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Abstract — An ordinal-valued metric can be assigned to a metrizable set M of nodes
in any transfinite graph. M contains all the nonsingleton nodes, as well as certain singleton
nodes. The metric takes its values in the set X; of all countable ordinals. Moreover, this
construct yields a graphical realization of Cantor’s countable ordinals, as well as of the
Aristotelian ideas of “potential” and “actual” infinities, the former being represented by
the arrow ranks and the latter by the ordinal ranks of transfiniteness. This construct also
extends transfinitely the ideas of nodal eccentricities, radius, diameter, center, and periph-

ery for graphs. Several results concerning these transfinitely generalized ideas are proven.

Key Words: Distance in graphs, transfinite distances, centrality in graphs, transfinite

eccentricities, radii, diameters, centers, and peripheries of transfinite graphs.

1 Introduction

The idea of distances in connected finite graphs has been quite fruitful, with much research
directed toward both theory and applications. See, for example, [2], [3], [5], and the refer-
ences therein. Such distances are measured by a metric that assigns to each pair of nodes
the minimum number of branches among all paths connecting those two nodes. Thus, the
metric takes its values in the set Ry of natural numbers. That distance considerations can be
so fruitful in the theory of finite graphs inspires the question of whether distance constructs
can be devised for transfinite graphs. Transfinite graphs 7], [8] represent a generalization
of graphs that is roughly analogous to Cantor’s extension of the natural numbers to the
transfinite ordinals.

An affirmative answer to that question was achieved in [4], wherein a metric was devised

for the purpose of ascertaining limit points at infinite extremities of a conventionally infinite,



electrical, resistive network, through which points electrical current could flow into other
such networks. This construct was extended to higher ranks of transfiniteness [8] with
an infinite hierarchy of metrics, one for each rank of transfiniteness. These metrics take
their values in the nonnegative real line, are quite different from the standard branch-count
metric mentioned above, require a variety of restriction such as local finiteness, and do not
reduce to the branch-count metric for finite graphs.

The problem attacked in this work is the invention of a single metric that extends
the standard branch count metric to transfinite graphs, one that holds for all ranks of
transfiniteness, and reduces to the standard branch-count metric for finite graphs. In closer
analogy to Cantor’s work, the metric proposed in this paper assigns countable ordinals to
pairs of nodes in a connected transfinite graph; that is, it takes its values in the set R, of all
countable ordinals. Moreover, the metric is applicable even when the graph is not locally
finite and may even have uncoﬁntab]y many branches.

As a consequence, several results con(.‘.erning branch-count distances can be lifted to the
transfinite case, some directly and others with various modifications. In particular, the ideas
of nodal eccentricity, radius, diameter, center, and periphery that hold for finite graphs are
herein extended to transfinite graphs. However, to do so, the set R; has to be enlarged by
inserting an “arrow rank” {7, page 4], [8, page 4] immediately preceding each limit ordinal.
These arrow ranks reflect the Aristotelian idea of a “potential infinity” as distinct from the
other Aristotelian idea of an “actual infinity” typified by the ordinals. Several theorems
concerning these ideas are proven. Furthermore, this new metric, upon which our results
are based, opens up a new area of research.

Various results concerning transfinite graphs are used in this work. These can be found
in the book [7]. A simplified but more restrictive rendition of the subject is given in [8]. We
will work in the generality of [7] and will refer to specific pages in that book when invoking
various concepts and results.

As is conventional, w denotes tlie first transfinite ordinal; we use the standard notations
for ordinals and cardinals [1].

Furthermore, any transfinite node 2 may (but need not) contain exactly one node of



lower rank z? (3 < @); 27 in turn may contain exactly one other node 2z (y < ), and so
forth through finitely many decreasing ranks. We say that z® embraces itself and 2P, 27,
., as well. On the other hand, if 2% is not embraced by a node of higher rank, we call
z% a marimal node. It is the maximal nodes we will be primarily concerned with because
connectedness to ™ implies connectedness to 2%, z7, ..., as well. Rather than repeating
the adjective “maximal,” we let it be understood throughout that any node discussed is
maximal unless the opposite is explicitly stated. This means that different (maximal) nodes

must be “totally disjoint,” that is, they embrace no common elements.
In this paper, we do not allow any branch to be a self-loop; thus, every branch is incident

to two different nodes.

2 Lengths of Paths

0-Paths:

A (nontrivial) 0-path PP is an alternating sequence

PO = {...,:zt?n,bm,:zr?nH,bmH,...} (1)

o

o, (also called “0-nodes”) in which no term repeats

of branches b,, and conventional nodes z
and each branch is incident to the two 0-nodes adjacent to it in the sequence. If the sequence
terminates on either side, it terminates at a 0-node. This is the conventional definition of a
path. (The 0-nodes of (1) need not be maximal when P° occurs within a transfinite graph.)
When P° is one-ended (i.e., one-way infinite), its length is defined to be |P°} = w. When
PO is endless (i.e., two-way infinite), its length is taken to be |P?| = w-2. If P is two-ended
(i.e., has only finitely many 0-nodes), we set |P°| = 75, where 74 is the number of branches
in P, We might motivate these definitions by noting that we are using w to denote the
infinity of branches in a one-ended 0-path and using w-2 to represent to fact that an endless
0-path is the union of two one-ended paths. Equivalently, we can identify w with each 0-tip
traversed; a one-ended 0-path has one 0-tip, and an endless 0-path has two 0-tips—hence,

the length w - 2.



1-Paths:

A (nontrivial) 1-path P! is an alternating sequence

P' = { .l P a1 PO ) (2)

rtmey fmo 7

1

1 and 0-paths P? that represents a tracing through a transfinite graph of rank

of 1-nodes z

1 or greater in which no node of the path repeats. If the sequence terminates on either side,

it terminates at a 0-node or 1-node. See {7, page 28] for the full definition of a 1-path. The

2

length |PY| of P! is defined as follows. When P! is one-ended, |P}| = w?, and, when P! is
endless, |P!| = w?-2. When P! is two-ended (i.e., when it has only finitely many 1-nodes),
we set |P1| = 3, | P2, where the sum is over the finitely many 0-paths in P?; thus, in this
case, |P!| = w7 + 79, where 7; is the number of 0-tips P! traverses, and 7q is the number
of branches in all the 0-paths in (2) that are two-ended. It is important here to write | P!
as indicated and not as 79 +w-7; because ordinal addition is not commutative [1, page 327].

Thus, w - 7y + 7o takes into account the lengths of all the 0-paths in (2), but 79 + w - 7y fails

to do so.

p-Paths:

Now, let u be any positive natural number. A p-path an alternating sequence

Pt = {... 2" P""‘,a:ﬁflﬁ,Pf,'l'_z]”,...} (3)

trtmy T m

of p-nodes z¥ and a,,-paths P5™, where 0 < a,, < p. (The natural numbers a,, may
vary with m, and the p-nodes need not be maximal.) As before, P* represents a tracing
through a transfinite graph of rank p or larger in which no node is met more than once in
the tracing. Termination on either side of (3) occurs at a node of rank u or less. When
P* is one-ended, its length |P*| is defined to be w**!, and, when P* is endless , we set
[P#| = w**1.2. When, however, P is two-ended (i.e., has only finitely many p-nodes), we

set |P#| = 3", |P%™|, where the summation denotes a normal expansion of an ordinal [1,

pages 354-355]. Recursively, this gives

PYl = whor o r e bweT T, (4)




where 7,,7,_1,...,Tp are natural numbers. 7, is the number of (u — 1)-tips among all the
one-ended and endless (u — 1)-paths (i.e., when a,, = p — 1) appearing in (3); 7, is not
0. Fork=p—-1,u—-2,...,1, we set 7 equal to the number of k — 1-tips generated by
these recursive definitions. Finally, 75 is one-half the number of elementary tips generated
recursively by these definitions. Thus, 7 is a number of branches because each branch has
exactly two elementary tips. Any 7% (& < u) can be 0. Here, too, in order to conform
with the standard definition of ordinal summation, it is important to write the sum (4) in
its normal-expansion form [1, pages 354-355] as shown because of the noncommutativity of
ordinal summation.

Example 2.1. Let P2 be the two-ended 3-path:
P? = {2}, P} a3, P}, 23, P}, 23)

Here, P? is assumed to be a one-ended 2-path terminating on the left with z? and reaching

z3 through a 2-tip. Hence, |P?| = w3. We take P} to be the two-ended 2-path
Pzz = {ylza thf’ ga .‘/g}a

where y? and y2 are members of 23 and 23 respectively. Q} is an endless 1-path reaching the
2-nodes y? and y? with 1-tips, and QY is a finite 0-path with four branches, whose terminal
0-nodes are members of y3 and y3. Hence, |Q1| = w?-2 and |QY| = 4. Finally, we take P}
to be an endless 2-path reaching 23 and z3 through 2-tips. Hence, |P?| = w®- 2.
Altogether then, with understanding that the following ordinal sums should always be

rearranged if need be to get the normal-expansion form, we may write

|P?| [P+ |P3] + | P3|

= W H(Q+[Q + w2
= W4t 2+4403.2

= w-3+w-2+4

@-paths:



These occur within paths of ranks w and higher, but they are never two-ended (7, pages
40-41]. The length of an S-path P¥ is defined to be |P¥| = w* when P? is one-ended, and

|P¥] = w* -2 when P¥ is endless.

w-paths:

A (nontrivial) w-path P¥ [7, page 44]

PYo= {Lal Pe et g, Pttt ) (5)

rtmry i m

and a,,-paths P2m

is an alternating sequence of (not necessarily maximal) w-nodes z% o

m
(0 < ay, < &) that represents a tracing through a graph of rank w (or larger) in which no
node repeats and a termination on either side is at a node of rank w or less. By definition,
when P“ is one-ended, |P¥| = w**!; also, when P“ is endless, |P¥| = w**! .2, When P¥
is two-ended (i.e., has only finitely many w-nodes}, we set
o
P = IR = o ot Y w (6)
m k=0
with the proper order of the terms in the summation being understood. Here, 7, is the
number of &-tips among all the one-ended and endless &-paths appearing as elements of
Pgm in (5) (i.e., when a,, = &); 7, is not 0. On the other hand, the 7, are determined
recursively, as they are in (4). There are only finitely many nonzero terms in the summation
within (6) because there are only finitely many paths PS™ in a two-ended w-path and each
|P%m| is a finite sum as in (4).

An immediate result of all these definitions is the following.

Lemma 2.2. If Q% is a subpath of a y-path P” (0 < 3 < 7), then |Q8| < |P”|.

Paths of higher ranks:

The above definitions can be extended to paths of ranks higher than w. It is sim-
ply a matter of repeating the recursions through a maximal consecutive set {w + 1,w +
2, w2, w- 2} of successor-ordinal ranks w + k followed by the next arrow rank w-2 and
then the limit-ordinal rank w - 2; this pattern continues on with still higher ranks. How

much further can these cycles of definitions through countable-ordinals be continued? Is



there some obstacle the prevents these recursions from reaching arbitrarily large countable
ordinals? These two questions are open.

Henceforth, we will restrict our attention to the first cycle, wherein the said ranks
increase through all the natural numbers and then reach w.

Let us also note the following: For every transfinite ordinal, there is a transfinite path
having that ordinal as its length. This certainly is true for all ordinals up to and including
wY . 1, where 7, is a natural number, and for many larger ordinals, too. This is easy to
show.

As has been asserted, the right-hand sides of (4) and (6) are the normal expansions [1,
pages 354-355] for the left-hand-side ordinals. Our contribution to normal expansions is the
interpretation of them as lengths of transfinite paths.

It is easy to add ordinals when they are in normal-expansion form—simply add their
corresponding coefficients. Thus, the length of the union of two paths that are totally
disjoint except for incidence at a terminal node (a “series connection”) is obtained by
adding their lengths in normal expansion form. Similarly, if @ is a proper subpath of P,
the part of P\@ of P that is not in Q has the total length |P| — |@Q|, which is obtained by
subtracting the coefficients of |@] from the corresponding coefficients of |P|. Lemma 2.2

above also follows readily from these observations.

3 Metrizable Sets of Nodes

In a connected finite graph, for every two nodes there is at least one path terminating at
them. This is not in general true for transfinite graphs; see Examples 3.1-5 and 3.1-6 in [7].

Example 3.1. The 1-graph of Fig. 1 provides another example. In that graph, z} (resp.
z}) is a 1-node containing the 0-tip ¢2 (resp. 1)) for the one-ended path of aj, branches (resp.
br branches) and also embracing an elementary tip of branch d (resp. ¢). There are, in
#dditioxl, uncountably 0-tips for paths that alternate infinitely often between the a; and by

branches by passing through ¢, branches; those tips are contained in singleton 1-nodes, one

1

for each. z,,,

denotes one such singleton 1-node; the others are not shown. Note that there

is no path connecting ;. to z} (or to any other I-node) because any tracing between z},



and z! must repeat G-nodes. Thus, our definition (given in the next section) of the distance
between two nodes as the minimum path length for all paths connecting those nodes cannot
be applied to z}, and 2}. We seek some means of applying this distance concept to at least
some pairs of nodes. O

To this end, we impose the following condition on the transfinite graph G*.

Condition 3.2. If two tips (perforce of ranks less than v and possibly differing) are
nondisconnectable,! then either they are shorted together (i.e., are embraced by the same
node) or at least one of them is open (i.e., is the sole member of a singleton node).

The 1-graph of Fig. 1 satisfies this condition.

The following results ensue: G¥ is called v-connected if, for any two branches, there is
a two-ended path P? of some rank p (p < v) that meets those two branches. Even though
GY is v-connected, there may be two nodes not having any path that meets them (i.e., the
two nodes are not »-connected). For instance, the I-graph of Fig. 1 is l-connected, but
there is no path that meets 2} and z!,.. Now, as will be established by Lemma 3.3 below,
if G¥ satisfies Condition 3.2, then, for any two nonsingleton nodes, there will be at least
one two-ended path terminating at them. As a result, we will be able to define distances
between nonsingleton nodes. Furthermore, some singleton nodes may be amenable to such
distance measurements, as well. To test this, we need merely append a new branch b to a
singleton node z% by adding an elementary tip of b to z® to get a nonsingleton node z°,
with the other elementary tip of b left open (i.e., b is added as an end branch)—and then
check to see if Condition 3.2 is maintained. More generally, with G” being v-connected and
satisfying Condition 3.2, let M be a set consisting of all the nonsingleton (maximal) nodes in
G” and possibly other singleton (maximal) nodes having the property that, if end branches
are appended to those singleton nodes simultaneously, Condition 3.2 is still satisfied by the
resulting network. Any such set M will be call a metrizable set of nodes.

Lemma 3.3. Assume GY is v-connected and satisfies Condition 3.2. Let M be a

metrizable set of nodes in G¥. Then, for any two nodes of M, there exists a two-ended path

YTwo tips are called nondisconnectable if their representative (one-ended) paths continue to meet no
matter how far along the representative paths one proceeds [7, page 58). Two tips are called disconnectable
if they have representative paths that are totally disjoint.



terminating to those nodes.

Proof. Let z§ and rf be two diflerent nodes in M. Since they are maximal, they must
be totally disjoint. Then, by Condition 3.2, any tip in z{ is disconnectable from every tip in
zf; indeed, if they were nondisconnectable, they would have to be shorted together, making
zg and .’z:f the same node. Thus, we can choose a representative path P, for that tip in 22

f. By the definition of

that is totally disjoint from a representative path P, for a tip in z
v-connectedness, there will be path P,, connecting a branch of P, and a branch of F,. By
[7, Corollary 3.5-4}, there is in the subgraph Py U P,y U P, induced by the branches of those
three paths a two-ended path terminating at 2§ and arf. o

Example 3.4. As an illustration, consider again the 0-connected ladder of Fig. 1, but
without branches d and e. In this case, z! and z} are singleton 1-nodes. Upon appending
d and e as shown, the resulting 1-graph satisfies Condition 3.2. On the other hand, if we
in addition append another branch to any other I-node, say, to z}, | Condition 3.2 will
be violated. Thus, in this case, we can take M to be the set of all 0-nodes along with
the singleton 1-nodes z! and z}, but then M cannot contain any other l1-node. Clearly,
there are many two-ended 1-paths terminating at z) and 2}. On the other hand, another
metrizable set M’ consists of all the 0-nodes along with 2}, ., but now M’ cannot contain
any other I-node. There are many two-ended 1-paths terminating at 2}, and at any 0-node.

O

4 Distances Between Nodes

Our objective now is to define ordinal distances hetween nodes whereby the metric axioms
are satisfied. We always assume henceforth that ¢¥ (v < w) is v-connected and satisfies
Condition 3.2. Let M be a metrizable set of nodes in ¢¥. Thus, Lemma 3.3 holds. We
define the distance function d: N X A ~+ Ry as follows: If 2& and a:f are different (maximal)

nodes in M, we set

d(zg, mbﬁ) = min{|Pss|: Pus is a twoended path terminating at 25 and mf} (7)

Ifz = xf, we set d(ars,:vf) = 0 (a result that would also arise if we allowed trivial paths).

By our constructions in Sec. 2, |Py| is a countable ordinal no larger than w* - k, where



k is a natural number. Moreover, any set of ordinals is well-ordered and thus has a least

member. Therefore, the minimum indicated in (7) exists, and is a countable ordinal.
Obviously, d(z,‘:,zf) > 0if 28 # xf. Moreover, (l(wg,zf) = d(a:f,xﬁ). It remains to

prove the triangle inequality; namely, if zy, wf, and z7 are any three (maximal) nodes in

M, then
d(zg, :z:f) < d(zd,z)) + d(27, :1:5) (8)

Once again, it is understood that the sum of ordinals on the right-hand side is written with
the larger ordinal first. (We will not keep repeating this admonition.)

By Lemma 3.3, there exists a path P, that terminates at 2§ and 27, and there exists
another path P, that terminates at 27 and :L'f. We now invoke {7, Corollary 3.5-4]: There
is in Py, U P, a two-ended path P, that terminates at 2§ and :xrf. In fact, a tracing of
P, proceeds from 2 along P,. until it reaches the first node that meets both P,. and Py,
and then it proceeds along P, until it reaches .7:{)3. Since the length of a path can be no less
than the length of any of its subpaths (Lemma 2.2), we have |Py| < |Pac| + [P} Now,
consider all the two-ended paths that terminate at 2§ and mf and take the minimum of

their lengths. We get
d(zg,23) < Pacl + | Pal. (9)

This inequality holds whatever be the choices of P,, and Py. Therefore, we can take
minimums on the right-hand side of (9) for all choices of P,. and P to get (8). In short,
we have

Proposition 4.1. d satisfies the metric azioms.

Clearly, d reduces to the standard (branch-count) distance function when ¥ is replaced
by a finite graph. We have achieved one of the objectives of this paper by showing that the
branch-count distance function can be extended transfinitely to any metrizable set of nodes
in G¥.

Example. 4.1. For the 1-gaph of Fig. 1 and with M chosen as in the first part of
Example 3.4, d(z,29) = 1, d(29,2]) = d(29,2}) = w, d(29,40) = d(29,40) = w + 1, and

dyd,y)=w-2+2. 0

10



In the rest of this paper, we shall lift transfinitely several standard results concerning

distances in graphs, but here, too, various complications arise.

5 Ordinals and Ranks

As we have seen, the distance between any two nodes of M is a countable ordinal. However,
given any x € M, the set {d(z,y): y € M} may have no maximum. For example, this is
the case for a one-ended 0-path P® where z is any fixed node of P° and y ranges through
all the 0-nodes of P°. On the other hand, for finite graphs the said maximum exists and is
the “eccentricity” of z. We will be able to define an “eccentricity” for every node of M if
we expand the set R; of countable ordinals into the set R of ranks [7, page 4], [8, page 4].

This is done by inserting an arrow rank § immediately before each p € R;. R looks like?
R = {0,0,1,2,...,.8,w,w+1,.. ,w-2,w-2,w-24+1,..,wnw-nw-n+1,...,
2 2 ko kK %
wihiwt w1, R O W w0 W L)

Note that the set of all ranks is well-ordered. Indeed, there is an order-preserving bijection
from R to R, obtained by replacing each rank by its successor rank. Since R is well-ordered,
so, too, is R.

In accordance with two Aristotelian ideas [6, page 3], we can view each transfinite
(successor or limit) ordinal as an “actual infinity” because distances between nodes can
assume those values, whereas each arrow rank (other than 0) can be viewed as a “potential
infinity” because distances can increase toward an arrow rank but will never achieve it.

The arrow ranks served as a notational convenience in the prior works [7] and [8], but
in this paper occasions will arise when arrow ranks need to be added. For this reason, we
now define arrow ranks in terms of sequences of countable ordinals.

Let A be any set of countable ordinals having a countable ordinal { as an upper bound
(i.e., ¢ > a for all @ € A). Let B be the set of countable ordinals, each of which is greater
than every member of A and is no greater than ¢. If 5 is empty, A has a greatest member,

namely, (. (Because of the upper bound ¢ on A, this is the only way B can be empty.)

2As was done in the prior works, we treat 0 as the first limit ordinal and  as the first arrow rank, but
in this paper 0 will never be used. All our arrow ranks will be understood to be other than 0.

11



So, assume B is not empty. By well-ordering, B has a least member A. If A is a successor
ordinal, then A has a greatest member, namely, A~ 1; in this case, A— 1 is either a successor
ordinal or a limit ordinal. If X is a limit ordinal, then there exists an increasing sequence
{ak}?, contained in A such that, for each v € A, ay > 7 for all k sufficiently large (i.e.,
there exists a kg such that oy > v for all & > ko).

With A being a nonzero limit ordinal, we define the arrow-rank X as an equivalence class
of such increasing sequences of ordinals, where two such sequences {c;}2, and {B:}72,
are taken to be equivalent if, for each v less than A, there exists a natural number ko such
that v < ap,fr < Afor all k& > k. The axioms of an equivalence relationship are clearly
satisfied. Each such sequence {a;}$2, is a representative of X, and we say that {ax}$,
reaches X.

Note that this equivalence class of increasing sequences is different {rom the set of
ordinals less than A. The latter is A itself by the definition of ordinals.

We have established the following.

Lemma 5.1. If A is any set of countable ordinals that are bounded above by a countable
ordinal (, then sup A exists either as a (successor or limit) ordinal or as an arrow rank.

We define the sum @+ J of two arrow ranks & and /5 as the componentwise sum of two
representative sequences for them. That is, if {a}} and {f} are representatives of & and
ﬁ respectively, then {a) + i} is a representative® for aj + /31..

Lemma 5.2. Let a and B be two nonzero limit ordinals, and let & and 3 be respectively
the arrow ranks immediately preceding a and 5. Then, the sum @ + /; s equal to « ¥ 3,
where the latter is the arrow rank immedialcly preceding the limit ordinal o + 3.

Proof. First note that the sum of two limit ordinals is a limit ordinal [1, page 330], so
our conclusion has a meaning. Let {a;} and {f;} be representative sequences for @ and
respectively. Then, for any ordinal 7 < « (resp. é < 3), there is a kg such that v < ax < @
(resp. 6 < B < fB) for all k < kg. Now, let € be any ordinal less than a + /3. Choose v
and é such that v + é§ = ¢, but otherwise let v and é be arbitrary. Then, for all k& > kg,

€ < ap+ B < a+ 3. Since € is arbitrary except as stated, {ay + O}, is a representative

3Remember the admonition about writing oy + fx in the proper order so as to get ap+ i > max{ak, fi}.

12



of the arrow rank o T 8. But, by our definition of the sum of arrow ranks, {ag + 3£}52, is
also a representative of a + /3'. Hence, a -}—: J=a+ ﬁ 0

(Let us note in passing that the sum of the arrow rank @ and of the ordinal ¥ can be
defined by adding v to each term of {a;}32, in the proper order of course. Then, if a < v,
the sum v + & is the arrow rank immediately preceding the limit ordinal ¥ + a. However,
if v < a, the sum @ + v is the arrow rank immediately preceding a. We will not need this

result.)

6 FEccentricities and Related Ideas

First of all, note that the lengths of all paths in a v-graph ¢¥ are bounded by w**! .2
because the longest possible paths in G¥ are the endless paths of rank . Therefore, all
distances in G¥ are also bounded above by w“T!.2. As before, M will always denote a
metrizable set of nodes in G".

The eccentricity e(x) of any node @ € M is defined by
e(z) = sup{d(x,y):y € M}. (10)

Two cases arise: First, the supremum is achieved at some node § € M. In this case, e(z)
is an ordinal; so, we can replace “sup” by “max” in (10) and write e(z) = d(z, J). Second,
the supremum is not achieved at any node in M. In this case, e(x) is an arrow rank.

The ideas of radii and diameters for finite graphs 3, page 32], {5, page 21] can also be
extended transfinitely. Given G¥ and M, the radius rad(G“, M) is the least eccentricity

among the nodes of M:
rad(G”, M) = min{e(z): x € M} (11)

We also denote this simply by rad with the understanding that G¥ and M are given. The
minimum exists as a rank (either as on ordinal or as an arrow rank) because the set of ranks
is well-ordered. Thus, there will be at least one © € M with e(x) = rad.

Furthermore, the diameter diam(G”, M) is defined by
diam(G”, M) = sup{e(z): 2 € M}. (12)

13



With G¥ and M understood, we denote the diameter simply by diam. The right-hand side

of (12) can be rewritten as

sup sup {d(z,y)} = sup{d(z,y):z,y € M}.
TEM yeEM

As we have noted before, each d(z,y) is no greater than w”*! - 2. Let D be the set of all
ranks greater than every member of C = {d(z,y): z,y € M} but less than w**!-3. D is
not empty. Since the set of all ranks is well-ordered, D has a least member A. If Ais a
successor ordinal, diam is a (successor or limit) ordinal. If A is a limit ordinal, diam is an
arrow rank. If X is an arrow rank, C must contain increasing sequences of ordinal less than
A but reaching A; this i111pljés that diam is an arrow rank again. We conclude that diam
exists either as an ordinal or as an arrow rank.

The ideas of the center and periphery of finite graphs can also be extended. The center
of (G¥, M) is the set of nodes in M having the least eccentricity, namely, rad. As noted
before, there will be at least one node in M having rad as its eccentricity. Thus, the center
is never empty. The periphery of (G¥, M) is the set of nodes in M having the greatest
eccentricity, namely, diam. If diam is an ordinal, there will be at least two nodes of M in
the periphery. It seems that, if diam is an arrow rank, the periphery will have infinitely
many nodes of M, but presently this is only a conjecture.

Example 6.1. Let G° be a one-ended 0-path with M being the set of all 0-nodes.
(We do not assign a 1-node at the path’s infinite extremity.) Then, every 0-node has an
eccentricity of &. Thus, rad = diam = &, and M is both the center and the periphery of
(G°M). O

Example 6.2. Consider the 1-graph of Fig. 1 with M being the set of all 0-nodes along
with z} and z}. (Ignore 2], and all other 1-nodes.) The 0-nodes to the left of the 1-nodes
all have the eccentricity w+ 1. Also, e(zl) = e(z}) =w-2+1,and e(y?) = e(y)) = w-2+ 2.
Thus, rad = w + 1 and diam = w -2 + 2. The center consists of all the 0-nodes to the left
of the 1-nodes, and the periphery is {y%,y0}. O |

Example 6.3. Now, consider the 1-graph obtained from Fig. 1 by deleting the branches
d and e and the 0-nodes y2 and y?, but append a new branch to 2% and 2. Let M be all

the nodes. Then, the eccentricity of every node is w. Thus, rad = diam = w, and the center

[y
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and periphery are the same, namely, M. O
Example 6.4. This time, let G* consist of a one-ended 0-path P{ and an endless 0-path
P? forming a 1-loop, as shown in Fig. 2. M is now the set of all (maximal) nodes. P}

1

starts at the nonmaximal 0-node z° embraced by the 1-node z! and reaches the 1-node y'.

PP reaches both z! and y'. Let v° be a 0-node of P? at a distance of k from z!. (For
29, k = 0.) The shortest distance between v° and any node w® of Pf is provided by a
path that passes through z!; it has the length w + k. (The path passing through y' and
terminating at v® and w° has length w - 2.) Thus, e(v®) = w + k. On the other hand,
e(w) = w+J = w-2; indeed, d(w® v°) = w + k, which increases indefinitely but never
achieves w - 2 as v° approaches y!. Furthermore, e(z!) = e(y!) = w. Thus, rad = w, diam
= w"- 2, the center is {21, y"), and the periphery is the set of all the 0-nodes of P2. O
These examples can immediately be converted into examples for graphs of higher ranks
by replacing branches by endless paths of the same rank. For instance, if every branch is
replaced by an endless path of rank » — 2, then every 0-node becomes a (v — 1)-node, and
every 1-node becomes a v-node. To get the new eccentricities, replace w by w”, & by w¥,

and k by w¥~! . 2k. Of course, there are far more complicated w-graphs.

7 Some General Results

For any rank p with 0 < p < v, let us define a p-section §? of G* as the subgraph of the
p;grapll of G induced by a maximal set of branches that are p-connected.® Thus, all the
(maximal and nonmaximal) nodes of S* have ranks p or less, and all the (maximal) bordering
nodes of S” have ranks greater than p. In the next theorem, §” is any p-section whose
bordering nodes are incident to §” only through p-tips. It follows that all the (maximal
and nonmaximal) nodes of S” are internal nodes [7, page 81], [8, page 37]; that is, they are
not embraced by any bordering nodes of §*. In Fig. 1, z! and 2} are bordering nodes of
the O-section to the left of those nodes, and the condition is satisfied, that is, those 1-nodes
are incident to that 0-section only through 0-tips. However, branch d induces a 0-section by

itself, and the condition is not satisfied because d reaches z} through a (—1)-tip; similarly

*This is the same definition of a p-section as that given in [8, page 36] but is slightly stronger that that
of [7, page 49].



for e and z}. In Fig. 2, PO and P? are different 0-sections; P? satisfies the condition, but
P? does not.

Theorem 7.1. Let §” be a p-section in G¥ (0 < p < v) all of whosc bordering nodcs
are incident to S? only through p-tips. Then, all the nodes of §? that are in M have the
same ecqeritricity.

Proof. By virtue of our hypothesis and the p-connectedness of §°, for any internal node
z® (a < p) and any bordering node z7 (v > p) of §7 in M, there is a representative p-path
P? for a p-tip embraced by z7 and lying in §°, and there also is a two-ended path @ lying
in §” and terminating at 2% and a node of P? by virtue of Lemma 3.3. So, by Condition 3.2
and [7, Corollaries 3.5-4 and 3.5-5], there is in PUQ a one-ended p-path R that terminates
at @ and reaches z7 through a p-tip. Moreover, all paths that terminate at 2, that lie
in 87, and that reach z” must be one-ended p-paths. Therefore, d(z%,zY) = wft!. For
any other node y® (8 < p) of M in 8%, we have d(z2%, ") < w"*! by Lemma 3.3 and
the p-connectedness of §”. So, if G¥ consists only of §” and its bordering nodes (so fhat
v = p+ 1), we can conclude that ¢(2®) = w”*!, whatever be the choice of 2 in S” and in
M.

Next, assume that there is a node v® of G¥ in M lying outside of §? and different from
all the bordering nodes of § in M. By the v-connectedness of ¥, there is a path Py,
terminating at 2 and v®. Let z¥ now be the last bordering node of §® that P, meets.
Let P., be that part of P, lying outside of $”. Then, by what we have shown above,
there is a one-ended p-path Q4. that terminates at 2%, lies in 8%, and reaches z” through a
p-tip. Then, Rz = Q.U P.y is a two-ended path that terminates at 2® and v?. Moreover,
|Rzu| < |Prul.

Now, let y? (8 < p) be any other node of S” in M (i.e., different from z%). Again,
there is a one-ended p-path Qf_ satisfying the same conditions as Q4.. We have d(z®,2") =
d(y®,27) = wPt'. Let Ry = Qy: U Poy. Thus, |Ryo| = |Ryy|. We have shown that, for each
one-ended path R, terminating at 2% and »® and passing through exactly one bordering
node of z” of &7, there is another path Ry, of the same length terminating at y# and v°

and identical to R, outside S”. It follows that d(x®,v*) = d(y?,v*). We can conclude that
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e(z*) = e(yP) whatever be the choices of z* and y# in S and M. O

Figs. 1 and 2 provide examples for Theorem 7.1. In Fig. 1, all the 0-nodes to the left
of the 1-nodes have the same eccentricity w + 1 in accordance with the theorem. In Fig. 2,
all the nodes of P,? have the same eccentricity w - 2, whereas the eccentricities of the nodes
of PP vary; this, too, conforms with Theorem 7.1.

A standard result [5, page 21] extends readily to the transfinite case. In the following,
rad -2 denotes rad + rad, which has a meaning not only when rad is an ordinal but also

.

when rad is an arrow rank; the latter sum was defined in Sec.

Theorem 7.2. With G¥ and M specificd, rad < diam < rad 2.

Proof. When rad and diam are ordinals, the proof is the same as that for finite graphs.
So, consider the case when either or both of rad and diam are arrow ranks. That rad < diam
follows directly from the definitions. Next, by the definition of the diameter (12) we can
choose two sequences {y,}72, and {z}52, of nodes contained in M such that the sequence
{d(yk, 2)} 32 reaches or achieves diam. Let 2 be any node in the center. By the triangle

inequality,

d(yi,z1) < dlye,x) + d(z, z).

Since d(yx,z) < rad and d(z, z;) < rad, we have d(yx, z1) < rad + rad = rad -2. Here, we
invoke Lemma 5.2 in the event that rad is an arrow rank. O

Another standard result is that the nodes of any finite graph comprise the center of some
finite connected graph [5, page 22]. This, too, can be extended transfinitely—in fact, in
several ways, but the proofs are more complicated than that for finite graphs. Nonetheless,
the scheme of the proofs remains the same. First, we need the following lemma. It continues
to be understood that every mentioned node is maximal unless otherwise noted and is a
member of the chosen metrizable set M.

Lemma 7.3. Let $¥~! be a (v — 1)-section of G*. Let u¥ € M be a v-node incident to
8“1 (thus, a bordering node of S*~' [7, page 81]), and let 2 € M (a < v) be an a-node
in $*~1 (thus, an internal node of S*~! [7, page 81]). Then, there ezists a two-ended path
of length no larger than w¥ connecting x and u*.

1

Proof. That u* is incident to $¥~! means that there is in $¥~! a one-ended 3-path ps
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with 8 < v — 1 whose f-tip is embraced by u”. Let PA*! be the two-ended path obtained
by appending to PP the (8 + 1)-node y®*! embraced by u* and reached by P?. (y#+1 will
not be maximal if 8+ 1 < »; otherwise, ! = u*.) The length |PP+1| of PA*1 is no larger
than wP*!. Moreover, PP*! traverses only one f-tip; all other tips traversed by P+ are
of lesser rank. Let z7 be any node of P#; thus, v < 8. By the (v — l)-connectedness of
8¥~1, there is in $¥~' a two-ended A-path Q* (0 < A < v — 1) terminating at 2® and 2".
The tips traversed by Q" have ranks no greater than A — 1, hence, no greater than v — 2.
By [7, Corollaries 3.5-4 and 3.5-5], there is a two-ended path R% in PP U Q* terminating
at z* and y?*1. All the tips traversed by R® are of ranks no greater than » — 1, and there
is at most one traversed tip of rank » — 1. Hence, the length of R® satisfies |R®| < w”. O

Given any v-graph G¥, let us construct a larger v-graph H" by appending six additional
v-nodes p¥ and ¢¥ (¢ = 1,2,3) and also appending isolated .end]ess (v —1)-paths® that reach
v-nodes as shown in Fig. 3. Such paths connect py to p4, p§ to p4, p§ to every v-node
in G¥, and similarly for p! replaced by /. Note that the singleton end-nodes py and g¢f
can be included in the chosen metrizable set M for H”. All the other v-nodes of H” are
nonsingletons and therefore are in M, too.

Theorem 7.4. The v-nodes of G¥ comprise the center of HY, and the periphery of H
is {p{, qr'}-

Proof. We look for bounds on the eccentricities of all the nodes in M. Let 29 and
¥? be any two (maximal) nodes in M whose ranks satisfy 0 < a, < v. It follows that
z® (resp. y®) is an internal node of a (# — 1)-section in G¥, and that section has at least
one v-node u” (resp. v”) as a bordering node because G¥ is v-connected. By the triangle
inequality,

d(z®,y%) < d(z*,u") + d(u’,p) + d(p5,v") + d(v*,y?).

By Lemma 7.3, d(z%,u¥) < w¥ and d(v*,y?) < w”. Clearly, d(u",p4) = d(p4,v") = w

V.2,

Thus, d(m“,ya) < wY-6. This also shows that, for any v-node v* in G¥, d(z%,v") < w” - 5.
v

- 7.

<
= W

Since d(u”,py) = w” - 6, we have d(2%,py) = d(a®,u”) + d(u’,py) S W +w” -6

®An isolated endless path embraces no tips other than the ones it traverses. Thus, to reach any other
part of a graph in which the isolated path is a subgraph, one must proceed through a terminal tip of that
path.



Now, d(z%,u”) > 1 because there is at least one branch in any path connecting z¢ and
u”. Thus, we also have d(z,py) > w” -6+ 1. Note also that the distance from z to any
node of the appended endless paths is strictly less than w” - 7. All these results hold for p¥
replaced by ¢”. Altogether then, we can couclude the following: For any node in §” of rank

less than v, say, 2%, the eccentricity e(2®) of 2® is bounded as follows:
w6+ 1 < e(a®) < w7

Next, consider any two r-nodes of G¥, say, ©* and v” again. By what we have already
shown, d(u”,v*) < w¥ -4, and d(u”,py) = d(u”,q}) = w¥ - 6. The distance from «” to any
node of the appended endless (v ~ 1)-paths is less than w” - 6. Also, for any node y# in G*
of rank less than v, d(u*,y?) < w¥ - 5. So, the largest distance between u” and any other
node in ‘HY is equal to w” - 6; that is, e(u”) = w¥ - 6.

Finally, we have ¢(p4) = e(¢§) = ¥ - 8, e(py) = e(¢5) = w¥ - 10, and e(py) = e(qy) =
w¥ - 12. The eccentricities of the nodes of the appended endless paths lie between these
values.

We have considered all cases. Comparing these equalities and inequalities for all the
eccentricities, we can draw the conclusion of the theorem. O

As an immediate corollary, we have the following generalization of a result for finite
graphs.

Corollary 7.5. The v-nodes of G¥ comprise the center of some v-graph H”.

Variations of Corollary 7.5 can also be established through much the same proofs. For
instance, all the (maximal) nodes of G¥ of one or more specified ranks can be made to
comprise the center of some v-graph. This is because the (# —~ 1)-sections of G¥ partition
G¥. Still more generally, if G¥ has only finitely many r-nodes, any arbitrary set of nodes
of G in M can be made the center simply by appending enough endless (v — 1).-paths in
series.

It appears that still other results concerning distances in finite graphs can be extended

transfinitely as well.
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Figure Captions

Fig. 1. A 1-graph consisting of a one-way infinite ladder along with two branches, d and
e, connected to infinite extremities of the ladder. z! and 2} are the only nonsingleton

1-nodes; all the other 1-nodes are singletons.
Fig. 2. A 1-loop having two 0-sections.

Fig. 3. The v-graph H”.
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