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Abstract 
 

Decision making in large scale urban environments is critical for many applications involving continuous 

distribution of resources and utilization of infrastructure, such as ambient lighting control and traffic 

management. Traditional decision making methods involve extensive human participation, are expensive, 

and inefficient and unreliable for hard-to-predict situations. Modern technology, including ubiquitous data 

collection though sensors, automated analysis and prognosis, and online optimization, offers new 

capabilities for developing flexible, autonomous, scalable, efficient, and predictable control methods. This 

paper presents a new decision making concept in which a hierarchy of semantically more abstract models 

are utilized to perform online scalable and predictable control. The lower semantic levels perform 

localized decisions based on sampled data from the environment, while the higher semantic levels provide 

more global, time invariant results based on aggregated data from the lower levels. There is a continuous 

feedback between the levels of the semantic hierarchy, in which the upper levels set performance 

guaranteeing constraints for the lower levels, while the lower levels indicate whether these constraints are 

feasible or not. Even though the semantic hierarchy is not tied to a particular set of description models, the 

paper illustrates a hierarchy used for traffic management applications and composed of Finite State 

Machines, Conditional Task Graphs, Markov Decision Processes, and functional graphs. The paper also 

summarizes some of the main research problems that must be addressed as part of the proposed concept.                                 

 

  

1. Introduction 
 

From a functional point of view, cities are complex systems in which resources and infrastructure are 

continuously distributed to activities of the local economy and inhabitants [CACCIT, NAE, Dineen (2000), 

Dion and Yagar (1996), Fehin (2004), Felici et al (2006), Greene (2007), Hull et al (2006), Korkmaz et al 

(2004), Licalzi and O’Connell (2005), Murty et al (2007)]. The distributed resources are electricity, water, 

heating gas, parking space, etc., but also commodities like dining services, lodging, hospitals, entertainment 

facilities, and so on. The city infrastructure includes roads, sewage, water pipes, power grid, etc., in 

general, any means that enables the continuous transferring of resources to satisfy emerging needs. In this 

context, a city must have sufficient decision making capabilities for efficiently and continuously allocating 

resources through the infrastructure to satisfy demands. Efficiency is defined with respect to many metrics 

like monetary cost, quality of services, response time, safety, overhead (related losses), etc.  

 

The quality of decision making represents a trade-off between the effectiveness and comprehensiveness of 

the decisions, and the related costs. Global decisions can be more efficient as they involve detailed analysis 

of large amounts of data. However, they are time and money-wise the most expensive as they require 

lengthy procedures executed by large personnel. In contrast, local decisions are much cheaper but they rely 



on small amounts of data, and use much simpler decision making procedures. In traditional urban set-ups, 

decision making remains arguably a lower efficiency process, which rarely relies on state-of-the-art 

technology for rapidly identifying the best options for a given situation. It has been recently suggested that 

modern technology, including ubiquitous data collection through sensors, automated analysis and 

prognosis, and online optimization can offer intriguing new capabilities for effective decision making in 

large urban environments while keeping the related costs low [Campbell et al (2006), Chakrabarty et al 

(2003), De et al (2005), Dubois et al (2003), Eisenman et al (2007), Greene (2007), Hull et al (2006), Lee 

et al (2006), Jain et al (2004), LeBrun et al (2005), Lee et al (2006), Murty et al (2007), Yoneki (2005)].        

 

Popular applications like, large scale lighting control and traffic management, suggest that the main 

characteristics of decision making procedures include (i) flexibility, (ii) autonomy, (iii) scalability, (iv) 

efficiency, and (v) predictability. (i) Flexibility is the capability of a deployed system to address situations 

that are not predicted or addressed off-line. This is important due to the large variety of situation that occur 

in real-life. (ii) Autonomy refers to the capacity of a system to operate with minimum human intervention. 

This is critical as the cost of servicing decision making systems by humans might prohibit their deployment 

in large cities. Moreover, having humans tightly “embedded” in the decision making loop also increases the 

response time and can reduce the reliability due to inevitable human errors. (iii) Scalability characterizes 

the effectiveness of decision making methods with increasing amounts of demands, resources, and 

infrastructure. This is crucial for urban set-ups, which involve huge numbers of correlated activities, 

demands, resources, and infrastructure. (iv) For on-line and autonomous decision making systems, 

efficiency represents the quality of the decisions automatically selected during operation (online) as 

compared to the quality of offline decisions based on the entire state information being available. High 

efficiency is vital in real-life applications. (v) Predictability is the ability of devising automated procedures 

that estimate accurately and in real-time the quality of decision making alternatives. Predictability is a key 

enabling component for any decision making algorithm.   

 

In addition to the five criteria, another requirement refers to the capability of making decisions that 

comprehensively tackle different applications that are correlated or might become correlated in certain 

conditions. For example, it is likely that the illumination intensity control along roads must be correlated to 

the traffic level on the illuminated roads. Hence, the control procedures for street lighting control have to 

interact with the decision making procedures for traffic management, such as traffic signal control. This 

interdependency can be analyzed off-line and incorporated into the system before operation provided that 

there is a common model and specification formalism for the two separate decision making applications. A 

more complex situation occurs if correlations dynamically emerge only in certain conditions, which are 

hard to predict a-priori. Then, the decision making system ought to recognize any newly created 

dependencies, and provide in real-time a strategy for their common resolution. Traditional decision making 

systems incorporate mostly only static procedures, and thus are likely to fail in unpredicted situations. For 

example, the control of the heating gas pipes is often uncorrelated to the traffic flow. However, if gas 

leakages occur then the lighting intensity should be diminished to reduce the risk of explosions, which 

further requires the adjustment of the traffic signals, so that the traffic flow through that zone decreases. 

The identification of all correlations that can occur, while conceptually possible, is in practice infeasible 

due to the many situations and conditions that are possible in large cities. Moreover, it unnecessarily 

complicates the control procedures considering that many of the possible situations might actually not 

occur in practice.    

 

A number of recent research projects have focused on the topic of using state-of-the-art computing and 

communication technology, including wireless sensor networks, for various applications in large urban 

environments. The tackled applications include public transportation [Yoneki (2005)], traffic monitoring 

[Hull et al (2006), Lee et al (2006)], traffic light control [Cunningham et al], social networking and VoIP 

[Murty et al (2007)], data gathering [Campbell et al (2006)], communication [Kansal et al (2004)], just to 

mention a few. The present research focuses on efficient and comprehensive data acquisition, wireless 

routing protocols, programming paradigms, embedded hardware, and security. An intriguing opportunity is 

to device mechanisms that allow integrating and co-optimizing the correlated applications rather than the 

more traditional method of tackling them independently. This not only expands the optimization space, but 

also increases the reliability of decision making in new situations. Moreover, it is important to have a 

decision making approach that is simultaneously flexible, autonomous, scalable, efficient, and predictable. 



This is challenging as the performance of flexible and autonomous systems is hard to predict in the general 

case. Moreover, large systems are difficult to optimize through on-line decision making procedures.          

 

This paper proposes a new decision making paradigm for optimizing the continuous, real-time allocation of 

resources to satisfy demands in large urban environments. While the proposed paradigm is general, the 

paper refers to street lighting and traffic control as two illustrating case studies. The paradigm is structured 

as a semantic hierarchy in which different decision making models and strategies coexist and interact to 

produce flexible, autonomous, scalable, efficient, and predictable decisions. The hierarchal structure is 

scalable as only a reasonably large number of modules collaborate at each semantic level for reaching 

global decisions. Flexibility and autonomy is achieved by having reactive models at the bottom of the 

decision making hierarchy. Hence, unexpected sequences of events can be accommodated during operation. 

Efficiency and predictability results from having the reactive behavior constrained by the upper semantic 

levels, which use more deterministic models, such as data flow graphs, and Markov Decision Processes 

[Feinberg (1994), Feinberg (2002)]. The upper levels compute the limits within which the lower, reactive 

decision making modules must operate, so that the overall goals and constraints of the application are not 

violated. The lower semantic levels are in constant interaction with the environment and acquire data about 

real situations. This data is aggregated and propagated to the upper semantic levels, where it is employed 

for global decision making. Thus, the paradigm incorporates feedback mechanisms between the semantic 

levels, so that the upper levels constrain the lower levels while the latter provide feedback on the 

effectiveness of the constraints. Finally, the paper also introduces the defining elements of a specification 

formalism for integrating different but related applications. Various kinds of interactions between decision 

modules, such as collaboration, competition, guidance, and enabling interactions, are defined based on the 

goals, capabilities, inputs, and outputs of each module. This represents a uniform description style for 

different applications.        

 

While the proposed decision making paradigm is applicable to other theoretical formalisms too, this paper 

refers to a semantic hierarchy based on Finite State Machines (FSMs), Conditional Task Graphs (CTGs), 

Continuous Time Markov Decision Processes (CTMDPs), and Functional Graphs (FGs). The hierarchy is 

exemplified for coordinated traffic signal control, a main application in modern cities [Gartner (1983), 

Gartner et al (1992), Wahle and Schreckenberg (2001)]. It implements quantitative decision making in 

which decisions at successively higher semantic levels are used to cover increasingly broader geographical 

areas: (i) FSMs implement reactive control guided by signals coming from traffic sensors and cameras as 

well as neighboring FSMs, (ii) CTGs schedule the related activities over time for different traffic 

conditions, thus conduct optimization of signal sequences, (iii) CTMDP use macroscopic descriptions of 

the system to conduct scenarios-specific optimizations (hence, time is abstracted away from decision 

making), and (iv) FGs regulate the global allocation of resources and infrastructure to demands, hence 

taking out the impact of scenarios. The generality of the paradigm is motivated by summarizing a 

qualitative decision making process, in which the semantic hierarchy uses FSMs, fuzzy logic, and expert 

systems for decision making.      

 

The paper has the following structure. Section 2 introduces two applications (city lighting control and 

traffic management) to illustrate the importance of infrastructure management in cities. Section 3 defines 

the main characteristics of decision making in large urban environments, and Section 4 presents the 

proposed decision making approach. Section 5 introduces the specification model for integrated decision 

making, and Section 6 enumerates some of the main research issues related to the proposed concept. 

Finally, conclusions are offered.     

 

 

2. Applications 
 

A myriad of applications can use the more efficient decision making capabilities that are enabled through 

ubiquitous data collection, automated prognosis, and intelligent advising. Applications differ depending on 

the geographical localization of decision making, and the kind of human interaction involved in the 

process. The first criterion defines not only the “globality” of the resulting decisions, but also it quantizes 

the hardness of the process, as selecting optimal decisions for smaller, geographically localized areas is 

arguably simpler than that for large, distributed areas. The second criterion centers on the human 



perspective to distinguish situations where humans are only passive participants to the process, and 

situations where humans participate to the decision making loop. In the first case, decision making actually 

results in an actuation activity, which produces a change in the way resources and infrastructure is used. In 

the latter case, the activity results in additional knowledge, which humans might use for taking more 

educated decisions. Two applications are discussed next: ambient lighting control and traffic management.       

 

A. Ambient lighting control 
 

Figure 1: Ambient lighting control system 

 

Ambient lighting control applications must automatically adjust the lighting intensity in public spaces so 

that optimal illumination is offered while minimizing the energy consumption and maximizing reliable 

operation. These systems must operate with no or little human intervention. They automatically turn on, 

off, and adjust the illumination intensity in public areas, streets, buildings, parks, and so on. The 

illumination intensity can be adjusted depending on the time of the day (e.g., dawn, dusk, etc.), weather 

conditions (sunny, cloudy, full moon), presence of obstacles, number of pedestrians, the nature of the 

activities carried on (e.g., walking, bicycle riding, etc.), and more. Other capabilities could be related to 

minimizing energy costs and improving safety, such as by switching to different energy providers during 

power outages, or selecting the providers that offer the cheapest energy. Similar applications include 

automated monitoring of the air quality and measuring the noise levels [Santini and Vitaletti (2007)].  Such 

applications not only reduce living cost and save energy, but also offer better quality-of-life in a city.    

 

The next paragraphs offer more insight into an ambient lighting control system (ALCS) that attempts to 

offer optimal illumination for a given energy budget. Figure 1 presents the ALCS structure. Optimal 

illumination is defined as a certain illumination intensity at the street level. Each lamp post is equipped 

with local sensors (e.g., luxmeters, motion detectors, orientation sensors, distance sensors, and other traffic 

related sensors), and a local controller to decide the illumination intensity. All local controllers of the lamp 

posts in a small zone (e.g., a street) are connected into a network to coordinate their decisions. Moreover, 

zones are linked together through wireless connections, and Lighting Coordination Unit (LCU) coordinates 

the different zones, if more global decisions ought to be made, such as to illuminate during events, 

holidays, etc. Moreover, if the energy cost budget is fixed, LCU divides the budget to the related sub-areas, 

so that the overall consumption stays within the budget. Sub-areas can renegotiate their assigned budget. 

LCUs also collect data for reports and statistics, and identify behavior patterns for different situations. 

 

To provide scalability and flexibility, ALCS implements a two-level control hierarchy, as in Figure 1:  

• Local controller: The controller decides the illumination intensity of a lamp depending on the 

conditions sensed through the sensors, and the interactions with the controllers of the neighboring 

lamp posts. For example, if one of the lamps ceases to operate, the illumination intensity of its 

neighbors is increased, so that they can cover the entire area. Similarly, lamps might be turned off 

to save energy, if the illumination level exceeds the needed values.  



Decision making implements a multi-mode control with specific control laws operating for each of 

the functioning modes. In a simpler case, decision making represents a reactive behavior in which 

the exceeding of pre-set threshold values (e.g., a neighboring lamp going off) results in switching 

to a new state in the decision making controller. For each of the states, the inputs from the sensors 

are used to control a simple “bang-bang” control algorithm, in which the lighting intensity 

increases if the sensed value is less than the optimal value, and decreases otherwise. Other control 

algorithms like PID control are also attractive. 

 

A complementary approach to local control implementation is using a fuzzy logic [Driankov et al 

(1996), Farinwata et al (2000), Passino and Yurkowich (1998)]. The fuzzy logic controller 

assesses qualitatively the inputs coming from sensors and neighboring controllers, and then selects 

the actuation outputs using the inputs in a set of predefined rules (which define the fuzzy logic 

controller). For example, if all inputs are large then a specific response is produced. Similar 

reactions correspond to all inputs being small, and so on for all qualitative combinations of input 

values. This approach can handle well the imprecision of the sensors outputs, as well as cases 

when the lighting intensity must be adjusted for hard-to-predict values, like the traffic volume.  

 

• Lighting Coordination Unit (LCU): The upper-level controller takes more long term decisions that 

relate to broader areas. The traditional approach implements a centralized controller for LCU. The 

decision making algorithm uses all requests from the zones to compute the energy resources 

allocated to each zone using optimization methods, like Linear Programming or heuristic 

techniques [Reeves et al (1993)]. While well understood, centralized control does not scale well 

for large systems as a large overhead is involved. Instead, decentralized control involves only a 

small number of neighboring zones, which decide resource allocation based on greedy 

minimization (maximization) of priorities [Sinopoli et al (2003)].    

 

LCU also maintains connection with all related decision making systems within the city limit (like 

traffic management, disaster management, etc.), to responds efficiently to unscheduled events, 

e.g., traffic jams, high levels of environmental pollution, power breakdowns, and so on. More 

details on connecting the different decision making systems are given in Section 5. 

 

B. Traffic management  
 

Improving the efficiency of traffic is another important application of intelligent decision making in urban 

environments [Cunningham et al, Yoneki (2005), CALCCIT]. Poor traffic management results in long term 

waiting times, increased gas consumption, and pollution. Efficiency parameters might include the number 

of vehicles serviced in a given time interval, the time required to cover a certain trajectory, the pollution 

and noise levels due to traffic, the maximum number of vehicles that can be serviced without vehicle 

queuing as well as parameters that define special situations such as offering the shortest travel time to 

police cars, ambulances, fire-trucks, etc. Tasks related to traffic management include finding the optimal 

route for vehicles, identifying and warning about traffic “hot spots”, re-routing in case of accidents and 

other unforeseen obstacles, redirecting traffic to avoid high pollution levels in a zone, and more.     

 

Decision making for traffic management must optimize the related goals (e.g., efficient traffic, reduced gas 

consumption, minimal noise levels, etc.) through either centralized or localized strategies [Cunningham et 

al]. Centralized algorithms express global goals and evaluate decision on a central processing unit, which 

also collects the data sampled by the individual sensing units. Centralized control, the traditional approach, 

offers good results for predictable traffic flows, however, its main limitations include low scalability and 

poor reliability. Localized algorithms rely on a small number of neighboring units for taking decisions, 

which only affect a small area. In addition, they include a mechanism for percolating the local interactions 

to the global area, so that large scale decision making is also possible. This approach is potentially more 

flexible in handling less predictable traffic situations, scalable, and reliable, nevertheless, its main challenge 

is the difficulty to correctly estimate global characteristics about functioning and performance.   

 

Similar to the previous example, the decision making approach proposed for traffic management is 

hierarchical, in which the lower control levels are localized methods and the upper levels are more global. 



The local controllers handle the street-level traffic in contrast to the global-level procedures, which identify 

strategies at the area level to guarantee the goals and performance constraints of the application. Compared 

to street lighting control, the decision making hierarchy is in this case higher as traffic management 

involves a wider geographical scale and operates in more diverse situations.  

 

 
Figure 2: Traffic management decison making system  

(Acknowledgement: The two sub-figures representing traffic situations are due to 

http://www.permisulauto.ro) 

 

Figure 2 depicts a three-level hierarchical system, even though more decision making levels can be added: 

• Intersection Traffic Unit (ITU): ITU is the controller of the traffic light that supervises each street 

intersection. ITU receives inputs from sensors, such as inductive loops embedded in the pavement, 

video cameras, etc., on the traffic intensity in each direction, the length of the vehicle queues, the 

time taken for a vehicle to move through the intersection, and more [Cunningham et al]. The ITU 

behavior can be extended with actions for preferred “vehicles”, like bicycles or pedestrians, which 

ought to have higher priority to pass through the intersection. ITU might also include a “default” 

behavior which is executed whenever the controller fails to converge on a predictable operation.  

• Zone Traffic Coordination Unit (ZTCU): ZTCU coordinates the operation of ITUs in neighboring 

intersections to optimize the traffic through each of them by coordinating the decisions of the 

individual ITUs, redirecting the traffic flow, etc. ZTCU receives data from the participating ITUs, 

such as traffic characteristics, vehicle queues, moving obstacles, and so on. It might also receive 

inputs from the upper most Traffic Coordination Unit (see next item) about the targeted traffic 

efficiency goal, like avoiding long queues and minimizing the delay of vehicles. ZTCU computes 

optimal strategies for different traffic situations (patterns) in the intersections.   

• Traffic coordination unit (TCU): TCU operates at the global level by setting the parameters of the 

ZTCUs. Deterministic policies are used for decision making at this level. TCU also adapts the 

traffic flow to incorporate out-of-the-order, global situations, such as during the passing of a rapid 

intervention unit or fire truck that must traverse quickly through a large area. 

 

Sections 3 and 4 give more details on the methods proposed for each decision making level.  

 

 

3. Proposed Decision Making Concept  
 

Decision making in complex urban environments must offer the following main capabilities: 

• Flexibility: During operation, the system must be flexible enough to accommodate new situations, 

objectives, and requirements, which are hard to predict off-line [Saleh et al (2002)].  



• Scalability: Scalability is the property of the control algorithms to perform well for increasing 

numbers of service requests, resources, and infrastructure. There are many reports that indicate 

that decentralized methods, which use only information localized in time and space, handle better 

complex systems than centralized methods [Sinopoli et al (2003)].  

• Autonomy: Decision making should minimize human intervention. This is important not only for 

the scalability requirement of decision making but also because of the higher costs and lesser, if 

human intervention is involved.  

• Efficiency: To be viable in real-life, decision making must be effective with respect to metrics, like 

short service time, high service quality, low costs, good reliability and safety, maximum number 

of satisfied services, and many more. Moreover, for flexible and autonomous decision making, 

efficiency also captures that quality of adapted, online decision making as compared to offline 

decision methods in situations when all state information being available.   

• Predictable: For autonomous and efficient operation, the characteristics of decision making ought 

to be predictable. For example, the resulting service time and costs of local decision making 

strategies should be predictable at a global level and over time. Also, control techniques should 

not lead to deadlock, thus the set goals should be reachable by the local strategy.  

 

Current 
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Figure 3: Definition of flexibility  

 

The five properties can be measured using the following metrics inspired by the similar metrics used in 

manufacturing engineering and parallel systems: 

• Flexibility: In [Kazmer et al (2003)], flexibility (in engineering design) is defined as the ratio of 

the feasible design space over the range of the specification. A similar definition can be used for 

decision making in urban environments. Figure 3 illustrates the definition for two performance 

requirements. The figure assumes that a specification range [Pi,L, Pi,U] is defined for the 

requirements P1 and P2. Moreover, some of the requirement values cannot be realized in practice, 

thus, a space of feasible design points is defined around the current functioning point. A larger 

feasible design space determines a higher flexibility of the system. The definition can be easily 

extended for more requirements.   

• Scalability: According to [Jogalekar and Woodside (2000)], the scalability of a distributed systems 

with respect to attribute P reflects the amount of extra resources that ought to be spent for 

improving P’s value from P1 to P2. If we denote Cost1 the resource cost for achieving 

performance P1, and Cost2 the resource cost for having performance P2, then scalability is the 

following ratio:  
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• Autonomy: Autonomy depends on the amount and quality of human input required to assure a 

system’s correct functioning under a broad range of changing requirements, which act over a 

specified geographical area and over an interval of time. The following formula presents a 

qualitative expression of autonomy:  
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where performance P changes from PU to PL, the geographical area border is defined by Vi and Vf, 

and the time interval between moments is Ti and Tf.          

• Efficiency: Flexibility and autonomy are obtained at the expense of extra resources and 

infrastructure being spent in contrast to the optimal, offline solution. For example, in dusk 

conditions, an adaptive lighting system might be less efficient than a system specifically designed 

for such conditions. Nevertheless, it is not feasible to have a dedicated optimal design for each of 

the conditions that might appear in real-life. For performance P and range [PL,PH], efficiency is 

the average overhead spent by the adaptive system to achieve each of the performance values in 

the range:  
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• Predictability: Developing flexible and autonomous decision making strategies depends on having 

techniques that can estimate correctly the feasibility and quality of alternative decisions. Thus, the 

error between the estimated and the real values must stay within a tolerable limit.     

 

 
Figure 4: (a) The wide-scale decision making model and (b) the local control approach  

 

The proposed decision making model attempts to address the five main capabilities enumerated before. 

Figure 4 illustrates the concept. The approach realizes control through localized data acquisition and 

collaboration between the interrelated sub-systems. This is critical for having a scalable decision process. 

Depending on the goals, systems organize themselves into clusters. Each cluster might decide to elect 

virtual leaders used in collaborating with other clusters. Figure 4(a) shows decision making for three 

successively larger geographical parts: three local zones (shown in solid line), two larger areas (in dashed 

lines) and one broad region (in dotted line).  

 

Clusters correspond to increasingly higher semantic abstraction levels, each level using different formal 

representation models. For example, the lowest levels operate in terms of events and basic signals/data and 

the actions corresponding to them. This is typical to reactive behavior. The intermediate control levels 

reason in terms of optimizing the execution of multiple tasks over time but without analyzing the physical 

events and data. Finally, the upper levels consider global and qualitative decision making which are optimal 

across long period of times (hence, the temporal issues are eliminated from the model). Hence, the control 

algorithms for clusters covering broad regions remains scalable due to the more abstract information being 

used during analysis and decision making.  

 

Figure 4(b) illustrates the hierarchy of semantic abstraction levels. Each local decision making module has 

a layered structure to offer a gentle transition from reactive behavior to fully predictable functioning.  

• The physical layer is mostly concerned with the acquisition of physical signals (such as voltages 

coming from sensors) and the conversion of these signals into data and events.  The physical layer 

utilizes reconfigurable hardware (e.g., reconfigurable analog and digital circuits) to optimize the 

efficiency of data acquisition and conversion. For example, faster hardware circuits are used if the 



speed requirements of data acquisition increase due to faster processes that have to be tracked, or 

more precise signals processing circuits are needed if the accuracy needs to be increased.  

• The events/data preparation layer aggregates data and classifies events. Multiple sensors might 

sense the same data or fragments of the same data. The redundant data can be used to improve the 

precision of sensing by eliminating noise. Also, comprehensive knowledge is assembled together 

from the data pieces sampled by each sensor. Event classification is important in situations where 

different event types are handled by different processing algorithms, like specific responses to 

different vehicle types (e.g., trucks, bicycles, passenger cars, etc.).    

• The reactive layer produces responses to the input data and events.  

• The planning layer controls the execution of tasks, so that the set goals are maximized and also 

the using of the infrastructure and resources is optimized. The planning layer guarantees that the 

constraints set for the system operation are met, including the deadlines and energy budgets of the 

individual tasks. Therefore, the behavior and performance of the planning layer must be fully 

predictable in contrast to the reactive layer, which is flexible but hard to estimate.   

• The strategic adaptation layer identifies repeatable patterns which can be used to optimize the 

functioning of the system with respect to goals, resources, and infrastructure. The identified 

patterns include sequences of input data, correlations between input data, correlations of events, 

optimal control sequences for certain conditions, and so on.  

 

Section 4 offers more insight into the decision making components. 

 

4. Efficient Decision Making 
 

Efficient and robust behavior in hard-to-predict environments does not only imply that the autonomous 

system can react to unexpected events and conditions but also is capable to meet all performance 

requirements, including real-time constraints, bandwidth limitations, energy constraints, speed 

requirements, precision needs, safety, and so on. As we explained in the introductory sections, this is a hard 

problem, and there are no predictable control algorithms for integrated mixed-domain reactive behavior.    

 

We propose a predictable yet flexible decision making concept based on (i) a semantic modeling hierarchy 

to represent the performance needs and capabilities of a decision strategy at different levels of abstraction, 

and (ii) a joint top-down and bottom-up constraint transformation mechanism along the semantic hierarchy 

for guiding the dynamic reconfiguration process and signaling when a set of requirements is insatisfiable 

for the current set of resources. If the application requirements cannot be met then the autonomous decision 

making system can decide to shift some of the load to other systems (if they are available), or to trade-off 

the response quality, such as the response time and accuracy. Tackling the load shift problem without using 

a centralized control algorithm (which would pose serious scalability limitations) is beyond the scope of 

this work, but we plan to consider modern techniques for decentralized and local control when researching 

integrated dynamic reconfiguration, such as the algorithms in [Reynolds (1987), Brogan (1997), Ulam 

(2007), Brock (1999), Pereira (2003), Hsieh (2007), Sigurd (2006)]. 

 

The main features of the two components of the proposed predictive control mechanism are as follows:  

• Semantic modeling hierarchy: The semantic hierarchy is an abstraction model, which offers a 

smooth transition from the fully reactive behavior at the node level and the deterministic operation 

at the application level. The hierarchy includes several abstraction levels, so that each higher level 

is less flexible in tackling unknown conditions but is more predictable performance-wise. Figure 5 

shows a semantic hierarchy with five layers, in which the two bottom layers represent reactive 

behavior, and the top-most layer offers a performance predictive description of the system as a 

task graph with data dependencies.  

• Top-down and bottom-up constraint transformation: A set of top-down and bottom-up constraints 

enforce the consistency between consecutive layers. The top-down constraints are defined by an 

upper level for the level immediately below, so that the behavior at the lower level remains within 

the “bounds” of the behavior at the upper level. The bottom-up constraints are defined from a 

lower level to the next upper level, and express the amount of performance “violation” 

(performance needs) that must be considered when re-computing the resource management and 



control algorithm at the next upper level. The adjustment (propagation) of top-down and bottom-

up constraints is performed continuously at runtime.   

 

Hierarchical control of robots, a similar though less complex problem, is proposed in recent work. For 

example, a two level control hierarchy is proposed in [Pereira (2003)], where the lower level is a finite state 

machine guided by events and the upper level is a decentralized control method between an autonomous 

mobile system and its immediate neighbors. Local control is based on the potential field method.  Similar 

approaches are discussed in [Ulam (2007), Ulam (2007b), Hsieh (2007)]. The proposed concept differs in 

several main issues from this work. First, the semantic modeling hierarchy includes more levels, including 

layers which use stochastic models, conditional task graphs, and task graphs with data dependencies. 

Second, the proposed hierarchy also aims at expressing end-to-end dynamic reconfiguration of the design 

and not only reactive functionality, like in the existing approaches. Hence, the proposed models will tackle 

a wider set of performance requirements, in contrast to existing approaches which mostly consider only 

convergence to the application goal and sporadically also timing constraints. Third, the predictive 

mechanism is based on a runtime propagation of top-down and bottom-up constraints and the re-computing 

of the corresponding control decisions. There is no such adaptation mechanism in the other methods. 

Existing techniques perform only an off-line static performance analysis, mostly related to the convergence 

and stability of the used control methods. 

 

The two components are discussed in the following two subsections. 
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Figure 5: Semantic modeling hierarchy for large-scale decision making 

 

4.1 Modeling Hierarchy for Predictive Operation 

 

Figure 5 illustrates the suggested semantic modeling hierarchy for predictive decision making. The two 

bottom levels describe the reactive operation of the decision making system, and the three upper levels 

provide a smooth transition towards predictable control. The top most level defines the functionality as a 

task graph with a predictable and evaluatable performance. The five model layers are as follows: 

• Adaptive implementation level: This layer expresses the behavior of the dynamically modifiable 

system configuration.  This layer defines the reactive adaptation of the implementation to dynamic 

conditions. Each node is a signal flow graph (SFG) defining a reconfigurable design (analog, 

hardware, and software). The transitions between SFGs are controlled by external events and other 

conditions set during operation. This level corresponds to the physical and events/data preparation 

layer in Figure 4(b).  



• Reactive behavior level: This layer defines the reactive functionality of a system as FSMs. Each 

node is a functional task (e.g., trajectory computing, data communication, sensing, etc.). State 

transitions are controlled by events that are set during operation. Each task is represented as an 

SFG graph at the adaptive implementation level. 

• Conditional task graph level: Conditional Task Graphs (CTGs) define various execution traces for 

the FSM at the reactive behavior level. A certain path of a CTG is executed depending on the 

runtime values of the conditions (events) labeling the graph arcs. The graph nodes are either 

individual tasks in the lower level FSM, or FSM portions, which are “lumped” together as a single 

node to reduce the size of the CTG. The conditions describing different paths are either single 

events in the FSM, or logic expressions based on the events. 

• Markov Process level: For each task (function), its execution traces (which is a complete path 

through the CTG) define a Markov Decision Process. This is suggested by experimental 

observation that the similar behavior of many computing systems can be approximated as a 

Markovian Process [Benini (2000), Qiu (2001), Kallakuri and Doboli (2007)]. Each trace is a 

state. Transition rates between states represent the probability of executing that trace in the CTG. 

• Function graph level: The application is described at the top-most level as a function graph in 

which a node is a specific function (task), and arcs define the order of performing the tasks. Nodes 

are unconnected, if no specific order is required. The performance of each task (e.g., its execution 

time) is described as a distribution that corresponds to the underlying Markov Decision Process. 

Please note that the system behavior is predictable at this level because the model can be 

deterministically evaluated.  
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Figure 6: (a) Simple case study and (b) hierarchical decision making structure 

 

The hierarchical decision making in Figure 5 operates as follows. The two bottom most levels employ 

event driven decision making mechanisms, such as Finite State Machines. The reactive behavior level 

description switches from one task to another depending on the occurrence of events. For example, the 

system switches from Task1 to Task2, if Event1 occurs during operation. Each controlled unit executes 

its own controller. The adaptive implementation level refers to the capability of adapting online the 

implementation of a certain task, such as switching from a reconfigurable implementation to another under 

conditions Ci, which relate to implementation parameters, like the available energy, memory, 

communication bandwidth, etc. of a device. Several individual controllers might decide to collaborate by 

building collectively a shared description at the conditional task graph (CTG) level. The description 

defines how the individual controllers use jointly any shared resources to achieve common objectives, such 

as the access over time (schedule) of vehicles accessing intersections. The CTG description includes 

decisions specific to different conditions, such as various traffic loads. Please note that CTG decision 

making is at the level of small local areas rather than individual controllers. Next, the CTG descriptions of 

the correlated areas are used to build description covering broader areas, such as those at the Markov 

Decision Process level. Finally, the last level is at the function graph level, and is based on information 

collected from Markov Process level descriptions for several interrelated areas. This step distributes the 

overall goals into goals for the individual sub-systems using information from the Markov Decision 

Process level.   

 



The remaining part of the subsection presents the top-down bottom-up constraint transformation for 

predictive operation. The five consecutive layers in Figure 5 are related with each other through top-down 

and bottom-up constraints. The top-down constraints reflect the performance requirements that are imposed 

by the application, and which must be satisfied during operation. The bottom-up constraints (called 

performance violations in the figure) capture the amount of change in the control algorithms, if the current 

reactive implementation (at the bottom two levels) cannot operate in unpredictable conditions while the 

application requirements are satisfied.  

 

We will exemplify the concept of top-down and bottom-up constraints by looking at the bottom two levels 

in Figure 5. Depending on the performance requirements expressed at the reactive behavior level (e.g., the 

time constraint for task execution, precision, etc.), the control algorithm switches among the SFGs of the 

adaptive implementation level. If the constraint is not met then the control algorithm switches to the SFG 

for a more efficient implementation, and vice versa, if the required performance is exceeded. Similar 

control strategies have been recently proposed in [Lu (2001), Zhang (2002)a], but the methods are for 

software only and cannot handle mixed-domain constraints. If a performance constraint is violated then the 

control algorithm might decide to transition immediately to a safe implementation (as shown by the dashed 

line arc labeled as PC1 in the figure). For example, if the system is running out of time then it might decide 

to immediately switch to the most efficient state without going through any intermediate states.  

 

Similarly, the lower level will provide bottom-up feedback to adjust the transitions of the FSM at the 

reactive behavior level, in case the imposed performance constraints are violated. Such a “short cut” 

transition is indicated by the dashed line arc labeled as PC in the figure. Short cut transitions are also 

introduced by the performance constraints originated from the conditional task graph level.  

 

At the conditional task graph level, new nodes and edges are inserted into the graph for providing a 

predictive behavior. In the figure, the nodes are shaded and arcs are shown with dashed line. If performance 

constraints are not met then the resource management module might decide to perform a shaded node 

instead of the node corresponding to the functionality. The missed functionality might be allocated to 

another node, if there is a node available, or might be entirely skipped, if it does not violate the application 

requirements.  

 

The remaining of the section illustrates two possible instances of the proposed semantic decision making 

hierarchy: (A) traffic management based on FSM – Conditional Task Graphs – Markov Processes – 

Function Graph hierarchy, and (B) light control using Fuzzy Logic – Knowledge Based Rules. While the 

first hierarchy relies more on quantitative decisions, the second semantic hierarchy is more geared towards 

knowledge based (qualitative) decisions.    

 

4.2 Traffic Management using FSM-CTGs-Markov Descision Processes-Function Graphs hierarchy 

 

Figure 6 shows the simple traffic management case study that has been explored and the corresponding 

semantic hierarchy. Figure 6(a) presents a street network, in which arcs indicate the flow of traffic. The 

goal of decision making is to maximize the traffic flow that passes in a given time T through the area. 

Traffic lights (shown as black bubbles) are positioned at each intersection, and each is controlled by its 

local ITU (Intersection Traffic Unit, see Section 2). Neighboring ITUs form a ZTCU (Zone Traffic 

Coordination Unit, see Section 2) that coordinates their operation. Moreover, ZTCUs of an area are 

interconnected and coordinated by an ATCU (Area Traffic Control Unit). Finally, ATCU are supervised by 

TCU (Traffic Coordination Unit). Figure 6(b) illustrates the resulting semantic hierarchy. ITUs, ZTCUs, 

and ATCUs can be statically defined, or can emerge dynamically during operation based on the actual 

traffic patterns and the best way of coordinating the traffic lights. We have assumed static definitions in this 

case study.    

 

Figure 7 illustrates the two lower levels of the semantic hierarchy: the FSM level and the Conditional Task 

Graph (CTG) level. The figure also shows the interaction between the two levels.   

• Each of the ITUs in the figure implements a FSM with three states (red, yellow, and green). 

Assuming cyclic traffic signals, arcs indicate state transitions which are taken after the FSM 



spends ∆Ti,j time units in the current state (the time is called split time). The time intervals are 

specific to each ITU and each transition, and are fixed by the ZTCU for optimizing the traffic 

flow. The schedule of the traffic signal repeats over a period T (called cycle time). Neighboring 

ITUs communicate with each other to decide the delay between the monitored intersections (the 

delay is called offset).  

• The ZTCU behavior is expressed as a Conditional Task Graph (CTG), which indicates the 

activities performed by two cars arriving at ITU1 and ITU2 in the figure. Activities include passing 

through the intersection, moving to the next intersection, and so on. Each of the activities is 

characterized by an execution time Texk, which is estimated based on the data collected locally 

from the sensors at the traffic lights. ZTCUs set the cycle and split times of each intersection, and 

also find the initial delay values.  Execution times differ for different traffic scenarios, e.g., light 

traffic (indicated as branch L) and heavy traffic (shown as branch T). The semantics of the 

application states that one and only one of the branches Li and Hi is executed for a traversal of the 

graph. This semantics defines a conditional (multimode) behavior.  
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Figure 7: FSM – Conditional Task Graph hierarchy 

 

Figure 7(b) presents the concrete CTG for a zone with two consecutive intersections controlled by the 

traffic signals ITU1 and ITU2. The graph presents the activities occurring during one cycle of the entire 

area, even though the cycle might include several cycles of the individual traffic signals. The process is 

repetitive after each area cycle. In this example, we assumed single-lane roads, which means that two cars 

coming through the intersections ITU1 or ITU2 cannot move simultaneously. Hence, certain road sections 

(shown as dark areas in the figure) act as shared resources for two or more cars, while other roads are 

dedicated resources. The model defines tasks T1 and T2 as being the travel of a vehicle entering the area 

from the left, tasks T3 and T4 as representing the moving of a vehicle coming from the top-left road, tasks 

T6 and T7 represent a car moving from top right, and so on. The resulting CTG is illustrated in the figure. 

Each task has two attributes: Ni is the number of vehicles that traverses the section during one cycle, and 

Ti
ex is the time required for the vehicles to pass through the section. Obviously, the two attributes are 

related to each other. In the graph, the tasks sharing the same resources (the road sections are depicted in 

dark) are marked with dashed and dotted lines, respectively. In addition, the dummy task ∆∆∆∆T12 represents 

the offset time between the two traffic signals.         

 

The ZTCU for the area computes online the optimal scheduling of the tasks Ti while tackling 

requirements such as, (i) to maximize the total number of vehicles passing though the zone, (ii) to minimize 

the time taken to cars to move through the zone, (iii) to minimize the fuel consumption in a certain area, 

(iv) to minimize the amount of polluting gases that are generated, and so on. To avoid continuous 

recomputing of schedules and to improve the flexibility of the approach, the ZTCU scheduler calculates 

traffic signal schedules for different traffic conditions, which determine the “behavior” (and thus the 

mathematical models) for the task attributes, such as parameters Ni and Ti
ex. 

 

Please note that each computed schedule corresponds to traffic conditions described by conditional 

behavior and the qualitative parameters Li and Hi in the figure. For example, if the traffic load is low on 

the segment 1 then the branch labeled as L is taken after the task T1 is completed, hence task T2 is 

performed. If the traffic load is high then the branch labeled as H is selected, and the task T2’ is pursued. 

Tasks T2 and T2’ can never be performed simultaneously as they correspond to mutually excluding 



conditions (e.g., the traffic intensity cannot simultaneously be low and high). This generates eight different 

situations for the case study in Figure 7(b), and eight different optimal scheduling situations for the zone, 

such as the schedule S(L,L,L) with the total time Ttot(L,L,L) for the situation in which the traffic density is 

light through all three intersections. The actual conditions, which are labeled as L and H, can be different 

for different traffic lights, and can involve more than two situations.  The concrete task scheduling for 

CTGs can be computed with algorithms similar to the one in [Eles et al (2000)].   

 

Figure 8(a) illustrates the interaction between the local ITUs at each traffic signal and the CTG scheduling 

at the ZTCU for the interacting ITUs. The scheduling table computed online by the ZTCU is shown in the 

figure. The table includes the scheduling solutions for different scenarios that might arise in traffic. Please 

note that the actual semantics of the conditions Li and Hi (e.g., what traffic conditions actually define 

them) are refined during execution depending on the variation of the parameters Ni and Ti
ex. More 

conditions allow more precise tuning of the schedules, however, the computational complexity of 

calculating the optimized schedules is also higher [Eles et al (2000)]. The table presents the schedules for 

two situations: one in which traffic is light along all directions, and the second in which the traffic along 

direction two is more intense while the others remain low. The traffic schedules are computed so that the 

total number of cars passing through the zone is maximized while the timing along different directions is 

kept within fixed deadlines (e.g., to avoid large delays along certain directions due to enabling heavy traffic 

along other directions). The boxes in gray indicate some of the idle times along a direction.  
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Figure 8: FSM -  Conditional Task Graph – Markov Process – Functional Graph hierarchy   

 

The information in the CTG scheduling table is mapped down onto the FSMs of each individual traffic 

signal. For example, for Scenario 1 (in which traffic is low along all directions), the time required for 

performing task T3 plus the following idle time generate the timing constraint ∆∆∆∆Tx, which states that after 

that amount of time the FSM must be in state Green, thus allowing traffic to progress along direction two. 

Similarly, for Scenario 2, the time for task T1 plus the following idle time define the constraint ∆∆∆∆Ty, which 

states that the traffic signal ought to be in state Red after ∆∆∆∆Ty, which allows traffic to progress along 

direction one. As long as each traffic signal meets its local timing constraints (∆∆∆∆Tx and ∆∆∆∆Ty), the behavior 

at the ZTCU level still meets the traffic schedules specified in the ZTCU table. Please note that the local 

FSMs can switch more often, such as if no vehicle is traveling in one direction and a single car is 

approaching from another direction, but for “pools” of vehicles the signaling must follow the timing 

constraints of the ZTCU table.   

 
Figure 8(b) presents the upper levels of the hierarchy, including the Markov Process (ATCU) and the 

Functional Graph (TCU) levels, and their connection to the lower Conditional Graph level (ZTCU). For an 

estimated number of vehicles that pass through the area, the ZTCU has the optimal activity schedules for 

each estimated traffic scenarios. If the timing delay Tarea_i of a ZTCU schedule exceeds the necessary 

timing constraint set for the area traversal, then the traffic light controllers are adjusted so that the new 

traffic scenarios has a schedule that meets the constraint.  

 

Another action set by the ATCU is to distribute the traffic flow among the two areas so that the set timing 

constraints are met and the total number of cars passing through the area is maximized. This decision 

making is achieved by setting up a Markov process for the area in which the states correspond to the traffic 

scenarios of the ZTCU (eight scenarios in our case study). The transition rates between the states are the 



probabilities p(x,y,z)->(u,v,w) of shifting from one scenario to another. ATCU maintains a macro-level 

perspective of the traffic flow in which the moving of vehicles appears like a continuum flow without 

losses (the number of vehicles that enters a zone is equal to the number of vehicles that exists). For the 

example in Figure 7, In1+In3+In6=Out9 (indexes reflect the corresponding street segment).  The following 

paragraphs introduce briefly the concept of Continuous-Time Markov Decision Processes, and explain how 

this formalism is used to model the higher levels of the ATCU decision making. 

 

A Continuous-Time Markov Decision Process (CTMDP) is defined as the following sixth-tuple: 

}r,k,q),(A,A,I{  

Where I is a finite state space, A is a finite set of actions, A() is the function indicating the actions 

associated to any state in I, k is the number of criteria, rk(i,a) is the reward rate for criterion k, and 

q(i,j,a) is the transition rate from state i to state j, if action a is conducted. For ATCU decision 

making, the different traffic scenarios define the states of a CTMDP, such one state corresponds to low 

traffic conditions through each intersection of the zone. Hence, one state corresponds to one column in the 

CTG scheduling table. If the CTMDP corresponds to multiple scheduling tables then each column 

generates a different state in the table. The action set A represents the alternative routes that are available 

for moving inside a zone. The action set correlates to the available traffic scenarios and also the traffic 

parameters Ti
ex and Ni. Rewards rk are the number of cars passing through a certain zone in a time equal 

to the time modeled through the scheduling table of the CTG. Thus, parameter k is one in this case.  

 

Decision making is expressed as the following optimization problem: 
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Qualitative Decision Making using Fuzzy Logic. An alternative to the previous approach can be based on 

hierarchical qualitative decision making, such as fuzzy logic and expert systems. Fuzzy logic computes the 

control outputs using a set of predefined rules that operate on a qualitative assessment of the inputs. The 

qualitative assessment (through membership functions) is critical as it decides the meaning of the inputs for 

the controller. Obviously, in a dynamic system, the meaning might change over time to reflect the insight 

gained during operation. Hence, the decision making process can be organized as a two level strategy, in 

which the upper level component uses learned patterns and dependencies to set the characteristics for 

decision making of the lower level, fuzzy logic controller.  

 

Figure 10 shows the block diagram of the two-level hierarchical control system. The fuzzy logic controller 

ZLCU receives aggregated information from (i) the illumination sensors, aggregated by block AG-il (e.g., 

the intensity of the ambient light i), and (ii) the traffic sensors, aggregated by block AG-t (e.g., the traffic 

“density” d). ZLCU computes the command variable u (e.g., for the actuators of the ambient illumination 

system). The fuzzy controller is supervised by the upper level control system LCU that sets parameter a, 

which is used by the fuzzy logic controller to qualitatively assess the two inputs. 

 
 

Figure 10: (a) Hierarchical qualitative control scheme and (b) fuzzy logic controller 

 



Figure 10(b) presents the block diagram of the fuzzy logic controller ZLCU. The received inputs are 

fuzzified in the input interface block Fuz. Then, an inference based on the max-mi method is done on the 

fuzzyfied inputs using rule BR. The output information is defuzzified with the centroid method to produce 

the output u. The fuzzy variables ai, ad and au can take three qualitative values: small (S), medium (M), and 

big (B). The parameters of these membership functions on the universes of discourse are indexed with the 

indexes m for the medium value, M for the maximum, value and Ml for the limited maximum value. These 

parameters are modified by the high level component LCU. Samples of membership functions are given in 

Figure 11(a).  

 

LCU transmits the following set of values to ZLCU: 

















=

uMluMum

dMldMdm

iMliMim

aaa

aaa

aaa

a
 (1) 

 

A simple rule base BR of the fuzzy controller is presented in Table 1. 

Table 1: Simple rule base 
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Figure 4 presents the surface of the fuzzy controller ),( difu =  for a particular value set of the parameters 

(0.5; 1; 1.2) on the universe of discourse [0; 1.2] for all three fuzzy variables. Changes in the membership 

function parameters and the rule base will change the above surface. 

 

Figure 11: (a) Membership functions and (b) surface of the fuzzy controller 

 

 

5. Specification for Integrated Decision Making  
 

The paradigm discussed in Section 4 ought to support interdependent applications of different types, as the 

global optimization goal might not involve a certain application. For example, increasing the traffic flow 

during night time is linked to the illumination control as optimal illumination might allow higher vehicle 

speeds while still maintaining safety. This requires that the decision making (DM) modules across the 

entire semantic hierarchy utilize a uniform specification model, which is independent of the application 

type and the control strategy utilized by each individual DM module. The specification model must also 

allow easy decision making across the DM modules for different applications.   

 



The specification model proposed for decision making in large scale urban environments is based on a 

goal-oriented description paradigm, in which each DM module has well-defined goals. The goals are set by 

the application, such as providing the required illumination intensity, or maximizing the traffic flow 

through a region. In addition, each DM module has limited set of capabilities, such as the maximum 

illumination it can provide, the highest traffic flow on a route, communication distance and bandwidth, 

local energy resources, and so on. Module inputs are either connected to the sensors or connections from 

DM modules positioned on the same or higher semantic levels. DM outputs are either actuation and control 

signals or connections to modules on the same or lower semantic levels. Each module conducts internally a 

decision making process using models similar to those detailed in Section 4, however these models are not 

accessible outside a DM module. Figure 12 illustrates the goal-based specification concept.    
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Figure 12: Uniform specification approach for integrated decision making 

 

Different kinds of interactions can be set up between the participating DM modules: 

• Collaborative interactions: Collaborative interactions are set up between DM modules on the 

same semantic level and which have non-conflicting (non-competing) goals, such as the 

individual traffic light controllers which must all offer optimal lighting intensity of an area. The 

DM modules interact with each other through inputs and outputs, e.g., one DM module produces 

outputs that serve as inputs to another module. The goals and capabilities of DM modules are not 

affected by these kinds of interactions. 

• Competing interactions: Such interactions are set up between DM modules from the same 

semantic level but with competing goals, like maximizing the illumination of a certain zone but 

also minimizing the energy consumption of the zone (the latter can be set by the power grid 

application). Similarly to collaborative interactions, DM modules interact through their inputs 

and outputs but cannot change their goals or capabilities components.      

• Guiding interactions: Guided interactions are between DM modules at consecutively higher 

levels in the semantic hierarchy. The modules at the upper levels generate outputs that are used to 

set the goals of the modules on the lower levels. This way the first modules are steering the goals 

and hence the behavior of the latter modules. For example, the DM modules at the area level set 

constraints, which then become part of the goals section of the related traffic signal controllers.       

• Enabling interactions: Enabling interactions are information transfers from the lower semantic 

levels to the upper levels. A lower DM module transmits information about its capabilities to an 

upper DM module, so that the second uses this knowledge during a decision making process that 

might affect the goals set for the lower module through guided interactions. Enabling interactions 

is the information link through which the upper decision making modules acquire knowledge 

about the actions that are ongoing in the real world.      

     



These concepts are illustrated in Figure 13 which shows the interactions and integration of the 

decision making mechanisms for different infrastructure management subsystems in a city, such as 

street lighting control, traffic control, pollution monitoring, and disaster management.  

 

 

6. Future Research Directions 
 

Several main research problems emerge related to the proposed decision making approach for large scale 

urban environments. The identified problems can be grouped into three categories, and are described next. 

The starting point in addressing the problems represents the developing of more orthogonal applications, 

like heat, water, gas, and power distribution, fast response in emergency situations, energy harvesting on 

large areas, environmental monitoring (including noise levels and pollution), social networking, and many 

more. Developing a suitable testbed for simulating these applications is also very important.  

 

A. Exploring the formal model: semantic hierarchy and specification. An important goal is to study the 

full potential for decision making of the proposed approach based on semantic hierarchy. The paper details 

a hierarchy based on Finite State machines, Conditional task Graphs, Markov Decision Processes, and 

Functional Graphs, but other quantitative or qualitative models can be incorporated into the hierarchy too. 

Some of the formalisms that we plan to research include Petri Nets, Signal Flow Graphs, Timed Automata, 

Hybrid Automata, Flow based models, linear and nonlinear programming, and likely other too. Also, it is 

important to understand the interactions between the mathematical formalisms, including techniques for 

propagating constraints top-down from the more abstract to the more precise levels, and also bottom-up for 

specifying feasibility constraints at the higher levels. Moreover, it is important to understand how the 

propagated constraints relate to the mathematical formalisms used in the hierarchy, as the same constraints 

might be utilized for different specification formalisms. The scalability of the hierarchical model for 

different formalisms must be characterized too. Finally, the current formalism targets only static sensing 

nodes but it is important to extend it for mobile nodes too.   

   

 
Figure 13: Integrated decision making in a city 

 

Another important issue relates to lay out the mathematical foundation of collaborative interactions 

between decision making systems. This is important for understanding what other collaboration types are 

possible, if entities interact though goals, capabilities, inputs, and outputs. Moreover, the specific 

manifestation of collaborative interactions for different semantic models needs to be addressed too.  

 

B. Online decision making algorithms. A set of specific online decision making algorithms ought to be 

developed for the semantic hierarchy model. This includes algorithms for forming clusters based on 

application goals, electing virtual leaders for each cluster, and instantiating the virtual hierarchy at the level 

of each embedded sensing node. This activity also implies identifying the best collaboration model among 

related decision modules, including finding the correlations that emerge dynamically during operation. 



Also, the implications of the semantic and goal based operation mode on the underlying wireless and wired 

communication protocols and routing algorithms needs to be explored too.  

 

Other important research problems refer to the actual optimization algorithms that are used for online 

optimization of the goals expressed in different semantic models. This includes online algorithms for 

resource allocation and scheduling of data flow graphs and Conditional Task Graphs, and solving equations 

expressed as Markov Decision Processes or flow models. Moreover, fast algorithms are needed for 

integrating data from the low levels into constraints for the upper semantic levels, and also for propagating 

top-down constraints form the upper levels to the constituent decision making entities. These algorithms 

ought to tackle a variety of trade-offs, like cost, speed, reliability, energy consumption, etc. Also, the 

importance of these constraints might also change dynamically during execution, and thus decision making 

should be capable to respond quickly to changes. A possibility involves developing algorithms that can 

adapt to new requirements by incrementally changing the current solution. Considering that the adapted 

solutions are not optimal, it is important to understand and estimate the performance loss of an 

incrementally adapted solution as compared to the optimized solution.           

 

C. Performance prediction for reliable operation. A challenging objective is to provide the means for 

accurately estimating in real-time the performance of alternative decisions for new situations. This problem 

is essential for devising any efficient and reliable control algorithm. For an alternative, estimations should 

describe performance attributes, like quality (e.g., illumination intensity for lighting control), response 

time, precision, energy consumption, cost, etc. The predicted performance should include both continuous 

valued/time and discrete valued/time performance. Attributes like energy consumption, illumination 

intensity, response time, and travel time are examples of continuous valued-continuous time performance. 

Examples of discrete-valued attributes are the number of cars passing through a zone, the bit precision of a 

decision, etc. Performance estimation should rely at a minimum on simulation, instead macromodeling 

techniques ought to be developed based on linear and nonlinear interpolation, piecewise linear modeling, 

neural networks, wavelet functions, and so on. Also, it is important to detect and extract online any new 

patterns and correlations that emerge during operation, and use this information to further optimize the 

response of the decision making systems.       

 

 

7. Current Information Systems for Large Urban Environments 
 

A number of recent research projects focus on developing wireless sensor networks for applications in 

urban environments. The monitoring of the noise level in a city and building the related noise maps is 

presented in [Santini (2007)]. The TIME (Transport Information Monitoring Environment) project [Yoneli 

(2005)] targets the improving of the traffic efficiency in Cambridge UK by monitoring and processing 

information collected in real-time about traffic. The U-City approach [Licalzi (2005)] attempts to connect 

the information systems in residential, governmental, commercial, and healthcare areas. The CarTel project 

[Hul (2006)] focuses on distributed mobile sensor networks for monitoring traffic. The approach is based 

on opportunistic data muling through mobile sensors, and offers delay-tolerant pipes and delay-tolerant 

stack for data transport. The concept of adaptive traffic-light control through Collaborative Reinforcement 

Learning is introduced in [(Cunningham)]. Several other approaches are detailed next.  

 

The CitySense concept [Murty (2007)] is wireless sensor network based infrastructure for developing 

application for large urban environments. Possible applications for CitySense include serving web pages, 

VoIP, social networking, and monitoring the networks deployed in a city. CitySense assumes static 

deployment of powerful computing platforms equipped with radios using the 802.11 wireless protocol to 

transmit over a mesh network. Hence, each node has the capabilities to perform locally complex 

computations and to communicate over multiple channels at high data rates.  CitySense also relies on 

moving vehicles to provide connectivity to the areas which are hard to communicate with through radios. It 

uses predictions about the trajectory of the vehicle to prepare in advance the data to be communicated to 

the vehicle. Also this information is used to decide the aggregation points of the collected information.    

 

The MobEyes system [Lee (2006)] has been developed for monitoring and data acquisition in urban 

environments. The system uses moving vehicles such as cars to transport necessary information to/from 



areas in which wireless communication cannot be offered. The communicated information represents a 

summary of the entire information harvested by the nodes during operation. The single-hop communication 

protocol (called MDHP) transmits the missing data summaries to a vehicle that enters the communication 

range of the sensor. The summaries are stored locally by the sensor or collected from its neighbors. Moving 

police agents collect the important summaries. The protocol is scalable, and requires acceptable large 

latency overhead but cannot tackle real-time constraints.    

 

The MetroSense approach [Campbell (2006)] also tackles the problem of data gathering in urban settings, 

and exploits mobile vehicles for improving the covered area. This is very important for keeping the cost of 

the network down and also to offer connectivity if of remote zones. The authors propose an opportunistic 

delegation model in which tasks are temporarily re-assigned to available nodes. Similar to MobEyes, 

vehicles are used to carry information to remote areas. The authors propose four protocols for moving data 

through vehicles: lazy uploading, lazy tasking, direction-based muling, and adaptive multihop. In lazy 

uploading, a point-to-point connection is used to transmit data to the vehicle as long as it stays in the zone 

covered by the radio. The next available vehicle continues the data transfer. A similar strategy is used in 

lazy tasking to assign tasks (through reprogramming) to new processing devices. Direction-based muling 

uses predictions on vehicle moving to transfer data to the vehicles that are more likely to move towards the 

target of the data communication. In adaptive multihop, the characteristics of the communication, such as 

the task boundary, change dynamically depending on static threshold values, like the load threshold. The 

concept is exemplified in [Eisenman (2007)] for the practical case of data collection by a network of 

bicycles to improve the quality of bicycle riding.     

 

[Kansal (2004)] propose a networking infrastructure which uses autonomous mobile wireless routers for 

improving the energy consumption, accuracy, data rate of communication over large areas. The 

infrastructure also gives connectivity to remote areas. The method computes and adjusts the trajectories for 

the mobile routers depending on the nature of their dynamics, e.g., random, predictable, and controlled 

movement. A set of adaptive control procedures are suggested to adjust the speed of the mobile routers 

depending on the speed and latency of data collection, and the connectivity of the network. In deciding the 

dynamics, the procedures exploit the correlations between the sensing speed, communication distance, data 

rate and energy consumption.  

 

 

8. Conclusions 
 

Cities are complex systems in which resources and infrastructure are continuously allocated to economy 

and inhabitants. A city must have sufficient decision making systems for continuously dispatching 

resources like water, electricity, heat, traffic, etc. in flexible, autonomous, scalable, efficient, and 

predictable fashion. This task is challenging as the quality of decision making is a trade-off between 

effectiveness, comprehensiveness, and related costs. Global decisions can be more efficient, however, they 

are time consuming and financially expensive. In contrast, local decisions are cheap but offer mostly local 

decisions. In addition, the integrated nature of modern applications requires control strategies that can 

comprehensively tackle correlated applications or which might become correlated in certain conditions. 

Intriguing new control solutions can be devised based on modern technology involving ubiquitous data 

collection through sensors, automated analysis and prognosis, and online optimization. This enables global 

decision making over large areas while keeping the costs low. Also, new mechanisms can be devised to 

integrate and co-optimize the correlated applications. This expands the optimization space, and increases 

the reliability of decision making in new situations.  

 

This paper proposes a new decision making paradigm for optimizing the continuous, real-time allocation of 

resources to satisfy demands in large cities. The paper refers to street lighting and traffic control as case 

studies to illustrate the paradigm. The proposed concept is structured as a semantic hierarchy in which 

different decision making models and strategies coexist and interact to produce flexible, autonomous, 

scalable, efficient, and predictable decisions. For scalability, only a reasonably large number of modules 

collaborate with each other to reach global decisions. Flexibility and autonomy results by using reactive 

models for the bottom decision making levels. Efficiency and predictability is due to the reactive behavior 

being constrained by the upper semantic levels, which use more deterministic models. The upper levels 



compute the limits within which reactive decision making must operate, so that the overall goals and 

constraints are not violated. The data sampled from the environment is aggregated and propagated to the 

upper semantic levels, where it is used for global decision making. Finally, the paper discusses the defining 

elements of the specification formalism for integrating different but related applications. Interactions 

between decision modules, such as collaboration, competition, guidance, and enabling interactions, are 

defined based on the goals, capabilities, inputs, and outputs of each module.     

 

While the proposed decision making paradigm is applicable to other theoretical formalisms too, this paper 

refers to a semantic hierarchy based on Finite State Machines (FSMs), Conditional Task Graphs (CTGs), 

Continuous Time Markov Decision Processes (CTMDPs), and Functional Graphs (FGs). The hierarchy is 

exemplified for coordinated traffic signal control, a main application in modern cities. Decisions at 

successively higher semantic levels are used to cover increasingly broader geographical areas: FSMs 

implement reactive control guided by signals coming from sensors as well as neighboring FSMs, CTGs 

schedule the related activities over time for different traffic conditions, CTMDP use macroscopic 

descriptions of the system to conduct scenarios-specific optimizations, and FGs regulate the global 

allocation of resources and infrastructure to global demands. 

 

Three main research problems emerge related to the proposed decision making approach. First, it is 

important to study semantic hierarchies based also on other formalisms like Petri Nets, Signal Flow Graphs, 

Timed Automata, Hybrid Automata, Flow based models, linear and nonlinear programming, and so on. 

Moreover, it is needed to devise the theoretical foundations for propagating constraints top-down from the 

more abstract to the more precise levels, and also bottom-up for specifying feasibility constraints at the 

higher levels. Second, efficient online decision making algorithms ought to be developed for the semantic 

hierarchy model, e.g., algorithms for forming goal oriented clusters, electing virtual leaders, and mapping 

the virtual hierarchy onto each embedded node. Also, new algorithms need to be designed for resource 

allocation and scheduling at different levels of the model hierarchy while tackling trade-offs, like cost, 

speed, reliability, energy consumption, etc. As the importance of these constraints might change during 

execution, the algorithms should incrementally change the current solution to adapt it to the new 

requirements. Third, procedures for accurate, real-time performance estimation ought to be devised. The 

tackled performance should include both continuous valued/time and discrete valued/time performance. 

Moreover, performance estimation should rely mostly on macromodeling, so that it can be performed in 

real-time. Other tasks relate to detecting and extracting online any emerging patterns and correlations, and 

using this information to further optimize decision making.       
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