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SYNOPSIS

In applying the moiré method for stress analysis, it is sometimes
di fficult to attribute proper signs to fringes. In the conventional way
:the sign of direct derivatives ( % and %) are determined from the physical
consideration of boundary conditions, and the sign of cross derivatives
(-g—; and %%) are then deduced from the slope of fringes and the proper in-
terpretation of singular points. Presented herein are methods for the |
determination of signs of moiré fringes based on their intrinsic properties.
These methods can be applied to any »ortion of a moiré pattern without
a priori knowledge of the boundary conditioms. Aé a result the moiré
method can be effectively used as a means for stress separation in t.hree~
dimensional photoelasticity. Heretofore the moiré pattern obtained from
a stress-frozen photoelastic slice upon annealing is most difficult to
analyze, because the boundary conditions are either not well defined or
sometimes even'non-existing" due to the destructive nature of the stress-
frozen technique.

Also presented is a method for fringe ordering whereby the signs of

both direct derivative and cross derivatives are thained automatically

once the fringes are properly ordered.
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I. INTRODUCTION

In applying the moiré method for strain analysis [1],% the determination

of signs is usually the most confusing part. The moiré fringes represent
displacements in the direction perpendicular to the lines of the gratipg.
Strains are obtained by graphical (or numerical) differentiation of the
displacement curves plotted from these fringes. However, from the appearance
of the fringes, it is impossible to attribute proper signs to the strains.
While the relative signs among regions can be obtained by a careful study of
the moiré pattern, the absolute signs have to be derived from known boundary
conditions and it is no easy matter. Usually, one starts from a region

containing a portion of the boundary with a known boundary condition to

3u

obtain the signs of the direct derivatives P

and %;-(u'and v are the dis-
placements in the directions of x and y, respectively). The signs of cross
derivatives g;-and %ﬁ-are then derived from the slopes of the fringes and

the signs of the direct derivatives. Once the sign of one region is known,
the signs of other regions are deduced from this region through the knowledge
of singular points [2]. There appears to be no standard procedure to follow
and, as a result, each moiré pattern presents itself as a challenge to the
interpreter.

Recently, moiré method has been applied to three dimensional photo-
elasticity as a supplementary technique for stress separation [3]. In this
application, gratings are printed on stress-frozen slices and then annealed.
The‘deformation of grating caused by the annealiﬁg (i.e. the releasing of

stresses) produced a moiré pattern upon superposition with a master grating.

Moiré patterns of this type are most difficult to interpret because of the

*Numbers in brackets denote references at the end of the paper.
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fact that a photoelastic slice is only a section or a sub-section of the
entire model. As a result, the boundary coﬁditions may not be well defiﬁed
to render a proper interpretation of the pattern or, in cases of a sub-slice,
there may not be any known boundary conditions at all. Tt will then be
~imp6ssible to attribute proper signs to the fringes. For example, as in
the case shown in Fig. 1, there are at least two ﬁays of plotting displace-
ment curves depending upon which of the two moiré patterns these fringes
are a portion of. And there is no boundary condition to help because the
neighboring portions of the slice have been destroyed due to the destructive
nature of the three dimensional photoelastic technique. Here the conven-
tional method for the determination of signs breaks down completely.
Therefore, in order to simplify the interpretation of moiré patterns
and in order to extend the usefulness of moiré method to the photoelasticians,
new methods for the determination of signs are callea for. Presented herein
are several methods developed for this need. They are based on the'intrinsic
properties of moiré fringes and hence can be applied to any type of moird
fringe patterns without the need to have a priori knowledge of the boundary
conditions.
Also presented at the end of the paper is a proposed convéntion for
fringe ordering, which is closely related to the methods of determination
of signs. Thé essence of’the con;ention is such thét once the fringe orders
are properly attributed, the signs of all fhe necessary derivatives of
du dJu 9dv

— and 320 follow
3y

displacements for strain analysis (i.e. 3%’ 5;: 3%

automatically.
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II. DIFFERENT METHODS FOR THE DETERMINATION OF SIGNS

The essence of the determination of signs is to find out whether a set
of moiré fringes in a small region is caused by the local contraction,
‘elongation, rotation or a combination of either contraction and rotation or
elongation and rotation, of the model grating. The case of pure rotation
is easily recognized (fringe perpendicular to the line bisecting the angle
of rotation) and hence will be excluded from the analysis.

As mentioned previously it is impossible to deduce the signs from the

appearance of moiré fringes (e.g. a homogeneous tensile strain gives identical -

fringes to that of a homogeneous compressive strain of equal magnitude) any
method that will reveal the signs will havebfo come from something else.
The approach used here is to change the appearance of the ﬁoiré fringes by
superimposing another set of fringes of known characteristics and it is
hoped that the resulting fringe pattern, when compared with the original,
will reveal the necessary information. Since the model grating is attachea
"~ to the model under loading, it would be desirable not to disturb it while
the changing of the moiré pattern is made. Three methods are developed to
this effect: 1) the change is accomplished by superimposing on the model
another master gfating of different line density (or the equivalent) --- the
linear mismatch method, 2) the change is accomplished by rotating the master
- grating --- the rotational mismatch method, and 3) the change is accomplished
by varying the distance between the camera and the object.if~there is a gap
between the model grating plane and the maéter grating plane --- the gap
effect method. Details of the three methods are presented in the following.
©1) Determination of Signs by Linear Mismatch
Linear mismatch is defined to be the difference in pitch (distance

between two neighboring lines) between the master and model gratings.
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In the following it will be shown that if a linear mismatch of known sign is
superimposed on an existing moiré pattern, the resulting pattern, when com-
pared with the original one, can be used as a means to determine the signs
of the original pattern. Indeed, it is recalled that the fringe spacing

s for a homogeneous moiré pattern is given by [u]

s = PR’ _ , ’ (1)

in which p and p' are the pitches of master and model gfatings, respectively.
The fringes are, of course, parallel to'the‘lines of the gratings. Now if

the pitch of the master grating is changed from p to p + dp, the spacing between

the fringes will also be changed and it is given by

: , , .
s*ds = giggi% ) (p-pl')l;-l-dp (2)

with p'dp neglected when compared with pp'. It is seen that if a positive

dp is imposed on the master, the fringe spacing will decrease if the local

strain is compressive (i.e. p>p'), whereas the fringe spacing will increase

if the local strain is tensile (i.e. p<p'). The exact opposite will be

true if a negative dp is imposed. In other words, the fringe density

(fringes per unit length) increases if the local strain is of the same sign

as that of the imposed (fictitiou;) strain, decreases if it is of opposite

sign. The principle still holds if the local deformation contains shear

as well as normal strains. The only caution is that the fringe demsity

has to be taken along the direction normai to the lines of the master grating.
Whenever local deformation contains rotation the moiré fringes will no

longer be parallel to the lines of the master grating. Whether the rotation

is combined with a positive or negative normal strain can also be determined
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by the following method. Instead of dbserving the change of fringe densities
along the direction normal to the lines of master grating, it is also possible
to'reveal the signs by observing the rotations of the fringes when a linear
mismatch is superimposed; As shown in Fig. 2, when a positive dp is imposed
on the master grating, the fringes will rotate away from the normal to the
~grating lines if the local strain is compressive (i.e. p>p') and rotate
toward the normal if the local strain is tensile ki.e. p<p'). A negative
dp, with opposite effects as that of the positive dp, can also be used‘for
the determination of signs. The following statement covers both cases: if
the superimposing (fictitious) strain and the actual local strain are §f the
same sign, the ffinges will turn away from the normal tofthe'lines of the
master grating; and if they are of opposife signs the fringes will turn toward
the normal. The phenomenon can be easily visualized if it is recalled that
when there is no normal strain but rotation alone, the fringes are nearly
normal to the grating lines.
In applying the techniques of linear mismatch, it should be cautioned
that the magnitude of the imposed (fictitious) strain should not exceed
that of the local strain, if they are of opposite éigns. Otherwise the
fringes will behave differently from what have been previously described.
The reason is easy to see from Eq. (1) in that the imposed dp should not be
so large as to reverse the sign of p-p'. Therefore, the restriction for the

linear mismatch method is such that

lap| < |p-p'| . (3)
if dp and (p-p') are of opposite signs. When dp approaches (p-p') with
opposite signs, the fringe spacing approaches infinite; and the field should

have no fringe at all. Hence if dp can be applied in a continuous fashion
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(or discrete but with small increment), there is no danger to exceed the
limjitation imposed by Eq. (8). A useful dp is the one below the limit
set by Eq. (3) but gives a detectable change of fringe density (or fringe
rotation).

There are three methods of imposing linear mismatches to the master
grating: the first and the obvious one is to have a set of master gratings
with slightly different pitches. When there is a need to determine the signs
of a moire pattern formed by a grating of pitch p the pattern is compared
with the one formed by a grating of pitch Py where Py = ptdp, starting with
smallest dp so as not to violate the restriction set by Eq. (3), and gradually
changing the master until the change of moire pattern is large enough for
easy comparison. However, this method is less practical because it requires
an almost "continuous" set of masters which is usually not available in most
1 sboratories.

The second method of imposing linear mismatch is to form the moiré pattern
at the back of the camera by imaging the model grating on the ground glass
of the camera against which a master grating is erected. Under one to one
magnification, the moiré pattern is the same as the one formed by model and
master gratings in direct contact. Since the size of the uwodel can be varied
by changing the magnification, equivalent dp of both signs can be easily
imposed onto the master grating. .Most cameras are provided with a lens
slideable along the optical axis, an équivalent positive dp is imposed on
the master by moving the lens away from the model and a negative dp is
Obtained by moving the lens toward the model. The movement is continuous,
hence the change of dp is also continuous. Not only is there no danger in

exceeding the condition of Eq. (3) but it is easy to see when the condition

ldP[ = !p—p'| is approaching. If there is mno potation of the model grating,
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the fringe spacing will gradually widen and finally disappear when Idpl = Ip—p'l.
The fringes will reappear with gradually décreasing fringe spacing if the
movement of the lens is continued along the same direction. If there is
rotation of the model grating the fringes will rotate toward the normal to
the master grating (with decreasing fringe spacing) and then finally will
swiftly shift to thé other side of the normal and start to move away
with increasing fringe density as the point where ]dpl = |p—p'] is reached
and passed.

The third method of imposing dp to a méster grating is by introducing
a consfant gap in between the model and master gratihgs. This method
will be discussed in detail in section II (é)—(A);

2) Determination of Signs by Rotational Mismatch

Rotational mismatch is defined as the angular difference between the
master and model gratings and it will be shown that the imposition of a
rotational mismatch to the master grating is also a means for the deter-
mination of signs.

As shown in Fig. 2, if 6 denoted the acute angle between the two gratings
and ¢ denotes the angle between the tangent to a fringe and the lines of
master grating, both measured from the master grating in a counter cldckwise

direction, it can be shown that [&]

.

_ __p siné
tan ¢ 5 eost - pT €))

For small 6 Eq (4) can be approximated by

It is seen from Eq. (5) that for a given 6, the orientation of moiré fringes

is determined by the signs of the local strain (i.e. p-p'). For example,
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for positive 6, the fringes (or the tangents to them) are in the first and

third quardrants when p-p' is positive, and in the second and fourth quardrants

when p-p' is negative, as shown in Fig. 2.

Eq. (5) can be used for the determination of signs in the following two
ways. First, if the moiré fringes are parallel to the master grating, i.e.
when the deformation of the local model grating is such that there is no |
rotation involved, the signs of the normal strains can be determined by
imposing a rotation 6 to the master grating and the resulting orientation of
the fringes is then an indication of the signs¥. Second,‘if the moiré fringes
are originally not parallel to the héster.grating, the signs of local strain
are then indicated by the orientation of the fringes. This, of course,
requires the a priori knowledge of the rotation of the'model grating.

If Eq. (5) is differentiated, with p and p' being held as constants,

the resulting equation
se02¢ d¢ = 22— ae, ‘ (6)

is a more useful equation for the determination of signs. Eq. (6) states
that if an additional rotation d6 is imposed on the master grating, the
resulting rotation of the fringes d¢ will have the same sign as that of 4@
if p>p', or the opposite sign if p<p'. In other words, upon the imposition
of a rotational mismatch to the master grating, the moiré fringes will rotate
the same way as the master grating if the local strain is tensile and the
opposite way if the local strain is compressive. This is true for any moiré
3

pattern. A graphical illustration of Eq. (6) is shown in Fig. 2.

The method of rotational mismatch is easy to use if moiré patterns are

* This method was briefly described in an earlier paper of the author [5] for

the determination of the signs of linear mismatch.
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formed by direct contact between model and master gratings.‘ If moiré is
formed on the back of a camera, it is necessary to have a "revolving camera
back™ (commercially available) to facilitate the rotation of master grafing.

3) Determination of Signs by Gap Effect

When two gratings are placed together with a small gap in between, a
set of moiré fringes will be observed by eye or by a camefa even if they are
completely parallel in orientation. This effect is due to the fact that the
two gratings have different object distances from the caﬁera lens (or the
eyes) and, as a result, they form images of different sizes at the film
plane (or the retina). If the depth of field is such that both gratings
are in focus, the two images of the gratings will interfere to form a moiré
pattern. If the grating closervto the camera is called master grating, the
other one model grating, the moiré pattern formed by the gap effect is
always equivalent to a linear compressive mismatch, because the image of
the master grating is always larger than that of the model grating due to
magnification difference. The relation between the gap =z and the fictitious

strain thus caused is given by [6]
¢ =22 (7)

in which z is the distance between the master grating and camera lens and
€ is the normal strain in fhe dir;ction perpendicular to the lines of
master grating.
Eq. (7) can be used for the determination of signs of a moiré pattern
in either one of the following two ways.
(A) If the master grating is displaced from the deformed model
. grating with a constant gap, the gap effect is equivalent to having imposed

a linear compressive mismatch to the moire pattern (i.e. a positive dp).

Therefore, the techniqué described in section II-(1) can be applied for the
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determination of signs. It is not difficult to devise an apparatus so as
to vary the gap continuously. The simplest way to impose a gap, however,
is the following: wusually the master grating is printed on a piece of

photographic glass plate with a thickness of about 1/16 inchj; a constant
gap is easily introduced by turning the plate over with the non-emulsion
side in contact with the model grating. The technique is not suitable to %

use when the moiré pattern is formed on the back of a camera.

(B) There are cases where the master grating has to be mounted - .

at a fixed distance away from the model because of the loading device (e.g. . = |

the loading apparatus used in the dynamical moiré study in reference [71);

it is then impossible either to rotate the master to impose a rotational

mismatch or to change the gap to give a linear mismatch to the moiré pattefn.
The gap Eq. (7) can then be used in the following fashion for the deter-
mination of signs of the fringes: if the distance z is changed, it is

seen from the equation, the magnitude of the fictitioué strain € is also
changed. Therefore, if the set up is such that a gap is already presented
between the master and model gratings, the moiré pattern can be changéd

by photographing the two gratings at different distances. For example, ' :

if two pictures are taken at two different distances z. and z, (with z.>z.),

1 271

the picture taken at z, is equivalent to having had a negative dp (since

2
62<€l) imposed on the master grating, when compared with the picture taken
at z,. Effectively, it is then an imposition of linear (tensile) mismatch,

.
The techniques described in section II-(1) can again be used here for the

determination of signs.
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IIT. EXAMPLES FOR THE DETERMINATION OF SIGNS BY VARIOUS TECHNIQUES

A disk of 4 inches in diameter under thfee—point loading as shown in
Fig. 4 is chosen as an example to demonstrate the Qarious teéhniques pre-
sented in the preceding section. The moiré pattern is forméd by a grating
of 300 lines per inch for both the model and master. The moiré is éf the
v-field, i.e. the grating lines are horizontal. While it is possible to
figure out the signs of the pattern from physical considerations, it is
;hosen to ignore thé boundary conditions7 The problem is, say, to find
out the signs of strains along the vertical axis of the model from these
fringes.

The linear mismatch method: A compressive linear mismatch is first applied

to the pattefn, the left half of the resulting pattern is then compared with the
right half of the originél pattern as shown in Fig. 6. According to the method
presented in section II (1), the change of fringe density should indicate

the sign of the local strain. It is easy to see from Fig. 5 that along the
vertical axis, the fringes at the upper 1/4 (approximately) of the pattern

have a higher density than before, whereas the lower 3/4 (approximatelyj

hés @ lower density than the original. Since the mismatch is compressive

(i.e. positive dp), according to Eq. (2) the place where fringe density
increases (the upper 1/4 of the pattern) should have compressive strain, and

the place where the fringe density decreases (the lower 3/4 of the pattern)
should have ténsile strain. This, of course, is compatible to the
Physical consideration of the boundafy conditions. The compressive linear
mismatch is obtained by introducing a constant gap in between the two gratings.
The point where the strain changes from compressiye to tensile is located

Somewhere at the mid-point of the upper half of the pattern. It is a singular

point.
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12

Rotational mismatch method: A small counter clockwise rotation is imposed on

the master grating and the resulting moiré pattern is compared with the
original as shown in Fig. 6 in which a little more than one half of the
original pattern is shown at right so as to show better the curvatures of

the fringes along the vertical axis. According to section II (2), if the

fringes rotate the same way as the master grating, the local strain is tensile

and if the fringes rotate the opposite way, the local strain is compressive.
~ A comparison of.the curvatures of the fringes along the vertical axis before
and after the rotation of the master grating reveal that the upper 1/4 of
the fringes have rotated cléckwise, the strains then are compressive, and
the lower 3/4 of the fringes have rotated counter.clockwise, the strains

ére then tensile. Results agree, of course, with that of linear mismatch

method.

Gap-effect method: An initial gap is first introduced to the pattern so

that it facilitates the demonstration of the method presented in.section II
(3) =(B). Two pictures are then taken at two different object-to-camera
distances and are compared as shown in Fig. 7. The right>half of the com-
posite moiré pattern is taken at a smaller object—to—camera distanqe whereas
the left half a larger object-to-camera distance. If is seen that the
fringe density at the upper 1/4 portion of the fringes along the vertical
axis is decreased whereas the lower 3/u increased. According to Eq. (7),
this indicates that the strains are cémpressive at the upper portion and
tensile at the lower portion. It may be pointed out that the gap equation
as it is used here is equivalent to an imposition of linear mismatch.

Since a larger =z, when compared to the pattern at a smaller z, is equivalent
to a tensile mismatch, the effect is the opposite as that shown in Fig. 6,

where a compressive mismatch is imposed.
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As a last example, it may be intereéting to see what effect it would
have on a moiré pattern when too large a mismatch is introduced to the
master grating. In Fig. 8 the left half of the picture is the original
pattern and the right haif is the pattern superimposed with a large com-
pressive mismatch by using a different master grating with a smaller line
density. The behavior of the resulting fringes along the vertical axis
can be roughly grouped into three regions: ubper, middle and lower. The
state of strain at the upper region is compressive, hence the fringe demsity
increases as a fictitious compressive strain is added to it. The middle
region has a tensile state of strain and with approximately the same
magnitude as that of the imposed compressive mismatch. As a result the
fringes céncel out as demonstrated by the nearly blank region. The lower
part of the model also has a tensile state of strain but with magnitude
smaller than the middle region as evidenced by the original smaller fringe
density. The imposed compressive mismatch has apparently exceeded in
magnitude the local tensile strain. The fringe's density starts to Increase
again as predicted in section II-(1). Therefore, it is important that in
order to use the techniques correctly, 1inear mismatch should be introduced
starting from zero and then gradually increasing to the necessary amount.
The same caution should be given to the rotational mismatch metheds. If
the imposed rotation is so large as to exceed in magnitude the local
rotation of opposite sign, the fringe will change its direction of

rotation.

‘ar

e I S I e ol

s




14
IV. SOME REMARKS ON THE ORDERING OF FRINGES

In the preceding sections methods are presented for the determination
of signs of fringe so as to determine whether they correspond to local
elongation or contraction. However, having found this does ﬁot guarantee
a proper interpfetation of the moiré pattern in the sense that both the
direct and cross derivatives will be attributed with properksigns. In
fact all these methods give are the signs of the direct derivatives of the.

displacement. ‘Nothing is said about the signs of the cross derivatives. The

conventional way to determine the signs of the cross derivatives, as mentioned

earlier, is to deduce them from the signs of the direct derivatives and the
slope of the fringes. Proper attention has to be directed to the properties
of singular points if the signs in one region are to be deduéed from that

of the other. However, it will be shown in the following that if certain
rules are followed in ordering the frinées with the help of the knowledge

of the signs of direct derivatives, the signs of cross derivatives can be
obtained automatically.

The rules of fringe-ordering, it seems, is not very explicitly.explained
in the literature except that fringe orders can be arbitrary but consecutive.
While it is nice to associate a zero order to a fringe corresponding to a
zero displacement, the use of it is not necessary, because moiré fringes
represent relative displacements. The same can be said about negative orders.
Therefore, in order to avoid possible confusions caused by the signs of fringe
order, zero and negative orders will not be used in the following proposed
rules for fringe ordering:

Rule One Assign a number to a fringe in a region where the sign of
local strain has been determined by one of the previously described methods.

(or by boundary condition if more convenient). The number should be so
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large that there will be no "danger" of running into zero or negative
orders (For example, one hundred is a proper number, because a moiré pattern
seldom has more than one hundred fringes.)

Rule Two A x-y coordinate system is set up according to the grating
lines. For u-field (or v-field fringes), consecutively increasing orders are

assigned to the fringes in the direction of positive x-axis (or y-axis) if

au a . . Y . L *
3§-(or §§~) 1s positive, and consecutively decreasing orders are assigned

L] a . - . . 2

if 32’ or %g—) 1s negative. In other words, the fringe order will increase

along the positive direction if local strain is tensile and decrease if
compressive.

In following the above mentioned two rules it is not necessary to start
from one region only. Sometimes it may be more convenient to sfarf from
two regions and match the difference when ffinge orders from both sides
meet. An example is given in Fig. 9 where it has been found by the mefhods
shown in Fig. 5 through Fig. 7 that along the central vertical section the
upper one quarter (approximately) portion of the fringes correspond to com-
pressive strain, whereas the rest tensile strain. Therefore, decreasing
orders starting with 100 are given to the upper fringe and increasing orders
given to the rest of the fringes according»to the x-y coordinate system
shown. Fringe orders from 100 to 98 and from 98 to 103 are thus attributed.
The rest of the fringes (97, 96 and 95) are easily obtained from the con-
secution consideration of the fringe orders as shown in the figure by the
four arrows along which fringes orders have to be éonsecutively decreasing.
It may be asked why the fringe orders along the central vertical axis change
from 98 to 98 instead of 99 when it travels from the compressive side to the
tensile. 1Indeed if it were 99 the consecution condition would have been

violated at some place because there would be either two "closely' neighboring
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98 fringes or 99 fringes. As it is seen that this technique requires no
knowledge of singular points except, perhaps, their existence.

After the fringes are thus ordered, it can be seen that the signs of
"both direct and cross derivatives follow directly from the very nature
in which the fringes are ordered. That is, along any positive direqtioh,
the derivative (either direct or cross) will be positive if fringe order
increases (because either Au or Av is positive), and negative is fringe order
decreases (Au or Au negative). The reason for thié being true can be seen
by representing the u (or v) displacement field as a function of x and y,
and plotting the displacement surfaEe with u (or v) as the third coordinate.
The moire fringes are the projections of contour lines of equal displacements,
obtained by intersecting the displacement surface with planes of u (or v) =

np, where n and p are the fringe order and pitch of master grating, respec-

tively [1].
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V. CONCLUSION

It may be concluded that with the methods presented above, the deter-
mination of signs in moiré method is much simplified and is no longer depen-
‘dent on the physical consideration of boundary conditionms. As‘a result the
moiré method can be effectively extended into the domain of three-dimensional
photoelasticity as a means for stress—separation. It is now élways possible
to determine the signs of fringes obtained from a stress-annealed slice of

which the boundary condition is either not well defined or '"non-existing"

due to the destructive nature of the method of three-dimensional photoelasticity.

Furthermore, with the proposed fringe ordéring fechnique, the interpre-
tation of moiré pattern is greatly simplified in that once the sign of fringes
in one region (or more) is known and the whole patternvordered accordingly,:
the signs of both direct and cross derivatives of displacements follow auto-
matically. This method does not require any undersfanding of the properties
of singular points of a moiré pattern, which heretofore is absolutely

necessary for a proper interpretation of moiré patterms.
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Fig. 8. Behavior of Fringes when the Imposed'Linear Mismatch is too Large
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