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ABSTRACT

An example of an application of a recently developed generalized Ornstein-

Zernike formalism to the numerical evaluation of equilibrium three- and four-particle

correlation functions is given. Using a simple closure approximation leading to the

ladder approximation we have numerically evaluated dipole-dipole-interaction cor-

relation functions for a polarizable nonpolar hard-sphere fluid. These functions

depend on the three- and four-particle correlation functions and describe a correc-

tion to the Clausius-Mossoti formula for the dielectric constant and an integrated

intensity measured in depolarized light scattering experiments. Qualitative agree-

ment with computer simulation data was found for a wide range of densities up

to the fluid-solid phase transition. For high densities the ladder approximation

yields much better results than the Kirkwood superposition approximation, which

becomes useless in this contest at liquid-state densities.
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I. INTRODUCTION

The problem of how to efficiently calculate k-particle equilibrium correlation

functions, of order k > 2, still remains an important challenge, even for simple fluids.

Many-particle correlation functions, in particular three- and four-particle, play an

essential role in various problems of both equilibrium and non-equilibrium statistical

physics. Examples of theories in which expressions for important physical quantities

include three- and four-particle correlation functions are the theory of the dielectric

constant(1-3) and the theory of depolarized interaction-induced light scattering

(DILS) (4,5). Other examples include the thermodynamic perturbation theory(6,7),

the kinetic theory of dense fluids(8-13), and the theory of dense suspensions of

Brownian particles(14,15).

While there is a fundamental need for detailed knowledge of the k-particle

correlation functions with k > 2, there is still a lack of good evaluation methods.

The Kirkwood superposition approximation (KSA), the most widely used, is not

sufficiently accurate for many applications, particularly at high densities. In the

present paper we give an example of an application of an alternative, powerful

method, based on an integral-equation approach. Our method is particularly suited

for evaluating correlation functions of a general form

1 N N

Gab = N ( L lia(rij) L lib(rkl)) ,
i,j=l Ie,l
i#:j Ie#:1

(1.1)

where

lia(rij) = a(rij ) - (a(rij) ) , (1.2)

is the deviation of the function a from its average value; (...) denotes a canonical

ensemble average, rij is a relative position of the particles i and i, and N is a total

number of particles in the system.
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A theoretical framework for the present considerations was given in a recent

paper(16), hereafter referred to as I. In this reference a new generalized Ornstein-

Zernike (OZ) approach to many-particle correlation functions was introduced. The

main object of analysis was a set of functions describing equilibrium correlations

between two groups of particles in a fluid. The basic idea was to distinguish a

sequence of repetitive terms in the structure of the correlations. Such repetitive

terms are short-ranged and playa similar role to the direct correlation function in

the standard OZ formalism. The key element in the classification of various terms

contributing to the correlation functions was an intermediate set of particles, Le. a

set with the property that the two reference groups are correlated only through it.

The main result of ref. I was a derivation of a generalized Ornstein-Zernike

equation (GOZE) for a function describing correlations between two pairs of par-

ticles. The analysis was performed in two steps. In the first step, the so called re-

ducible part was subtracted from the pair-pair correlation function. The reducible

part was defined as a sum of all contributions for which the two pairs are correlated

only through a sequence of single intermediate particles. The important conclusion

was that the reducible part of the pair-pair correlation function can be expressed in

terms of correlation functions of lower order. The remaining part of the pair-pair

correlation function (Le. that part, for which a single intermediate particle cannot

be distinguished) was called irreducible. The structure of this part was considered

in the second step of analysis. In this step various contributions were classified

in terms of intermediate pairs of particles. The direct pair-pair correlation func-

tion was defined as the sum of contributions for which such an intermediate pair

cannot be identified. By analyzing repetitive structures of direct correlations the

GOZE was derived. The GOZE relates irreducible and direct pair-pair correlation

functions and includes full and direct two-particle correlation functions.

As it was pointed out, the GOZE is a convenient starting point for construct-

ing various approximation schemes for calculating three- and four-point correlation
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functions. In particular, if one simply drops out the pair-pair direct correlation

function one gets a closed, approximate integral equation which relates the pair-pair

correlation function to the usual full and direct two-particle correlation functions.

One can show that the solution of this approximate integral equation corresponds to

the resummation of the "ladder" diagrams in the h-bond expansion(17) of the pair-

pair correlation function. In light of this, we call the above-described approximation

the ladder approximation (LA).

We should mention at this point that the ladder approximation for the pair-

pair correlation function is closely related to the generalized hypernetted-chain

(HNC) approximation developed by Pinski and Campbell by an entirely differ-

ent method (18). Instead of a diagrammatic analysis, their derivation was based

on functional derivative techniques. The main difference between the LA and the

generalized HNC approximation is a different treatment of the reducible pair-pair

correlation function. Pinski and Campbell did not extracted this part from the

correlation function. Furthermore, the expressions for integral kernels obtained by

Pinski and Campbell depend on the two-particle correlation functions given in the

HNC approximation rather the on the exact two-particle correlation functions. In

LA the exact functions appear.

The main goal of the present paper is to give an example of an application of

the formalism developed in ref. I. We present numerical results for two quantities

depending on three- and four-particle correlation functions, calculated using the

ladder approximation. One quantity is an integrated intensity of DILS spectra(4,5),

and the other is a correction to the Clausius-Mossotti formula for the dielectric

constant of a nonpolar, polarizable fluid(I,2). We have calculated both quantities

for a hard-sphere fluid in the dipole-induced-dipole approximation. These quantities

serve as a convenient test for the approximation, since there are computer simulation

data available for comparison (19,20).As we will see, our approximation gives results
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in qualitative agreement with computer simulation data for a very wide range of

densities, while for high densities the KSA fails completely.

This paper is organized as follows: In section II we summarize the basic ele-

ments of the generalized OZ formalism for pair-pair correlation functions. In section

ill we describe the LA. In section IV we introduce dipole-dipole-interaction corre-

lation functions for which, in section V, numerical results are given. Some details

are relegated to appendices.

ll. GENERALIZED ORNSTEIN-ZERNIKEEQUATION FOR A PAIR-

PAIR CORRELATION FUNCTION

In this section we summarize results of ref. I which are basic for the purpose

of approximate evaluation of few-body correlation functions in a simple fluid.

We consider a uniform, equilibrium system of N identical classical particles

of mass m, enclosed in volume V. The configuration-space point is denoted by

X = (1,..., N), where (i) = ri represents the position of the ith particle. We

assume that particles i and j interact via a spherically symmetric pair potential

~(rij), where rij = Iri - rjl.

The essential element of the generalized OZ approach introduced in ref. I

was characterization of correlations in terms of functions describing two correlated

groups of particles. For our present purpose it is sufficient to consider groups

including one or two particles only. However, for the sake of compact notation it is

convenient to give a general definition. Following the notation of ref. I we introduce

the functions Qij([ i) I [j']) describing equilibrium correlations between two groups

of particles with respective coordinates [1] = (1,..., i) and [j'] = (1',... ,P):

Qij([i] I [j']) =n-(i+j) (6nd[1];X) 6nj([j'];X)), (2.1)
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where n is the number density, and 6ni([ i IjX) describes the deviation of i-particle

microscopic density from its average, i.e.

6ni([i]jX) = ni([i]jX) - (ni([i]jX)), (2.2)

with

ni([i];X) = L 6([i] - [i(X)]).
[l(X)]

In eq. (2.3) the summation runs over all sequences [i(X)] of i different particle

positions included in X and

(2.3)

6([i] - [i']) = 6(1-1')... 6(i - i'). (2.4)

In particular for i = 1,2 we have

N

nl(rjX) = L 6(r - ri)
i=l

(2.5)

and
N

n2(r,r'jX) = L 6(r - ri) 6(r' - ri)'
i>i=l

(2.6)

In the definition (2.1) the thermodynamic limit is implied. One should notice that,

in the thermodynamic limit, the correlation function (1.1) can be easily expressed

in terms of the function Q22:

Gab = n3 f d2 f d3f d4 a(12) Q22 (12 I 34) b(34). (2.7)

The functions Qi;([ i] I [j']) are simply related to the usual s-particle normal-

ized average densities 9.([ i]), defined by

98([s]) = n-.( n.([ s ]jX»). (2.8)

The explicit expressions for i,j = 1,2 are as follows:

Qn(111') = ! 6(1-1') + h2(1-1'),n (2.9)
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Q21 (12 11') = Q12(1' 112)
1

= - (6(1 - 1') + 6(2 - 1')) 92(12)+ 93(123)- 92(12),n
(2.10)

and

Q22(1211'2') = ~[6(1- 1')6(2 - 2') + 6(1- 2')6(2 - 1')] 92(12)n
1

+ - [(6(1- 1') + 6(2 -1')) 93(122') + (6(1- 2') + 6(2 - 2')) 93(121')]n

+ 94(121'2') - 92(12)92(1'2'),
(2.11)

where

h2(12) = 92(12)- 1. (2.12)

We now describe the decomposition of the correlation function Q22 into its.
reducible and irreducible parts. We introduce here simplified notation compared

to the general notation of ref.!. The irreducible part A(12 11'2') of the pair-pair

correlation function is defined by the following formula (in ref. I this part was

denoted by (a) Q~~»

Q22 (12 11'2') =n2 f d1" f d1'" Q21(12 I 1") Qliv (I" 11"')Q12 (1'" 11'2') ,
+ A(12 11'2')

(2.13)

where the inverse integral kernel Qliv is defined by integral equation

n f d3 QliV(113)Qn(3 12) = ~6(1- 2). (2.14)

Taking into account the explicit expression (2.9) for the function Qn one can easily

check tha.t eq. (2.14) is equivalent to the standard OZ equation and the function

QiiV is given by

QliV(l 12) = .!:.6(1- 2) - c2(1 - 2) ,n (2.15)

where c2(1 - 2) is a. two-particle direct correlation function.
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Mayer-graph analysis supports the following physical interpretation of the de-

composition (2.13) of the function Q22(12 11'2'): The first term corresponds to

all situations when the pairs of particles (12) and (1'2') are correlated through a

chain of a single intermediate particles, with no other correlations between (12)

and (1'2'). Since each correlation function Q2I(12 I I") and Q12(2" 1 1'2') in-

cludes a chain of single intermediate particles, to count such a chain exactly once

we have introduced the inverse kernel Qi~V(l" I 2") in eq. (2.13). The second term

A(12 11'2') corresponds to the opposite situation, i.e. when no single intermediate

particle can be found between (12)and (1'2'). We call the first and the second terms

on the right-hand side (rhs) of eq. (2.13) the reducible and the irreducible pair-pair

correlation functions respectively. Decomposition of the form (2.13) has also been

considered by various authors in the framework of a linear kinetic theory of dense

fluids(8,9,12,13,15)

The next step of analysis presented in ref. I was a-derivation of the GaZE for

the function A. The derivation was based on the careful analysis of the structure

of the irreducible pair-pair correlations. We will not present detailed arguments;

instead we will give explicit form of the equation and limit ourselves to discussing

its most important features.

It is convenient at this point to introduce the following shortened notation

1(12 11'2') = :2 (6(1- 1') 6(2 - 2') + 6(1- 2') 6(2 -1')), (2.16)

Within this notation the GaZE can be represented as the following equation

~2 f dl" f d2" Ainv(12 11"2") A(I"2" 11'2') =1(1211'2'),
(2.17)

supplemented by the decomposition of the inverse integral kernel Ainv:

Ainv(12 11'2') = 1 1(1211'2') - D(12 11'2'),
92(12)

(2.18)
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with D given by

D(12 11'2') = (1 + .P(1'2')) [~C2(11')O(2- 2')

+ ~O(l - l')C2(22') - C2(11')C2(22')]

+ C22(12 11'2').

(2.19)

We call the function C22 a pair-pair direct correlation function. The operator

.P(1'2') in eq. (2.19) permutes variables (1') and (2'). The first three terms in ex-

pression (2.19) are the combinations of the two-particle direct correlation functions

and the Dirac o-functions. The function C22(12 11'2') is the only term on the rhs

of eq. (2.19) which has a group property, i.e. which vanishes when the distance

between any two of the particles 1,2, 1', and 2' tends to infinity(l).

Our interpretation of the function C22 as the pair-pair direct correlation func-

tion is supported by its Mayer-graph representation. According to results of ref. I

C22(12 11'2') corresponds to the situations where there is no intermediate pair of

particles such that the pairs (12) and (1'2') are correlated only through it.

To reveal more clearly the relation of our GOZE to the standard OZ equation

we rewrite (2.19) in a different form. To this end let us define the function H by

the following decomposition of the function A:

A(12 11'2') = 92(12)1(12 \1'2') + 92(12)H(12 11'2')92(1'2'). (2.20)

The first term on the rhs of (2.20) corresponds to all of the situations in which the

two pairs (12) and (1'2') are identical (cf. eq. (2.11)). The second term correspond

to all other situations. By substituting decomposition (2.20) into eq. (2.17) one

gets

H(12 11'2') =D(12 11'2')

+ ~2 f d1" f d2" D(12 11"2")92 (1"2")H(1"2" 11'2').

(2.21)

10
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Eq. (2.21) has a form analogous to the standard OZ equation. The underlying

structure of the correlations is, however, more complicated than in the standard

case and therefore the additional decomposition (2.19) of the function D is required.

The diagrammatic analysis performed in ref. I leads to a physical interpretation

of eqs. (2.19) and (2.21). Let us repeat this point: The function H(12 11'2'), de-

scribing the irreducible correlations between two pairs of particles (12) and (1'2'),

can be decomposed into direct and indirect correlations. The direct correlations

correspond to all the situations, in which there are no intermediate pairs of parti-

cles between (12) and (1'2'). The indirect correlations correspond to the opposite

situations, i.e. those in which one can find such an intermediate pair of particles

(1"2"). An intermediate pair (1"2") can be always chosen in such a way that there

is no other intermediate pair between (12) and (1"2"). As a result the indirect

correlation function can be represented as a convolution of the direct correlation

functions and the irreducible pair-pair correlation function. The important differ-

ence between the standard and the generalized OZ equation is that for the pair-pair

problem the choice of an intermediate pair of particles with the above-described

properties usually is not unique. This results in a more complicated form of the OZ

equation than in the standard case. To understand the role of various terms in the

decomposition (2.19) let us consider the following elementary situations.

i) The particle (1) is correlated with the particles (2), (1') and (2') only through

a single intermediate particle denoted by (I").

ii) the particle (2) is correlated with the particles (1), (1') and (2') only through

a single intermediate particle denoted by (2");

iii) both particles (1) and (2) are correlated with remaining particles through a

respective single intermediate particles (I") and (2");

vi) there is no single intermediate particle such that the particle (1) or (2) is

correlated only through it.
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We can always choose the particles (I") and (2") in such a way that there is no

intermediate particle between (1) and (I") and non between (2) and (2"). The

components of the indirect correlation function which correspond to situation i)

have an intermediate pair of particles (1"2). On the rhs of eq (2.21) they result

from the convolution of the function H with the first term in the square bracket

in decomposition the (2.19). Next, the components contributing to ii) have an

intermediate pair (12") and they result from the second term in the square bracket.

The components corresponding to iii) have both the intermediate pairs (1"2) and

(12"). Therefore these components result from both the first and the second terms

in the square brackets. To cancel the excess components, the third term, with

the negative sign, was introduced. Finally, the components corresponding to the

situation iv) result from the last term C22 of the decomposition (2.19).

Before going on to describing our approximation scheme we make the following

important remark. The pair-pair correlation function Q22, as well as its reducible,

irreducible and direct parts, include components corresponding to the situation in

which i) the two reference pairs of particles are identical, ii) they include one com-

mon particle, or iii) they do not include any common particles. These components

consist of the respective two-, three-, and four-particle correlation functions and

the products of the Dirac c5-functions representing the common particles. It is very

important that the components of a pair-pair correlation function corresponding to

the pairs with different subsets of common particles can be uniquely separated by

selecting terms with appropriate combinations of c5-functions. Using this decom-

position one can interpret the GOZE as a set of two separate equations for the

three- and the four-particle correlation functions. (For the two-particle correlation

function we get a trivial result). The three-particle equation can be solved inde-

pendently from the full four-particle equation and can be used in the approximate

evaluation of the three-particle correlation function. In what follows, the parts of

the correlation functions Q22 and .A which correspond to a three-particle problem

12

_u - --- ----- - -- -----



We expect the simple closure approximation (3.1) to yield reasonably good

results for a pair-pair correlation function for a wide range of densities, at least for

fluids with a short-ranged, hard-core interaction potential. The intuitive argument

is as follows. The Mayer-graph analysis of the function C22(12 I 1'2'), given in

ref. I leads to a conclusion that this function is represented by diagrams in which

the vertices corresponding to the pairs of particles (12) and (1'2') are multiply

connected. Therefore C22 is a short-ranged function. On the other hand in the

iterative solution of the GOZE equation (2.17), C22 is always multiplied by functions

which vanish when particle (1) and (2) or (1') and (2') overlap. In this way an

overlapping contributions from C22 are eliminated. In the final expression for the

function A we have only small contributions from the region outside the core. To

support our conjecture we will present the LA numerical results for dipole-dipole-

interaction correlation functions.

IV. DIPOLE-DIPOLE-INTERACTION CORRELATION FUNCTIONS

We now give two examples of an application of our formalism to numerical

evaluation of the correlation functions of forms (A.1) and (1.1). The numerical

results presented in this paper were obtained for a hard-sphere fluid, but the same

method can be applied for other molecular potentials.

The first calculated quantity RU describes a correction to the Clausius-Mossoti

expression for the dielectric constant of a nonpolar, polarizable fluid. The expan-

sion of the Clausius-Mossoti quantity (e - l)/(e + 2) with respect to the particle

polarizability 0: can be written in the following form

e - 1 411"

e + 2 = 3no: [1+ ~ + 0(0:3)], (4.1)

with ~ given by

~ = (50:2/2q6) RU. (4.2)
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will be denoted by Q~1 and A(.}. More details related to this problem are given in

appendix A.

III. APPROXIMATION SCHEME

As with the standard OZ equation, the GOZE is not a closed integral equation

for the irreducible part of the pair-pair correlation function. For the purpose of

evaluating of the function A(12 11'2'), the GOZE has to be supplemented by an

appropriate closure approximation for the pair-pair direct correlation function C22.

The simplest possible approximation is just to set

C22= o. (3.1)

By inserting expression (3.1) into the GOZE (2.17)-(2.19) we get the following

closed integral equation for the function A

A(12 11'2') - n2g2(12) ! dl"! d2"(~6(1-1")C2(2- 2")

+ ~6(2 - 2")c2(1-I") - c2(1- 1")c2(2- 2"))
x A(I"2" 11'2')=g2(12)j(12 11'2'),

(3.2)

where we have used a symmetry property of A(I"2" 11'2') with respect to a per-

mutation of variables (I") and (2"). One can show that the solution of eq. (3.2)

corresponds to a resummation of the ladder diagrams in the h-bond expansion of the

irreducible pair-pair correlation function. Therefore we will call the approximation

(3.1) the ladder approximation. (Cr. discussion in Appendix B).

For the three-particle problem one can introduce an approximation similar to

(3.1) and derive an equation analogous to (3.2). The details are given in appendix

A.
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Various authors(1,2) have derived the following expression for the quantity Rzz:

6 N N N

Rzz = ;. (L L Tzz(ij)L Tzz(im))
i=1 i=1 m=1

;¥-i m¥-i

(4.3)

where u denotes the diameter of a sphere, and Tzz(ij) is the zz component of the

dipole-dipole interaction tensor:

Tzz(ij) = ; P2 (cos(rii .i)) ,
. rii

(4.4)

rii = r ii j r ii and i is the unit vector in the z-axes direction. It is assumed that

the average value in (4.4) is calculated for a spherical sample. This is necessary

due to the long range behavior of the tensor Tzz; the integrals over the spatial

variables in (4.4) are not absolutely convergent. One should note, however, that a

careful derivation of the correction to the Clausius-Mossoti formula leads directly

to the expression for RZZ in which divergent terms are eliminated and therefore an

assumption about a shape of the sample is not needed (3).

The second quantity SZZ for which we present numerical results is related to the

integrated intensity ]DILS measured in DILS experiments. The relation between

]DILS and SZZ is given by the following formula

]DILS = !n(a4ju6)SZZ,4 (4.5)

and SZZ can be expressed by(4,5)

6 N N

SZZ = l~ ~ ( L Tzz(ij) L Tzz(lm)),
i,;=1 l,m=1
i¥-i l¥-m

(4.6)

Again, it is assumed that the average value in (4.6) is calculated for the spherical

sample to eliminate divergent terms.

In the framework of the generalized OZ formalism, the quantity Rzz corre-

sponds to the three-particle problem described in appendix A, and Szz corresponds

15



to the full four-particle problem. With the assumption of a spherical shape of a sam-

ple, the average value of Tzz vanishes. Therefore one can represent the quantities

Rzz and Szz in the respective forms (A.l) and (1.1):

6 C (8)R ZZ = 0 T T.. .. (4.7)

and

SZZ = 06 CTnTn' (4.8)

It follows directly from the relations (4.7), (4.8), (2.7) and (A.5) that the quan-

tities RZZ and Szz can be expressed in terms of the pair-pair correlation functions

Q~~)(12 11'2') and Q22(12 I 1'2'). If in addition one uses decompositions (2.13)

and (A.6), and the fact that due to angular symmetry the integral containing re-

ducible parts of the correlation functions Q~1 and Q22 vanish, one gets the following

important expressions for sn and Rn in terms of irreducible correlations only:

RZZ = 06n3 f d2f dl' f d2'Tzz(12)A(8) (12I 1'2')Tzz(I'2'), (4.9)

and

SZZ = 06n3 f d2f dl' f d2'Tn(12)A(12 11'2')Tzz(I'2').
(4.10)

Because of sufficiently fast decay of the irreducible functions A (8)(12 I 1'2') and

A(12 11'2') when the distance between any of the particles (1), (2), (1'), and (2')

and the remaining particles tends to infinity, all integrals included in eqs. (4.9) and

(4.10) are absolutely convergent.

v. NUMERICAL RESULTS

We now describe briefly a procedure of evaluating the correlation functions RZZ

and SZZ and present numerical results obtained using the LA. A detailed account

of the algorithm is given in appendices B and C.
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In the present paper we consider only evaluation of the integrated quantities

of the form (4.9) and (4.10), and therefore we do not need to solve eqs. (3.2) and

(A.13) explicitly. Instead it is convenient to evaluate directly an integrated quantity,

which for a full four-particle problem is defined by

b(12) = n2 f d1' f d2' A(12 11'2'),8(1'2'), (5.1)

where,8 has the form

,8(12) = .B(r12)P2(cos(rI2 .i)) , (5.2)

and .B is a function which vanishes sufficiently fast when r12 goes to infinity. By

multiplying eq. (3.2) by ,8(1'2') from the rhs, integrating over (1'2'), and taking

into account the symmetry of the function b with respect to the permutations of

the variables we get the following equation

b(12) - 2ng2(12) f d2' c2(2 - 2')b(12')

+ n2g2(12)f d1' f d2' c2(1 - 1')C2(2 - 2')b(1'2') = 92(12),8(12).

(5.3)

Considerable reduction of numerical effort comes from the fact, that the function

A is isotropic, and therefore b assumes the form analogous to (5.2)

b(12) = b(r12)P2 (cos(r12 . i)) . (5.4)

As result. it is sufficient to deal with the function of a single variable only. For

2
.B = 3'r (5.5)

the solution of the equation (5.3), can be used for evaluating SZIIIfrom the following

expression
00

SZlll = 4:n f drr2 .B(r)b(r)
0

(5.6)
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which one obtains from (4.4), (4.10), (5.1), and (5.4) after performing integration

with respect to the angular variables.

Similar set of formulas can be derived also for a three-particle problem. Explicit

expressions are given in appendix C.

We have numerically solved eqs. (5.3)-(5.6) and (C.1)-(C.4) and we have eval-

uated the correlation functions 8zz and RZZ for hard-sphere fluid for a wide range

of densities. As an input we have used the Verlet-Weiss (VW) approximation for

a two-particle correlation function. Integral equations (5.3) and (C.4) have been

solved by an iterative method using fast Fourier transformation techniques. The

details of the algorithm are given in appendices Band C for the four- and three-

particle problems respectively. The results of our calculations are presented in figs.

1-2 and tabs. 1-2. Obtaining the value of RU or 8ZZ for a single density required

no more than a few minutes of CPU time of a VAX 11/780.

The LA approximation results for the correlation function RZZ versus volume

fraction <I>= inu3 are plotted in fig. 1. Computer simulation data of Cichockiand

Felderhof(19) are given for comparison. We have also plotted results obtained from

using the KSA for a triplet correlation function. We find quite good agreement

with the simulation data for both LA and KSA up to a volume fraction <I>= 0.3.

At higher volume fractions LA approximation results are in qualitative agreement

with computer simulation data, while in this region the KSA completely fails.

Calculation of the correlation function RZZ serves as a quite severe test for an

approximation for three-particle equilibrium correlation function. This is due to the

cancellation of two- and three-particle terms. The function RZZ can be naturally

represented in the form

RU = 82 + 83, (5.7)

where 82 and 83 correspond to terms including two- and three-particle correlation

function in expression (A.4) for Q~1. In tab. 1 we give results for RU, 82, and 83,
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for the densities at which computer simulation data are available. One can see from

this table that for high densities 82 and 83 have approximately the same absolute

value, but the opposite sign. Due to this cancellation the relative error of 83 is

much smaller than the relative error of Rzz. Taking into account that the absolute

error of 82 calculated from VW approximation for the pair-correlation function is

less than 0.006 one can see from tab. 1 that the relative error of 83 does not exceed

3.5%.

The LA results for 8ZZ are given in fig. 2 and tab. 2. The computer simulation

data by Alder at al(18) are also given for comparison. Again, we can see, that LA

gives results in qualitative agreement with the computer simulation data for the

whole range of densities, up to the fluid-solid phase transition.

As with Rzz, the correlation function 8ZZ can be expressed as a sum of two-,

three-, and four-particle terms. Namely we have:

8ZZ = 282+ 483 + 84, (5.8)

where 82 and 83 are the same quantities as in eq. (5.7), and 84 corresponds to the

term including no 6-functions in A. Results for this quantities are given in tab. 2.

Again we observe cancellation among the two-, three-, and four-particle terms.

VI. DISCUSSION

In this paper we have presented an application of a recently developed LA

for calculating three- and four-particle equilibrium correlation functions in simple

fluids. The LA have been derived in a recent paper(16) in the framework of the

generalized OZ formalism. We have obtained this equation from the GOZE by

leaving out the direct pair-pair correlation function. In this way we have obtained

a closed integral equation relating an irreducible part of the pair-pair correlation

function to the full and direct two-particle correlation functions.
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We have presented results based on LA for the dipolar density fluctuations

RIU and S", which quantities depend on the three- and four-particle correlation

functions. These calculations were performed for a hard-sphere fluid. We have

obtained good agreement of our results with available computer simulations data

for a very wide range of densities. For high densities the LA gives much better

results then the KSA.

An important advantage of LA is that it does not require extensive computing

resources. Indeed, with some effort, quantities like Rzz and Szz can be calculated

even on a personal computer. This is a big advantage in comparison with the

numerically demanding calculations of three-particle correlation function performed

by Haymet at al(21) (see also refs. 22-26 for other approaches). We should mention,

that although our numerical approach was based on solving simplified eqs. (5.3)

and (C.4), it is not difficult to develop an algorithm which enables full evaluation

of the function A(6)(12 11'2') and the function A(12 11'2') integrated over the

variable rut. The details of such an algorithm for a closely related approximation

was given by Pinski and Campbell(18).

In a series of interesting papers Pinski and Campbell derived approximate inte-

gral equations for a pair-pair correlation function, based on the HNC approximation.

Their result is closely related to ours. Pinski and Campbell derived their equation

using functional-differentiation techniques. To this end they explored the relation

of a functional derivative of the two-particle correlation function with respect to the

pair potential to a pair-pair correlation function. The generalized HNC approxima-

tion for a pair-pair correlation function was obtained by functionally differentiating

the two-particle correlation function given in HNC approximation.

Pinski and Campbell derived integral equations which are very similar to eqs.

(3.2) and (A.13). However, there are two important differences between their and

our results. First of all, for the full four-particle problem they did not subtract the
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reducible part from the pair-pair correlation function. This was due to an error

in the functional differentiation. The second difference is that their method leads

to integral equations with the kernels including two-particle correlation functions

calculated in the HNC approximation. In contrast, our closure approximations

(3.1) and (4.12) naturally lead to the exact pair-correlation functions in the integral

kernels.

Pinski and Campbell ~ave used the generalized HNC approximation to evaluate

three- and four-particle equilibrium correlation functions. The above-mentioned

error in the derivation of the integral equation does not strongly influence their

numerical results. Only the Oth-order Legendre-polynomial projection is influenced,

due to an angular symmetry of the reducible part of the correlation function. Taking

this into account, their numerical results are consistent with our conclusions on the

validity of the approximation.

The LA, while relatively simple, is not free of problems. In particular, the core

condition for overlapping particles of different pairs is violated. This observation

leads to various new approximations. For the three-particle equation, the simplest

approximation beyond the level described in this paper, is to multiply resulting

three-particle distribution function 93 by the function which equals 0 in the core

and equals 1 outside. One can also explore the Percus- Yevick idea. To this end one

use the exact relation

93 = 0 in the core (6.1)

and closure approximation

c~;) (12 11'2') = 0 for r22' > 0 (6.2)

Such an approach is expected to give better approximations than LA, but is more

demanding from the numerical point of view(27).
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Appendix A

In this appendix we describe a three-particle version of the GaZE. Such a

three-particle equation is particularly useful for evaluating correlation functions of

the form
N N N

G~~ = ~(L L 6a(ij)L6b(il)),
i=1 ;=1 '=1

;:;':i ':;':i

(A. 1)

Le. in situations where one particle is common for the two correlated pairs. The

correlation functions of this form include only two- and three-particle terms. To

develop a GaZE appropriate for our present purpose, it is convenient to introduce

the correlation functions Q~i) defined as the sum of those parts of the corresponding

functions Qi;, which involve a 6-function 6(1-1'). For example, from (2.9)-(2.11)

one has

Q~~) = ':6(1 - 1'),n (A.2)

Q~~) (12 11') = Q~1 (1' 112) = ':6 (1 - 1')92 (12)n (A.3)

and

Q~1(1211'2') = -\6(1-1')6(2 - 2')92(12)+ ':6(1-1')93(122').n n (A.4)

One can also define functions A(.), D(.), and CJ;) which are related in an analogous

way to the functions A, D, and C22. With the above definitions one can easily
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check that in thermodynamic limit the correlation function (A.1) can be expressed

in terms of the function Q~~):

G~~ = n3 !d2 ! d3 ! d4 a(12)Q(B) (12 11'2')b(34).
(A.5)

All integral equations developed in the previous sections can be easily trans-

formed into equations of the functions Q~;) and the other related functions. To this

end one should simply select all the terms which involve 6-functions correspond-

ing to a distinguished particle common to the two correlated pairs. In this way,

after performing integration with respect to the variable (I"') we get from (2.13)

the following decomposition of the function Q~1 into its reducible and irreducible

parts:

Q~~(12 \1'2') =n f dl" Q~;)(12 11")Q~~ (I" \1'2')

+ A(B)(12 11'2').

Taking into account eqs. (A.3) and (A.4) one can derive an explicit expression for

the function A(B)(12 I 1'2') in terms of two- and three-particle correlation functions:

(A.6)

A(B)(12 11'2') = ~6(1-1')6(2 - 2')92(12)n
1

+ -6(1-1')(93(122') - 92(12)92(12'».n

(A.7)

The GaZE for a function A(B) can be obtained from eqs. (2.17)-(2.19) in a

similar way. Using a shortened notation

1(12 11'2') = ~6(1 - 1')6(2 - 2')n (A.S)

one gets the following equation

n2 f dl" f d2"A~~~(12 I 1"2")A(B) (1"2" 11'2') = 1(12 11'2'),
(A.9)

supplemented by the decomposition of the inverse integral kernel A~~t1:

A~~~(1211'2') = 92t12)1(1211' 12') - D(B)(1211'2'),

23

(A.I0)



with

D(II)(12 11'2') = 6(1 - 1')C2(22')- cJ;) (12 11'2'). (A.H)

For the three-particle version (A.9)-(A.ll) of the GaZE we propose a closure ap-

proximation similar to (3.1):

C (II) = 022 - (A.12).

By inserting expression (A.12) into the three-particle GaZE (A.9)-(A.ll), and

integrating with respect to the variable (1"), one gets:

A (II)(12 11'2') - ng2 (12) f d2"C2 (2 - 2")A (II)(1"2" 11'2')

= g2(12)I(12 11'2').
(A.13)

Eq. (A.13) is an efficient tool for evaluating quantities depending on a three-particle

correlation function in simple fluids.

APPENDIX B

In this appendix we describe details of the algorithm which has been used to

solve eq. (5.3). Some remaining details for the three-particle problem are given in

appendix C.

It is convenient at this point to introduce a compact integral-operator notation.

We associate the integral operator iJ with a function B(12 11'2'). The operator iJ

is defined by the following expression

(iJ a) (12)= n2 f d1' f d2' B22 (12 11'2') a(1'2'),
(B.1)

where a(1'2') is any function for which the integral at the rhs of eq. (B.1) exists.

The inverse operator iJ-I is defined by the following equation

iJ-I iJ = i, (B.2)
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where the kernel of the identity operator j is given by (A.8).

In order to write in a compact form equations related to the ladder approxi-

mation we introduce an integral operator J defined by the following expression for

its integral kernel

d(12 11'2') = (~h(l- 1') + h2(1l')) (~h(2 - 2') + h2(22')) . (B.3)

Taking into account the standard OZ equation one can easily show that the kernel

d-l (12 11'2') of the inverse operator J-I is given by

d-l (12 11'2') = (~h(1 - 1') - C2(1l')) (~h(2 - 2') - C2(22')),
(B.4)

With the above notation one can rewrite equation (5.3) in the following form:

[92J-I - h2] b = 9213. (B.5)

By multiplying both sides of equation (B.5) by J, after some simple calculations

one gets

b = -Jh2 (J-I - j) b + J9213. (B.6)

An iterative solution of (B.6) with the first term at the rhs treated as a perturbation

can be represented in the form
00

b 'L bi,
i=O

(B.7)

where

bi = J [h2(J - j) ] i 9213.
(B.8)

It is convenient to use eq. (B.6) rather then (B.5) as the basis for perturbative

evaluating the function b. In such a way one gets the solution in terms of the full

two-particle correlation function rather then the direct correlation function. The

expansion in terms of the direct correlation function is divergent even for small

densities.
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The expansion (B.7)-(B.8) justifies the name LA for the closure approximation

(3.1).

To get numerical solution for Iione has to repeatedly evaluate the result of

action of the operator d on a function of the relative position of the particles (1)

and (2). To this end one can use fast Fourier transform techniques. Let

Fa[a ](k) =f dr12 eikru a(r12)
(B.9)

be a three-dimensional Fourier transform of a function a(r12)' It is easy to see from

(B.l), (B.3) and the properties of the Fourier transform, that

Fa [ da] (k) = S2(k)Fa [a] (k), (B.lO)

where S(k) is the static structure factor. We have numerically calculated the quan-

tities of the form da which a successive terms of iterative solution by

i) taking the Fourier transform of the function a,

ii) multiplying the result by S2(k), and

iii) transforming back to the real space.

To calculate the three-dimensional Fourier transform (B.9) one can use the

fact that we consider here functions of the form (5.4). For such functions the

three-dimensional Fourier transform can be calculated in terms of one-dimensional

transforms. Our algorithm can be applied for a more general angular dependence

than (5.4), i.e. for the functions which has the form

a,(r) = a, (r)P,(i . i), 1= 0,1, ... (B.n)

It is useful to give here explicit expressions for such a more general case.

The three-dimensional Fourier transform of the function al of the form (B.ll)

can be expressed by the following formula

Fa[ad (q) = Hd ad Pl(q. z), (B.12)
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where H, is the lth order Hankel transform:

H, [a,] = 411"(i)' f dr r2 j,(qr) a,(r),
(B.13)

with j, the spherical Bessel function of the order l. Similarly, the inverse Fourier

transform F3-1 [a] of the function

a,(q) = a,( q)P,( q .i) (B.14)

is given by

F;1 [ad (r) = (-1)' Hd a,] p,(r. z).211" (B.IS)

The Hankel transform H, can be expressed as the following sequence of integral

transforms (28)

W2.+3(X) = 2, tx2;(-I).-; (
s

)r (s + j + ~)

s.;=1 k r(+~) ,
(B.21)
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00 00

H, [a,] = 411"f dr cos(qr) f dr' r' C, [a,] (r').
for I even (B.16)

0 r

and
00 00

H, [ a,] = 411"i f dr sin(qr) r f dr' C, [a, ] (r')
for I odd (B.17)

0 r

with
00

C, [a,] = a,(r) - f w, (;,) a';') dr' for I even, (B.IS)
r

00

f ( r) a,(r') , for I odd, (B.19)
C, [a,] = a,(r) - r w, r' (r'p dr

r

where

()=!t 2;(-I).-;(s)r(s+j+)
(B.20)

W2.+2x ,x k r ( ) ,s. ;=1 + 2



and

Wo(X) = Wl(X) = O. (B.22)

The integral transforms (B.I8)-(B.I9) and transforms defined by the second inte-

grals in expressions (B.I6)-(B.I7) can be calculated by integrating a polynomial

interpolation formula for the function a,. (We have used cubic-spline interpolation

for this purpose). The first integrals in (B.I6)-(B.I7) can be calculated with the

help of a fast Fourier transform algorithm. To avoid transforming functions discon-

tinuous at the core we have smoothed-out the integrand functions by adding and

subtracting an appropriate function for which the Hankel transform is known.

Similar algorithm can be applied for the three-particle equation (A.I3). For

details see Appendix C.

For the three-particle problem the iterative solution (C.IO) was convergent for

all reported densities. For the full four-particle problem straight iteration (B.7)-

(B.8) was divergent for a volume fraction of 4J~ 0.463. For those densities and in

the region where convergence was slow, we have used Pade approximants for the

series. Even for the highest densities we have obtained convergence within at least

five decimal places with [8/8] Pade approximant.

Appendix C

In this appendix we describe a method of evaluating the correlation function

Rzz. This function can be calculated by the similar method as described in appendix

B. Appropriate expressions for Rzz can be obtained from respective expressions for

SZZ by retaining only those terms which describe situations when the pairs (12) and

(1'2') include a common particle (1) = (1').

The quantity Rzz can be evaluated from the following equation
00

Rzz = 4;n f dr r2 ,8(r)b(8)(r),
0

(C.l)
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where ,B(r) is given by eq. (5.5) and the function b(lJ) is defined by

lj(IJ)(12) = b(lJ)(rI2)P2(rI2 .i), (C.2)

with

b(lJ)(12) = n2!d1' !d2' A (IJ)(12 11'2'),8(1'2'), (C.3)

and,8 is given by (5..2) Taking into account eq. (A.13) one can show that in LA,

1)(IJ)is determined by the integral equation of the form

1)(IJ)(12) - n g2 (12) ! d2' c2(2 - 2')1)(1J)(12') = g2 (12),8(12) (CA)

Using the integral-equation notation of appendix B, eq. (CA) can be rewritten
in the form

[g2 (J(IJ») -1 - h2] 1)(IJ)= g2fi.
(C.5)

The operator J(IJ) and the inverse operator (J(IJ») -1 are given through expressions

for their integral kernels d~~)(12 11'2') and (d~~») -1 (12 11'2')

d(lJ)(12 11'2') = ~c5(1- 1') (~c5(2 - 2') + h2(22'))
(C.6)

and

(d(IJ») -1 (12 11'2') = ~c5(1- 1') (~c5(2- 2') - C2(22')). (C.7)
Eq. (C.5) can be solved iteratively. To this end it is convenient to transform it into

1)(IJ)= -J(IJ)h2 [( J(IJ»)-1 - i] 1)(IJ)+ J(IJ)g2fi. (C.S)

The iterative solution of the equation (C.S) with the first term at the rhs treated

as a perturbation can be represented as
00

1)(IJ)= '" 1)~IJ)LJ . ,
8=0

(C.9)

where

1)~IJ)= J(IJ) [h2 (J(IJ) - i)] 8g2fi. (C.10)

One can numerically evaluate the perturbative solution (C.10) of the eq. (C.S) using

techniques described in appendix B.
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Figure captions

Fig. 1. Plot of the correlation function Rzz, defined by eq. (4.3), as a function of the

volume fraction 4>,for a hard-sphere fluid. Results from LA, solid line; results

from the KSA, dashed line; Monte Carlo results of Cichocki and Felderho£(20),

open circles.

Fig. 2. Plot of the correlation function Szz, defined by eq. (4.6), as a function of

the volume fraction 4>,for a hard-sphere fluid. Results from LA, solid line;

molecular dynamics data of Alder at al.<19b): results for 500 particles, solid

circles; results for 108 particles, open circles.
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Table captions

Table 1. Values of the functions Rzz, 82, and 83, as defined by eqs. (4.3) and (5.7).

Values for 82 from the Verlet- Weiss approximation for the two-particle correla-

tion function; LA, ladder approximation results; KSA, Kirkwood superposition

approximation resultsj MC, Monte Carlo results of Cichocki and Felderho£(20).

Table 2. Values of the functions 8zz, 82, 83, and 84, as defined by eqs. (4.6) and (5.8).

MD, molecular dynamics result of Alder at a1.<19b)jother description asfor the

tab. I.
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TABLE 1

4> 82 83

LA

RZZ RZZ RZZ

LA KSA MC

34

0.1 0.728 -0.244 0.484 0.488 0.490

0.2 1.650 -0.973 0.677 0.713 0.707

0.3 2.795 -2.146 0.649 0.792 0.723

0.4 4.193 -3.700 0.493 0.996 0.600

0.463 5.216 -4.845 0.371 1.428 0.486

0.5 5.878 -5.580 0.298 1.909 0.415



TABLE 2

<P 82 83

LA

84

LA

8ZZ 8ZZ

LA MD

a results for 500 particles; the other simulation results are for 108 particles.

35

0.037 0.249 -0.033 0.009 0.375 0.38a

0.074 0.521 -0.134 0.085 0.591 0.62a

0.148 1.146 -0.536 0.568 0.716 0.77

0.247 2.157 -1.471 2.153 0.583 0.68

0.370 3.749 -3.202 5.633 0.323 0.43

0.463 5.216 -4.845 9.121 0.173 0.23

0.463 0.27a

0.494 5.762 -5.452 10.416 0.135 0.22a
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