STONY BROOK UNIVERSITY

CEAS Technical Report 810

Scheduling Nonlinear Computational Loads

Jui Tsun Hung and Thomas G. Robertazzi

April 12, 2004

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 1

Scheduling Nonlinear Computational Loads

Jui Tsun Hung and Thomas G. Robertazzi

Abstract

It is demonstrated that supra-linear (greater than linear) speedup is possible in processing
distributed divisible computational loads when computation time is a nonlinear function of load
size. This result is radically different from the traditional distributed processing of divisible

computational loads with linear processing complexity appearing in over 50 journal papers.

Index Terms

Scalability, Divisible load scheduling, Store and forward switching, Multilevel tree network,

Nonlinear Computational Loads.

1 INTRODUCTION

Divisible loads are data parallel loads that are perfectly partitionable amongst links and processors. Such
loads arise in the parallel and data intensive processing of massive amounts of data in grid computing,
signal processing, image processing and experimental data processing. Since 1988 [1], [2], [3], [4], [5],
[6], [71, [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], work by a number of researchers has
developed algebraic means of determining the optimal fractions of total load to assign to processors and

Thomas G. Robertazzi, a Senior Member, IEEE, Cosine Laboratory, Department of Electrical and Computer Engineering, Stony Brook
University, Stony Brook, NY 11794. Phone (631) 632-8400, Fax (631) 632-8494, E-mail: tom@ece.sunysb.edu. The support of NSF grant
CCR-99-12331 is acknowledged.

Jui Tsun Hung, Cosine Laboratory, Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794,

Phone (631) 632-8424, E-mail: trent@ece.sunysb.edu

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 2

links in a given interconnection topology under a given scheduling policy. Here optimality is defined in
terms of speedup and solution time. The theory to date involves loads of linear computational complexity.
That is, computation and communication time is proportional to the size of the load fraction assigned
to a processor or link, respectively. With the right scheduling policy linear speedup in the number of
processors can be achieved [4]. Here speedup is the ratio of solution time on one processor to solution
time on N processors and is thus a measure of achievable parallel processing advantage.

The majority of the divisible load scheduling literature has appeared in computer engineering periodicals.
Divisible load modeling should be of interest as it models, both computation and network communication
in a completely integrated manner. Moreover, it is tractable with its linearity assumption. Optimal divisible
load scheduling has been developed for various interconnection topologies [12], such as linear daisy chains
[2], buses [6], trees [5], [13], hypercubes [7], and two and three dimensional meshes [14], [15]. A number
of scheduling policies have been investigated including multi-installments [16] and multi-round scheduling
[9], simultaneous distribution [4], [11], simultaneous start [10], detailed parameterizations, and solution
time optimization [19], combinatorial schedule optimization [17]. Divisible loads may be divisible in
fact or as an approximation as in the case of a large number of relatively small independent tasks [8].
Introductions to divisible load scheduling theory appear in [1], [3], [18].

In this paper we consider situations where the computational complexity of processing divisible load is
a nonlinear function of the load size. It is shown, for tree networks, that if there is an (integer) xth power
dependency of computation time at a node to the amount of load allocated to the node, one can solve for
the optimal nodal load allocation by solving an xth order algebraic equation. For the special case of a
single level tree (star) topology with certain scheduling policy assumptions, a closed form solution for an
arbitrary integer power dependency can be found. Moreover, a recursive solution is possible for the case of
a multilevel tree with power 2 (square law) dependency. Because of such nonlinear dependencies, supra-
linear speedup is possible when load is distributed among multiple processors for concurrent processing.

We make three major assumptions in this paper. First, the computing and communication loads are

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 3

divisible (i.e. perfectly divisible with no precedence constraints [3]). Second, computation time is propor-
tional to a nonlinear function of the size of the problem and transmission time is proportional to the size
of the problem. Finally, each node transmits load concurrently (simultaneously) to its children.

A theorem is also introduced in this paper to categorize the nature of solutions when load has a
nonlinear computational complexity. The theorem shows that in a practical problem to obtain an exact
solution when processing nonlinear computational load in a distributed manner, post-processing to combine
partial solutions is necessary. This categorization theorem is important for framing the context in which
nonlinear divisible processing can be done. These novel results are radically different from the analysis
of divisible loads with linear computational complexity appearing in over 50 journal papers [1].

This paper is organized as follows. The model description and notation appears in Section 2 of this
paper. The classification of distribution loads is described in Section 3. In Section 4 and Section 5, the
scheduling of heterogeneous single level tree and homogeneous multilevel tree using store and forward
switching, simultaneous distribution, and staggered start protocols are first discussed (staggered start means
that load can not be processed at a node until the node has completely received its quota of load). Here,
without loss of generality, a power 2 relationship between the computing time and the amount of load
is considered. The scheduling of trees using store and forward switching, simultaneous distribution, and
simultaneous start (load can be processed as soon as a node has begun to receive its initial data load) and
with a power x (x can be a real number) relationship for single level heterogeneous trees and a power 2
relationship for multilevel homogeneous trees is considered in Section 6 and Section 7. The conclusion

is stated in Section 8.

2 MODEL, NOTATION AND THEOREM
2.1 Model and Notation for a Single Level Tree

In this paper two types of start models for each node in the multilevel tree network are presented. One

is staggered start, the other is simultaneous (or concurrent) start. If a node begins to process its load after

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 4

The entire load is already
stored in the rood node

Fig. 1. A single level tree using staggered start with nonlinear load distribution.

the load is completely received, the protocol is called staggered start. If a node begins to process its load

as soon as the load begins to be received, the protocol is called simultaneous start. Simultaneous start was

proposed by Kim [10]. In both cases simultaneous distribution, where load is transmitted concurrently

over multiple links, is used. Simultaneous distribution was first proposed by Piriyakumar and Murthy [11].

A single level subtree using staggered start is illustrated in Fig. 1 where each node contains a miniature

timing diagram.

For a heterogeneous single level tree, which can be collapsed into an equivalent node, the notation is

presented as follows:

oy : The load fraction assigned to the root processor.

o; : The load fraction assigned to the ith link-processor pair.

w; : The inverse computing speed of the ith processor.

Weq : The inverse computing speed of an equivalent node representing a single level tree.

z; : The inverse link speed of the ith link.

T.p : Computing intensity constant. The entire load can be processed in w;T% seconds on the ith processor
for a xth law dependency.

T..» : Communication intensity constant. The entire load can be transmitted in z; T, seconds over the ith
link.

Tf,m : The finish time of an equivalent node representing a single level tree composed of one root node

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 5

and m children nodes.

Ty : The finish time of a single processor only (i.c. a tree consisting of only a root node).

Definition 1: .4, the ratio of the inverse computing speed on an equivalent node to that on the root

node.
Yeq = weq/wO (1)

Definition 2: Speedup, the ratio of finish time on one processor (i.e. the root node) to that on an
equivalent node representing a single level tree. This value is equal to the ratio of the inverse computing

speed on the root node to that on an equivalent node, i.e. the inverse of ., Hence,

Speedup = T /Ttm = Wo/Weq = 1/eq)

Finally, (a;T.p)Xw; is the finish time to process the fraction ¢; of the entire load on the ¢th processor.

2.2 Model and Notation for a Multilevel Tree

A heterogeneous multilevel tree network is too complicated to obtain a closed form solution of speedup.
Therefore, a homogeneous multilevel tree network where root processors are equipped with a front-end
processor for off-loading communications is evaluated. Root nodes, called intelligent roots, process a
fraction of the load immediately while they start transmitting data to their children (see Fig. 2). After
a sub-root receives all the assigned fraction of load for its descendants, it starts distributing these loads
to its descendants immediately and concurrently. This strategy is called “store and forward switching
with simultaneous distribution”. Under store and forward switching load must be completely received by
a node before being distributed to its descendants. The use of cut through switching is considered in
another paper [20].

In the multilevel tree the bottom level is level 1 and the top level is level k. The notation for a multilevel
homogeneous fat tree is denoted as follows.

ajo : The load fraction assigned to a root processor of a jth level subtree.

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 6

The entire load is
already stored in
the root node

Level k

-

(Layer 1)

Fig. 2. Structure of multilevel homogeneous tree with store and forward switching, simultaneous

distribution, staggered start.

a;; : The load fraction assigned to the sth link-processor pair of a jth level subtree.

Wi,,,_, : The inverse computing speed of an equivalent ith node representing the (j — 1)th level subtree,
consisting of level j — 1 descending to level 1. In a homogeneous multilevel tree, we assume
that weg, , = Wieq,_, (Gi=12...,m)

T;‘:l : The finish time of a k£ level homogeneous tree with one root node and m equivalent children nodes.

Definition 3: p;_,;, the multiplier of the inverse capacity of the ith link at level j (see Fig. 2).
The value of the multiplier p;_, ; is defined here as the inverse of the total number of children processor
descendants at and below level j for the ith subtree. The variable p;_;; allows fat tree modeling. A fat

tree allocates more capacity to nodes near the root to improve the transmission speed. In a homogeneous

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 7

multilevel fat tree, p;_; = pj—1: (¢ = 1,2,...,m). We thus consider

-1 -1
pj-1= (Zm’) 0<pi-1<1 3)
=0

This choice of p;_; allows an equivalent data rate of 1/z to each node in the tree from the root.

Definition 4. -y;, the ratio of the inverse computing speed on an equivalent node at level j to that on

the root node.

Vi = Weqs /W 4)

Definition 5: Speedup, the ratio of finish time on one processor (i.e. the root node) to that on an
equivalent node representing a subtree from level & to level 1. This value is also equal to the ratio of the

inverse computing speed on the root node to that on an equivalent node, i.e. the inverse of ~y,. Hence,

Speedup = Tyo/Th: = w/ueg, = L ®

3 CLASSIFICATION OF DISTRIBUTION LOADS

For parallel scheduling, the types of parallelism are function parallelism, and data parallelism. In this
paper, the scheduling method is based on arbitrarily divisible data parallel loads. Loads can be classified
as indivisible loads and divisible loads. Indivisible loads must be processed in a single processor for each
load. They are data independent and can not be further partitioned into smaller sizes. Relevant scheduling
methods can employ combinatorial and graph concepts [21], [22], [23].

Divisible loads can be identified as modularly divisible loads or arbitrarily divisible loads. Modularly
divisible loads are partitioned into modules in advance and the associated data might be processed
by different algorithms in different processors. However, arbitrarily divisible loads can be partitioned
arbitrarily and the associated data should be processed by the same algorithm. Those fractions of partitioned

data may or may not have the precedence relations.

[EEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 8
3.1 Arbitrarily Divisible and Independent Loads

If an arbitrarily divisible load has data elements which are processed independently, the computing time
is a linear function in terms of its load fraction size. Because of its tractable properties in linear analysis
and calculation, divisible load scheduling theory has been developed and applied in many areas associated
with massive amounts of data.

For example, in JPEG digital image processing, a block of 8 x 8 pixels subimage is considered as an
independent element to be processed in a load. The entire load (one picture) is composed of many blocks.
The computation and communication complexity function is a linear function of its load size (proportional
to the number of elements).

Hence, for an arbitrarily divisible load the amount of computing is proportional to the number of
elements in each fraction of load. The data in an element are processed independently. Each element has
no processing relationship to other elements. This type of scheduling with a linear computation relationship

has been developed extensively in the literature.

3.2 Arbitrarily Divisible and Dependent Loads

With nonlinear computational complexity there is some dependence of data elements on one another
in terms of processing. Since the elements are dependent on one another, post-processing is needed (as
in sorting algorithms, which are described later).

Some thought and knowledge of existing algorithms leads to the following theorem.

Theorem 1: For nonlinear divisible computational loads, (dependent loads), it is not possible to arbi-
trarily partition a load, do independent processing and both decrease solution time in a nonlinear manner
and produce a solution exactly the same as that in a single processor. Either the solution is approximate,
post-processing is necessary to combine partial solutions or both.

Proof: Let an entire load be a nonempty data set S consisting of n elements. A partition of a

nonempty set S is a collection of nonempty subsets that are disjoint and whose union is S (see [24],

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 9

page 106). After being partitioned into m + 1 subsets, Sp, S1,S2,...,Sm, the entire load S is the
union of the m + 1 subsets. Provided that each processing step (instruction) takes the same time under
the same computing capability for a specific algorithm, finish time will be proportional to the number
of steps. Without loss of generality, let a load composed of n elements takes n? steps, then a function,
F(n) = n?(steps), can be defined. Here, F' is a virtual machine with n elements input and n?steps output.

For a fraction, a, of load of n elements, the number of processing steps, F(an), is as following,
F(an) = (an)?(steps) = o’n’® = o®F(n) (6)

where « is a fractional number.

Let a fraction of load, «, be partitioned into fractions, o; and «,. That is,

F(an) = (an)? = a’n? = &®F(n) = (o + 0)*n? = (; + o)’ F(n) ¢
= o?F(n) + a2F(n) + 2013 F(n) = F(ayn) + F(agn) + 20105 F(n) 8)
= F(oyn) + F(azn) + post-processing)]

If the entire load is partitioned into m + 1 subsets, and the fraction of each load is assigned as

0, 0, Oy, - . ., Oy, the number of steps required is
Fn)=@n)?=[(ao+ a1+ +omn’ = (@ + a1+ + am)? x n? (10)
=(@+a+-tan) xFn)= Y of+2 Y a-a;| x F(n) an
i=0 i=0,j=0
i#j

m m

= ZF(ain) +2 Z a; - a5 X F(n) (12)
=0 i=9;,£j.=0
i#]

Observing the above equation, the first term is a summation of the amount of processing steps for
each fraction processed by a child node, and the second term is the amount of steps for post-processing.
Therefore, post-processing is necessary for an exact solution if the processing steps is a nonlinear function

of the number of elements in a load using a specific algorithm. a

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 10

Corollary 1: Nonlinear speedup improvement is possible, but solution time for divisible processing
must include partitioned load solution time and post-processing time.

Proof: The following application demonstrates this. O

3.3 An Application

An example application where the computation time to process divisible load is nonlinear and a nonlinear
processing time advantage can be realized is now presented.

Sorting lists of discrete elements is a classic combinatorial problem and is widely performed. It is well
known that sorting a list of N elements (say alphabetically) has a minimal computational time complexity
of O(NlogN) (versus O(N?) for naive sorting). As an example, consider a list of N items as Fig. 3,
which are split into three sublists, each of which is placed on one of three discrete processors. Each

An entire load

AZBTUVCBHPQY..@#N)

©(NlogN)

[AZBT..onm)| [UVCB..N3) [HPQY... ¢#N53)
OIVIogNB)] OIVIIogN3)] OIN3logN)]

Fig. 3. A load with N elements is partitioned into three equal fractions. All are processed by the same

sorting algorithm.

sublist on a processor is sorted. Since the three processors work concurrently and since each list has N/3
elements, the computational complexity of the overall sorting is O((N/3)log(N/3)).

Suppose now that we merge the first two sublists (Fig. 4). This requires N/3 comparison operations.
To merge the newly created sublist with the third original sublist (see Fig. 5) requires (2/3) N comparison

operations. The overall computational complexity for sorting on three processors is then

N N
—3—log—-3— +N (13)

[EEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 11

(After sorting for each fraction of load)

[ABTZ..onm)| [BCUV..en3)| [HP QY ..N1)

| |

(merge)

| eavm)
ABBCTUVZ.. #N3)

Fig. 4. Merging two fractional results, (or two subset results), to obtain a partial sorting solution.

(After sorting for each fraction of load)

HPQY.. #N3)

ABBCTUVZ.. #N/3)
(merge)

1@(2N/3)
ABBCHPQTUVYZ..#N)

Fig. 5. Merging two fractional results, (or two subset results), to obtain the final sorting solution.

The first term here is the cost of distributed processing and the second term is the cost of post processing.
This approach is superior to the computational cost of sorting the original list as N — oo. Note that
whether divisible load processing results in a computational saving taking post processing into accounts
is problem dependent.

Naturally there are communication costs in the above scenario. However the same decomposed com-
putation on a single sequential processor would also result in a computational time savings, though with
somewhat different constants. Note that if a list was broken into M, (M > 3), sublists, concurrent merging

would lower the value of the computational complexity.

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 12
4 PROCESSORS USING STAGGERED START IN A SINGLE LEVEL TREE

In this section we consider a heterogeneous single level tree using store and forward switching and
simultaneous distribution in a single level tree. Processors use the staggered start protocol (in contrast to
simultaneous start) to process their load. In the staggered start protocol a processor must receive its load
completely before it begins to process the load. The root node is assumed to be an “intelligent” node,
so it can distribute load to its children while processing some fraction of the load. In this sense the root
may be considered to have a front end sub-processor for communications off-loading, while the children

do not [2], [3]). We will discuss a homogeneous multilevel tree in the next section.

4.1 Single Level Tree: Root Node with Data Storage, Power 2

The structure of a single level tree network with intelligent root, m + 1 processors and m links is
illustrated in Fig. 1.

All children processors are connected to the root processor via direct communication links. The in-
telligent root processor, assumed to be the only processor at which the divisible load arrives, partitions
a total processing load optimally into m + 1 fractions, keeps its own fraction, oy, and distributes the
other fractions, o, s, ..., amn, to the children processors respectively and concurrently. Without loss of
generality, it is assumed that computation time is quadratic in load size and communication time is linear
in load size.

After completely receiving all of its assigned fraction of load, each processor begins computing imme-
diately and continues without any interruption until all of its assigned load fraction has been processed.
Staggered start models a computer which must receive all incoming load before processing its fraction.
In order to minimize the processing finish time, all of the utilized processors in the network must finish
computing at the same time [3]. The process of load distribution can be represented by Gantt chart-like
timing diagrams, as illustrated in Fig. 6. Note that this is a completely deterministic model.

It is assumed that all load is available for distribution from the root node at time £ = 0. This root

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 13

Heterogeneous Single Level Tree (Nonlinear Type)
- Staggered Start
- Root Node with Data Storage

Single Level
Root Node
{Pareni D)

Communication

Computation

(Child 1} Communication
Computation

(Childm) Communication

Computation

T

Fig. 6. Timing diagram of single level tree with simultaneous distribution, staggered start, and root node

with data storage.

node with data storage model will be used for the level k subtree later when examining multilevel
trees. According to the timing diagram Fig. 6, the fundamental recursive equations of the system can

be formulated as follows:
(aoTp)? wo = 02T + (Tp)’w; i=1,2,...,m (14)
The normalization equation for the single level tree with intelligent root is
atart+ort+-ta,=1 (15)

This yields m + 1 linear equations with m + 1 unknowns. Note that this is a completely deterministic
model. Manipulating the recursive equations and normalization equation can yield the solution for the

fractions of load distribution. From (14),

(Tep)?w; + ;2 Tem = (0T p)?wo (16)
Z,;Tcm ’U)OIIQ

()’ + 0y — 20 =0 17)
w,Tc";, ’(U,'Tczp

Let
ZiTcm 1 .
i = =0;" 7 =1,2,...,
w2 o] T 1 m (18)

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 14

where
T,
i = S L =1,2,...,
o 1 2 m (19
and
= Yle _wo 0)
1—wiTc2p—wi =L,4...,m
Hence, (17) becomes
(@:)® + Gy — &iod =0 (21)

Applying the quadratic equation to (21), one obtains

_ —G; + Ciz -+ 4{1'(1(2)

o 53 1 (22)

Since the value of o; is the fraction of load, it does not make any physical sense if ; < 0. Hence, a; > 0.

Consequently,
— 2 1 4f.02
o= ;’+ &% =1,2,...,m 23)
According to (23), the normalization equation (15) becomes
T =6+ V< + 460
=1
a+ Y 3 (24)

i=1

The value of o can be obtained by using the quadratic equation to solve (24). We assume the solution
of ap is Cy, a specific value. Then we can apply this value to (23) and obtain the values of distribution
fractions of load «; as follows:

=G+ /¢ +46CE

@ = : 25)
According to Fig. 6, the finish time is achieved as
Ttm = (00Tp)? wo = (CoTep)? wo (26)

The term, T}, indicates the finish time for each single divisible load completed in a single level tree

consisting of one root node as well as m children nodes. Another term, Ty, is the finish time for the

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 15

entire divisible load processed only on the root processor; that is, T is the finish time for only one root

node tree without any children nodes. This leads to
Tf,() = (aoTcp)2 wo = (1 X Tcp)2 Wo = Tczp’u}o (27)

Now, if we collapse the single level tree into an equivalent node, we can obtain the finish time, T},

in terms of the inverse of equivalent computing speed, we,, for the equivalent node as follows:
Tfeq = (1 X Tp)” Weq = T2 weq (28)
The finish time, T}, is the same as that in (26). Therefore, according to (26) and (28), we obtain
T weq = (CoTp)” wo (29)

According to Definition 1 in Section 2 (i.€. Yeq = Weq/Wo = Tf,m/Ts,0), the value of ., can be obtained
from (29) as

Yeg = C = (30)

Speedup is the ratio of job solution time on one processor to job solution time on the m + 1 processors

(see Definition 2 in Section 2.) Thus,

Go

2
Speedup = :;1; = -C—l,g = (!) (3D
Speedup is a measure of the achievable parallel processing advantage.
1) Homogeneous Case: (w; =w and z; =z fort =1,2,...,m.)
As a special case, consider the situation of a homogeneous network where all children processors
have the same inverse computing speed and all links have the same inverse transmission speed. In
other words, w; = w and z; = z for i = 1,2,...,m. Note that the root inverse computing speed,

wy, can be different from w;, where i = 1,2,...,m.

From (18) and (20),

1 .
T_cp 1—1,2,...,771 (32)

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003

JULY 6, 2003 16
where
0 = 2Tem [wTyp (33)
and
fole Yoo g4 (34)
wl? w
Hence, (23) becomes
o= =+ ;2+4§°‘5 i=1,2,...,m (35)
According to (35), the normalization equation (15) becomes
aﬁi—w \/§22+4§a(2, 1 36)
i=1
a0+m."+vg;+450‘3=1 37)
Manipulate (37) as follows:
200 — ms + my/s? +48ad =2 (38)
<m\/§2 + 4{018)2 =[(2 + mg) — 2a0)? (39)
(m2€ — l)ag +(2+ms)ay - (ms+1)=0 (40)
Applying the quadratic equation to (40), one obtains

g —

(24 mq) & /(2 +mg)? + 4(m2€ — 1)(ms + 1)
2.-(m%¢-1)

_ —(2+mg) £ /m3? + 4m2€(mg + 1)

- 2(m* ~ 1)

41)
Since oy is the fraction of load for computation at the root node, it does not make any physical

sense if the value of ¢y is less than zero. Thus, in (41) sign + is taken rather than + so that the
value of ay is greater than zero. Therefore the solution of ¢y is

(o))

_ —(24mq) + /m?* + 4m2¢(mg + 1)
B 2(m?*€ - 1)

(42)

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 17

2)

Substituting the value of ag in (35), we obtain the value of unknown fraction, a;, where i =
1,2,...,m.

According to Fig. 6, the finish time in the homogeneous single level tree is
Th,m = (aoTcp)z’wo (43)

The value, T}‘,m, indicates the finish time for a homogeneous single level tree, consisting of one
root node as well as m children nodes.

Applying a similar derivation to that in heterogeneous single level tree, we obtain

2
—(2 2CZ 1 Am?
%q=a3=< (+mc)+2\(/n7;z2€c_+1)m€(m<+1)> 44)
and
Speedup = 1 = 2(m* — 1) 2 (45)
Yeq -2+ mg)+ \/ng2 +4m2{(mgs + 1)

Speedup is a measure of the achievable parallel processing advantage.
Special Case: 0 < 1 and A > 1, i.e. ¢ < 1 (fast communication).
Repeat (32) here as follows:

2T e,

assume A =T, 46)

g‘ =g o=

1 g
Ty A
Provided that communication is faster than processing, then ¢ < 1. If we also assume A > 1, we
can conclude that ¢ < 1. Since m¢ = mo/), if one assume m < A, then m¢ < 1. Therefore,

ms + 1 — 1 and 2 + m¢ — 2. The speedup formula (45) can be approximated as

2
2(m%€ -1
Speedup = (m¢ 1) @47
-2+ \/m?¢2 + 4m2¢
Now, we compare 4m?2¢ with m?¢? by the following equation (48).
4m2¢ — m*? = 4m?¢ — mz-qE —am?. Y 22 L (48)
A2 w A2

and assume & = wy/w (see (34)) is about one (all processors have about the same computation

speed) or is greater than one, then 4m?¢ >> 4. Since A is a large number and o < 1, then ¢2/)\? < 1.

[EEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 18

In other words, ¢ < 1. This leads to
4m2¢ > mi? (49)

Therefore, 4m?2£ + m2¢? — 4m?2¢. The speedup (47) becomes

et = (—22(?— f/;ngﬁ) - (52((7?\;2:—"%) f(m\@“))z (50)

3) Specific Case: £ =1,
If the computing capability of the root node is the same as that of the children nodes for a

homogeneous single level tree, i.e. wy = w, then £ = 1. Under such condition, the speedup formula

becomes
Speedup = (m + 1)? €2))

This makes intuitive sense if communication is much faster than computation.

5 PROCESSORS USING STAGGERED START PROTOCOL IN A HOMOGENEOUS MULTILEVEL FAT TREE

ANALYSIS

A fat tree architecture is now considered where upper links have more capacity than lower links in
such a way that each node has equivalent bandwidth 1/z to the root. Properly designed fat trees preclude
any tree level from becoming a capacity bottleneck. Such an architecture will allow a maximization of
performance. Consider a homogeneous multilevel fat tree network where all processors have the same
inverse computing speed, w, and links of level j have the transmission speed, p;_;2, (see Fig. 2). The
value of p;_, is defined on Definition 3 in Section 2.

In this work store and forward switching (in contrast to cut through switching) from level to level is
studied. According to store and forward switching, load must be completely received by a nodes before
being distributed to its descendants. The process of load distribution for a multilevel fat tree network
using store and forward switching from upper level to lower level can be represented by a Gantt chart-

like timing diagram, (see Fig. 7). We will derive the speedup of the whole multilevel tree by moving

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 19

Homogeneous Multilevel Tree Represented with Equivalent Elements
- Store and Forward Switching

- Simultaneous Distribution

- Staggered Start

Communication

Computation

Communication

Computation

1iPr2? Lo

* Communication

<Level 2>
fNode |
i=d2..m)
ommunication
(Layer 1)
omputation

<Level 1>
(Node i
=12

ommunication
(Layer 0)

omputation

Fig. 7. Timing diagram of a homogeneous multilevel tree with store and forward switching, simultaneous
distribution, staggered start, root node with data storage. Subtrees are collapsed into equivalent nodes from

bottom most level to topmost level.

upwards through the tree, collapsing successive subtrees into equivalent processors until the entire single
level tree is collapsed into an equivalent node. We find that each “box” (level) in Fig. 7 illustrates the
scheduling levels of a multilevel tree where the root node has data storage (all load is available at the
single level tree root at time ¢ = (). The nested, shaded boxes indicate single level trees which are

collapsed into equivalent nodes.

5.1 Level j Subtree: Root Node with Data Storage

As in Fig. 2, let level k be the top root single level subtree. Here level “5” is used to represent any

single level subtree at any arbitrary level j. Let a;; be the load fraction for the ith children collapsed (or

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 20
equivalent) node of the jth level subtree. It is also assumed that
2
(i Tep) “Weg;—y > 0;Pj-12Tem (52)

in this subtree (see Fig. 8). That is, communication time is faster than computation time. According to

Fig. 8, the fundamental recursive equations of the jth level subtree network are

\

Homogeneous Multilevel Tree - Level j
- Store and Forward Switching

- Simultaneous Distribution

- Staggered Start

- Root Node with Data Storage

Root Node
(Pareni 0)

Communication

Computation

(Child 1) Communication
Computation

i Py 2 e

(Childm) Communication
Computation

-

Fig. 8. Timing diagram of jth level subtree with simultaneous distribution, staggered start, and root node

with data storage.

(aj'oTcp)Z’w = (aj,,-Tcp)zweqj_l + ozj’,-p]-_lzTcm] = 1, 2, ceey k and 1= 1, 2, N 1 (53)
The normalization equation for the jth single level subtree with intelligent root is
oo+t ajet+ -t ajm=1 (54)

This yields m + 1 linear equations with m + 1 unknowns. From (53), one has:

2
2 Ma.._&oﬂ =0 (55)
Jit w T2 9t w T2 7,0 T
eqj-1+cp egji—11tcp
w 2T, w
2 em 2
7 w wT2 7
eqj_1 cp €qj-1

Referring to Definition 4 in Section 2, (i.€. ¥j-1 = We,,;_, /w), (33) (i.e. 0 = 2T /wTp), and (46) (ie.

¢ =0 - 1/T), equation (56) becomes

i 1
0+ Z¢ - y — ——agg = (57)

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 21

Applying the quadratic equation to (57), one obtains the solution of «;; as follows:

2
_Pj—1 Pj-1 4 2
i1 ® + \/(71 g) t 55 %0

- 58
Qi 5 (58)
Since a;; > 0 (the same reason as before), we obtain the final solution of o;; as
2
_Pi-1 4 2
ST \/('—7:_§> + 5 %0 .
Qi = 2=1,2,...,m (59)

e 2
The fraction of distribution load, o, can be solved by employing the normalization equation (54).

According to (59), (54) becomes

Q50+ Z o =1 (60)
i=1
m —H=lo 4 \/(’—’J—‘c)2+ ol
- Yj j— 25
aJo+Z ki =1 61)

2 .
(i—l)a§0+(Pi- 1§+2)a,-,0—<m£];1g+1>=0
Yi-1 ’ Yi-1 Yi-1

Therefore, using the quadratic equation, one obtains

1 2 2 .
a0 = X 4 = (mbi= 1<+2> + (m?f——lg) +4 (mp——’ Lo+ 1) (62)
2 (m? _ 1) Vi1 Yi-1 Yi-1 Yi-1

Yi-1

Since a9 > 0 (the same reason as before), one obtains

1 o\ 2 2
Qjo =——— X —(= lc+2) <mMc) +4i"—< Py- 1<+1) (63)
2(_@_27_) Yi-1 -1 V-1 \ -

Yi-

The equivalent finish time, T}’;{l, for a homogeneous jth level subtree with m children nodes is
T}, = (@50Tp)w (64
Also,

TIP3 = (1 Top) ey, = (j0Tep) w (65)

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 22

Consequently, we obtain
w, 1 P 2
7 =2 = (j0)? = ————3 X (ot 2) + (m‘t‘g)
w [2 (m? 1)] Yi-1
Yi-1

2 2
+4x11-< %1§+1) 2(“1g+2 (mELk- +4x11—(%1§+1>
V-1 Yi-1 Yi-1 Yi-1 Vi

(66)

and

) .
Speedup = — j=12,...,k 67)

J
For a homogeneous multilevel fat tree, if the computation capability of each node is w, the value of w,q,

is equal to w, and then the initial value of o can be derived as follows:

We, w
o= Lewm W _ (68)
w w

If pj_1S approaches zero, (large tree where communication is much faster than computation), the model
approaches an ideal case. Each node can receive the load instantly and compute the data immediately.

Under such assumption, the recursive function (66) can be approximated as

2 m? m?2

UURET ey

According to o = 1 and (69), the recursive formulae are obtained as follows.

i=12,...,k 69

1

" G ip (70)
1 1
7= 2 (m2+mt1)2 1)
(7=
12
= = = !) =1,2 k 72)
7]_(mj+W—1+“_+m+1)2~(2{20m1)2 1J=142...,
Consequently, speedup becomes
k
1
Speedup = — = m!)? 73
peedup = — = (3 _m) (73)

=0

We conclude that speedup is square to the total number of nodes, which is m® + m! + m? 4+ .- - + m*,

which makes intuitive sense.

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 23

6 PROCESSORS USING SIMULTANEOUS START PROTOCOL IN A HETEROGENEOUS SINGLE LEVEL

TREE

In this section we discuss only the root node with data storage case and power x model for a
heterogeneous single level tree.

The process of load distribution can be represented by Gantt chart-like timing diagrams, as illustrated
in Fig. 9. According to the timing diagram of Fig. 9, the fundamental recursive equations of the system

Single Level
Root Node
(Parent 0)

Communication

Computation

{(Child 1) Communication
Computation

(Childm) Communication

Computation

Fig. 9. Timing diagram of a single level tree with simultaneous distribution, simultaneous start, and root
node with data storage.
can be formulated as follows:
(aoTep) wo = (a1 Tep)Xwn (74)
(im1Tep)Xwig = (0Tep) w; 1=2,...,m (75)
The normalization equation for the single level tree with intelligent root is
ap+ar+az+toy, =1 (76)

This yields m+1 linear equations with m+ 1 unknowns. According the similar derivation to the Section 4,

one obtains the value of speedup from T} o/T} ., Which is equal to 1/, Thus,

1 1* = T\
peedup = - (ao) wo (Zoj (/wl) (77

Speedup is a measure of the achievable parallel processing advantage.

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 24

7 PROCESSORS USING SIMULTANEOUS START PROTOCOL IN A HOMOGENEOUS MULTILEVEL FAT

TREE

In this section a homogeneous multilevel tree using store and forward switching, simultaneous distribu-
tion, and simultaneous start is discussed. In this structure the topmost single level subtree is called level k&
and levels below it are generally level j (j goes from level 1 at the bottom most level up to level £ —1).
The speedup of the whole multilevel tree is obtained by successively collapsing single level subtrees into

equivalent nodes until the entire tree is collapsed into an equivalent node (see Fig 10). A root without

Homogeneous Multilevel Tree

- Store and Forward Switching (Level to Level)
- Simultaneous Distribution (at the same Levet)
- Simultaneous Start (Node feature)

(lzaoot Y Communication
yer

Computation

' ! T
<Level k> | ! 4
'

,’f?‘;'.., o221,

Communication
(Layer k-1) 2

Computation
<Level 3>
Node i
i=t2,..m)

Communication
(Layer 2)

Computation
<Level 2>
(Node |
1=1.2.. . m}

Communication
(Layer 1)

Computation
<Level 1>
(Node i
in12..m)

Communication
(Layer 0)

Computation

Fig. 10. Timing diagram of a homogeneous multilevel tree with store and forward switching, simultaneous
distribution, simultaneous start. Subtrees are collapsed into equivalent nodes from bottommost level to

topmost level.

data storage model is first applied to level j (1.e. 7 = 1,2,...,k — 1), and then the root with data storage

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 25

model is used for the topmost level (level k). The latter choice reflects the need for nodes (except for the

root) to receive load completely before they can forward it to their children.

7.1 Level j Subtree: Root Node without Data Storage, Power 2

According to Fig. 11, the fundamental recursive equations of the jth-level tree network are

. |
:

Single Level | "8¢T=

Root Node

(Parent)

Communication

Computation

Communication
(Child 1}
Computation

(Childm) Communication

Computation

Fig. 11. Timing diagram of level j subtree using store and forward switching, simultaneous distribution,

simultaneous start, and root node without data storage

(@0Tep)*w = (@1 Tp) Weqs_; + 1 P2 Tem (78)
(@i-1Tep)* Weg;_, = (04, Tep)* Weq,_, 1=2,3,...,m (79)

The normalization equation for the jth single level tree with intelligent root is
oot o+t F o, =1 (80)

This yields m + 1 linear equations with m + 1 unknowns.

Equation (78) becomes

9 _ wlz Pizlen = W piw 2T, 1
X = o 2 Y0 T T2 = T ®1)
Weg;_14ep Weg;..14ep Weg;_, Weq;_1 w cp

According to (32), ¢ = sz/wap, and the derivative of Definition 4 in Section 2, v;_) = We,,_,/w,

(81) becomes

7,1 %50 7]‘—1p] (82)

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 26

Solving for oo using the normalization equation as was done for the staggered start policy, one obtains

_ 2 _PjS m2 1 3 2
1+\/1+(1+m;¢;)(77_1 1) 1+ [Fps - s+ 2

a0 = o = e (83)
Yi-1 Yi-1
Since T h,zl is the finish time for a equivalent homogeneous jth-level subtree, one can obtain
T = (1 Top)weq, = (joTep)w j=1,2,...,k—1 (84)
According to Definition 4 in Section 2,
Weg;
=S, = O

1 mi m? m? m4 m? m?2
= X 1+ 5—pis ——piS + -2 pis — —p;s+ (85)

(m? _ 1)2 { AR TSR A 7S} A RS /R S P

Yi-1

where j=1,2,... k- 1.

7.2 The Topmost kth-level Subtree: Root Node with Data Storage, Power 2

In this subsection the topmost level (level k) subtree is discussed. The timing diagram of the topmost

equivalent subtree, level k, is Fig. 12. Accordingly, the fundamental recursive equations of the kth-level

Heterogeneous Topmost Level Tree (Nonlinear Type)
- Simultaneous Start
- Root Node with Data Storage

Root Node
(Parent 0)

Communication

Computation

(nid 1) Communication
Computation

Ozl

Communication

(Chitdm) P
Computation

-

Fig. 12. Timing diagram of topmost level k subtree using store and forward switching, simultaneous

distribution, simultaneous start, and root node with data storage

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 27

subtree can be derived as follows.
(aroTep)w = (i Tep) Weq,_, 1=1,2,3,...,m (86)
The normalization equation for the kth single level tree with intelligent root is
Opo+ k1 +Qr2+ -+ g, =1 (87)

This gives m + 1 linear equations with m + 1 unknowns. According to (86),

2

T2
B St N S S (88)

— —_—
2 “k,0 k,0
Wegy_, Tcp Ye—1

1
Ok = i‘ [—axo (89)
V-1

Since aj; > 0 (the same reason as before),

1

Ye-1

Qp; — 87°%1] 'i=1,2,...,m (90)

’

Applying (90) to the normalization equation (87), we obtain the value of a4 as follows:

1
ak,o = ——m—l (91)
s T

Therefore, the equivalent finish time, T"”,':l, for a homogeneous kth level tree with m children nodes can

be obtained. That is,
T;l:z =(1 'Tcp)zweqk = (ak,OTcp)2w

From Definition 4 in Section 2,

We 1

Ye = — = al2c,0 = 2 (92)

w m_ 4 q

(= +1)
Finally, we obtain the speedup equation.

2

Speedup = < o + 1> 93)
v k-1

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 28
8 CONCLUSION

This paper demonstrates the basic concept of how to optimally allocate divisible load and calculate
speedup and solution time in tree networks where computing time is a nonlinear function of load size.
Certainly the concept can be extended to other scheduling policies, higher order solutions and applications
beyond sorting. Moreover it would be of interest to investigate the role of post-processing in such
computing.

This work indicates that a (integer) xth order dependency of computation time on divisible problem
size necessitates the solution of a yth order polynomial to solve for speedup. For the cases considered
in this paper explicit solutions have been obtained. In the general case the optimal allocation of load in
an N processor network necessitates the numerical solution of N nonlinear equations. Their format is
similar to the used linear equation solution of linear divisible load models except for a power nonlinearity.
It should be noted that numerical (arithmetic) problems may occur in solving such equations when x is
large.

This research result is extremely promising in providing a tractable means of assigning load to processors
in an optimal manner for the important case of divisible loads with nonlinear computational complexity

with its many applications.

REFERENCES

[1] V. Bharadwaj, D. Ghose, and T.G. Robertazzi, “A new paradigm for load scheduling in distributed
systems,” in special issue of Cluster Computing on Divisible Load Scheduling, vol. 6, no. 1, pp.
7-18, Jan 2003, Kluwer Academic Publishers.

2] Y. C. Cheng and T. G. Robertazzi, “Distributed computation with communication delays,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 24, no. 6, pp. 700-712, 1988.

{3] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi, “Scheduling divisible loads in parallel and

distributed systems,” IEEE Computer Society Press, Los Alamitos CA, 1996.

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 29

[4] J. T. Hung, H. J. Kim, and T. G. Robertazzi, “Scalable scheduling in parallel processors,” 2002
Conference on Information Sciences and Systems, March 2002, Princeton University.

[5] G. D. Barlas, “Collection aware optimum sequencing of operations and closed form solutions for
the distribution of divisible load on arbitrary processor trees,” IEEE Transactions on Farallel and
Distributed Systems, vol. 9, no. 5, pp. 429441, May 1998.

[6] S. Bataineh and T. G. Robertazzi, “Bus oriented load sharing for a network of sensor driven
processors,” IEEE Transactions on Systems, Man and Cybernetics, vol. 21, no. 5, pp. 1202-1205,
1991.

[7] J. Blazewicz and M. Drozdowski, “Scheduling divisible jobs on hypercubes,” Parallel Computing,
vol. 21, no. 12, pp. 1945-1956, 1995.

[8] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert, “Bandwidth-centric allocation
of independent tasks on heterogeneous platforms,” Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’02), June 2002.

[9] Y. Yang and H. Casanova, “Umr: A multi-round algorithm for scheduling divisible workloads,”
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03), April
2003.

[10] H. J. Kim, “A novel load distribution algorithm for divisible loads,” in special issue of Cluster
Computing on Divisible Load Scheduling, vol. 6, pp. 41-46, 2002.

[11] D. A. L. Piriyakumar and C. S. R. Murthy, “Distributed computation for a hypercube network of
sensor-driven processors with communication delays including setup time,” IEEE Transactions on
Systems, Man, and Cybernetics-PART A: Systems and Humans, vol. 28, no. 2, pp. 245-251, March
1998.

[12] K. Li, “Parallel processing of divisible loads on partitionable static interconnection networks,” in
special issue of Cluster Computing on Divisible Load Scheduling, vol. 6, no. 1, pp. 47-56, January

2003, Kluwer Academic Publishers.

IEEE TRANSACTIONS ON PARALLEL SYSTEMS, VOL. XX, NO. Y, MONTH 2003 JULY 6, 2003 30

[13] H. J. Kim, G.-1. Jee, and J. G. Lee, “Optimal load distribution for tree network processors,” [EEE
Transactions on Aerospace and Electronic Systems, vol. 32, no. 2, pp. 607-612, April 1996.

[14] J. Blazewicz, M. Drozdowski, F. Guinand, and D. Trystram, ‘“Scheduling a divisible task in a
2-dimensional mesh,” Discrete Applied Mathematics, p. 35, May 1999.

[15] W. Glazek, “A multistage load distribution strategy for three dimensional meshes,” in special issue
of Cluster Computing on Divisible Load Scheduling, vol. 6, no. 1, pp. 3140, January 2003, Kluwer
Academic Publishers.

[16] V. Bharadwaj, D. Ghose, and V. Mani, “Multi-installment load distribution in tree networks with
delay,” IEEE Transaction on Aerospace and Electronic Systems, vol. 31, no. 2, pp. 555-567, 1995.

[17] P-F. Dutot, “Divisible load on heterogeneous linear array,” Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS’03), April 2003, Nice, France.

[18] T. Robertazzi, “Ten reasons to use divisible load theory,” Computer, vol. 36, no. 5, pp. 63—68, May
2003.

[19] M. Adler, Y. Gong, and A. L. Rosenberg, “Optimal sharing of bags of tasks in heterogeneous
clusters,” SPAA°03, June 2003, San Diego, California, USA.

[20] J. T. Hung and T. G. Robertazzi, “Divisible load cut through switching in tree networks,” (submitted
for publication), 2003.

[21] S. H. Bokhari, “Assignment problems in parallel and distributed computing,” Kluwer Academic
Publishers, Norwell, Mass, 1987.

[22] C.S.R. Murthy and G. Manimaran, “Resource management in real time systems and networks,” MIT
Press, 2001.

[23] B.A. Shirazi, A.R. Hurson, and K.M. Kavi, “Scheduling and load balancing in distributed and parallel
systems,” IEEE Computer Society Press, Los Alamitos, CA, 96.

[24] K. A. Ross and C. R. B. Wright, Discrete Mathematics, Prentice Hall, 4 edition, 1999.

