-current vector, the branch-voltage
vector, and the branch-voltage-source vector, respectively. On the other hand, the mapping
R: 1 r;i; will denote the branch resistance operator. R maps 1 into a voltage vector Ri.

Thus, Ohm’s law can be written in this notation as follows:
v =Ri—e (30)

We refer to G2 with these assigned branch parameters as a v-wnetwork and denote it by
N3,. This, too, is assumed given and fixed in the following.

Next, a tour currentis a constant flow f of current passing along the tour in the direction
of the tour’s orientation; f is any real number. That flow f produces branch currents as
follows: If the tour does not pass through a branch b;, then the branch current i; equals

0. If a tour passes through b; just once, then i; = £ f, with the + sign (resp. — sign)
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used if the b;’s orientation and the tour’s orientation agree (resp. disagree). If, however,
the tour passes through a branch more than once, the corresponding branch current i; is a
multiple of f obtained by adding and/or subtracting f for each passage of the tour through
the branch, addition (resp. subtraction) being used when the orientation of the touf and

branch agree (resp. disagree); that branch current may be 0 because of cancellation.

15 The Solution Space 7

In the following, the summation symbol 3~ will denote a sum over all branch indices j
unless something else is explicitly indicated. Z will denote the space of current vectors that

dissipate only a finite amount of power in the resistors:

I-= {i:z'igrj} < ® (31)

We assign to Z the inner product (i,s) = 3 i;s;r;, where ¢,s € Z. In the standard way,
Z can be shown to be complete under the corresponding norm ||i|| = (}_ji?rj)l/ 2, and thus
T is a Hilbert space. Each ¢ € Z will be called finite-powered. A branch-current vector
corresponding to a tour current may or may not be finite-powered in this sense.

No requirement concerning Kirchhoff’s current law is being imposed on the members of
I. Nonetheless, we do wish to satisfy that law whenever possible—certainly at 0-nodes of
finite degree. To this end, we construct a solution space 7 that will be searched for a current
vector ¢ such that ¢ and its corresponding voltage vector v (as determined by Ohm’s law,
(30)) satisfy Kirchhoff’s laws whenever possible. Since each tour passes through any branch
only finitely many times, we can define linear combinations of finitely many tour currents
by taking linear combinations of the currents in each branch. It follows from Schwarz’s
inequality that a linear combination of finite-powered branch-current vectors is again finite
powered. Thus, the span 7° of all finite-powered tour currents will be a subspace of 7.
Each member of 7° will satisfy Kirchhoff’s current law at every 0-node.

Finally, we let 7 be the closure of 7° in Z. Consequently, 7 is a Hilbert subspace of
7 with the same inner product (31). 7 will be the solution space that we will search for a

unique branch-current vector satisfying Tellegen’s equation, given below.
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16 The Fundamental Theorem

Next, we confine the branch-voltage-source vector e to be of finite total isolated power by
requiring that

Eejz-gj < oo | (32)
where g; = 1/r;. It follows from Ohm’s law (29) and Schwarz’s inequality that, for i,s € T
and e restricted by (32), ¥ |v;s;| is finite. Indeed,

Do lvisil = D orilissili+ D lejssl
= Y lilymlsivis + O leilvasIsilvrs

1/2

< (E i?rj'z's?rj)llz + (Ze?gj Zsfrj) < oo.

We let (w,s) = Y w;s; denote the coupling between any voltage vector w and any

current vector s whenever the sum exists. Then, Tellegen’s equation can be written as
(v,8) = 0 (33)

where in the following we will have v = Ri —e,1€ 7, s € 7, and e restricted by (33).

Lemma 16.1. If e satisfies (32), then € : s — (e, s) is a continuous linear functional
on I and therefore on T, too.

The proof of this lemma is the same as that for [4, Lemma 5.2-5].

We are now ready to state the fundamental theorem for a unique voltage-current regime
in N¥.

Theorem 16.2. If e satisfies (32), then there exists a uﬁz’que branch-current vector
t € T such that the corresponding unique branch-voltage vector v = Ri— e satisfies Tellegen’s
equation (33) for every s € T.

The proof of this theorem is the same as that for [4, Theorem 5.2-8]. It is an easy

consequence of Lemma 16.1 and the Riesz representation theorem.

17 A Larger Solution Space S

It may happen that, for the given v-wnetwork N, | there are certain finite-powered branch-

current vectors that are not members of 7. The examples illustrated by [4, Figs. 9 and
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10] are two instances of this for the case of a 1-network. We can enlarge 7 by allowing a
thinning out of the current vector as it spreads out toward infinite extremities.!®> To do
so, we define a splayed branch-current vector in just the same way as a “basic current” is
defined in [4, page 127-128] in the case of path-based current vectors. (Just replace “pz;tli”
by “walk” and “loop” by “closed walk.”) Then, we let §° be the span of all finite-powered
splayed-current vectors, and let S be the closure of §° in Z. It follows that 7 C &, with
strict inclusion holding for some v-wnetworks. The arguments of Sec. 16 can be applied
once again to establish Theorem 16.2 with 7 replaced by S. This expands the scope of that

theorem.

18 TUniqueness of Wnode Voltages

A short-coming of electrical network theory for path-based v-networks is that node voltages
need not be unique even though they exist. That is, the node voltage determined by
summing branch voltages along a path from a node to fixed ground node may depend upn
the path chosen. As a result, a special condition must be imposed to assure the uniqueness
of node voltages; see Condition 5.4-1 and Theorem 5.5-4 of [4].

This difficulty does not exist for walk-based v-wnetworks. Indeed, having chosen arbi-
trarily any wnode as the ground wnode z,, we assign a wnode voltage to another wnode
z if a “permissive” walk exists between those two wnodes. A walk is called permissive
if the branch resistances sum to a finite amount along the walk, where each resistance is
added every time the walk passes along its branch. Then, the wnode voltage at z is the
sum ) tv;, where )y, denotes the sum along the branches of the walk from z to z,.
Each time a branch b, is traced by the walk, a term +v; is added with the + sign (resp.
— sign) used if the branch orientation agrees (resp. disagrees) with the orientation of the
walk through that branch. Then, two different permissive walks from z to z, will yield
the same wnode voltage at . The proof of this result is the same as that for [5, Theorem
6.1] except that now we are dealing with wnetworks of ranks greater than 1 as well. In

other words, Kirchhoff’s voltage law is always satisfied around closed walks. However, this

3Such a construction is given explicitly for a I-network in [5, Sec V-D].
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advantage might be paid for in certain cases by the collapse of Kirchhoff’s current law at

certain wnodes. The 1-networks of Figs 9 and 10 in [5] provide examples of these results.
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Figure Captions

There are only figure numbers—no captions.
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