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SUMMARY

A mathematical model of biological polymerization reactions is
mulated and applied to protein synthesis. Under certain reason-
e assumptions, including that of a nondisassociated enzyme temp-

complex, the resulting set of first order nonlinear differential
ations were solved by integral transform techniques. The case
re the enzyme templet complex disassociates is also treated by
turbation techniques.

The results indicate that the synthesis can be regarded as con-
ting of three stages (assuming constant monomer concentration):

an initial stage in which the concentration of protein MN is giv-
by My~ Ct <L

e) and therefore representing a lag phase; (b) an intermediate

where N is the degree of polymerization and t,

ge in which the protein concentration is determined by an exponen-
1 polynomial; (c) a third state of a linear increase in protein
centration with time. Comparisons of these predictions with the
vitro data reported by Nirenberg [5] indicate satisfactory agree-
t.

Methods are also described for determining the rate constants,
ociated with the polymerization, from the in vitro kinetic data.
s important result should facilitate the kinetic analysis of pep-

e synthesis.
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A NONLINZAR MNMODEL FCR TEFPLET REGULATED PROTEIN SYHNTHESIS

In a previous investigation [1] a linear model was presented
rotein synthesis by polyribosomes. Some analytical results

nonlinear model are given here.

lation

In the following we consider a system of messenger RENA tem-
bound to ribosomes of total concentration To and amino acid
erizing enzyme (i.e., transferase) of total concentration EO.
sume that TO and Eo remain constant during the course of the
erization so that denaturation and hydrolysis are assumed not
cur.

[he details of complex formation between the polymerase, the
nger RNA and the amino acid-adaptor RNA compound is not known.
e following we assume that the initial complex is formed by

cactions

kO]

E+T=—=ET ;

k02

k?'l

k12
irst expression describes the complex formation between the free
srase (E) and the messenger RNA (T) (presumed adsorbed onto a
some) with a rate constant koT for the assoclation and k02 for
ilsassociation. The amino acid initially present as the amino
icyl-adaptor RNA compound, designated by M, then forms the com-

1E T, as is indicated by reaction (2a). If subsequent studies
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ate that instead of (la) and (Ra), the significant reactions

E+ M=—E. M ,

E.U+Te2MET

T+Me=THN |,

TM+E=_MNET .

she present formalism will be altered in detail only but the
11 methods described here are still applicable.
"'ollowing the formation of MET, any internal readjustment of

required to initiate the polymerization may be represented by
k,
MET—»ETN .

> such transformation is necessary, then the present analysis

.es with k13 The polymerization reaction subsequent to

=0'

may now be written as

ka1
M+E, T.M= M. E. T. M ,
ko3
MET M —— E. T. F% .

neral, after (la) we have a sequence of the following pairs
:actions

X, .
M+ETMiV_——_—(__}-'—-)-—+_]_jﬁIvIETI§i
1{(i+1)2

k, .
M. E. T. M, LI EI M,

] .




ion (6fa) represents the reversible adsorption of the amino
adaptor RNA molecule while (7a) represents (with the excep-
of i=2) the irreversible formation of the peptide bond. It
be noted that the above formulation assumes that the enzyme-
et-peptide complex remains irreversibly associated during the
e of protein synthesis. Evidence supporting a tightly bound
omplex has been provided by Tissiers et al [3]. These work-
eport that during protein synthesis the most active ribosome
ion (70 S fraction) from E. Coli forms an undisassociated com-
with the newly formed protein. They postulate that the pro-
is released by dissociation of the 70 s ribosome fraction to
and 30 s fractions which do not irreversibly bind the protein.
er and Lingel [4] also found it necessary to postulate the
for a special release factor in the case of protein synthesils
t liver ribosomes. It appears from such results as these that
ease step is required at the termination of the synthesis. If
resents the total number of amino acids in the complete pro-

then the terminal reactions may be presented by

M+ ET Iy E?EL* MET Bﬁ
-1 Kz N-1 ?
N3 :
MET Mﬁ-l —~—+»Mﬁ +ET ,

release occurs concomitant with the addition of the last amino

Alternatively, it may be that the addition of the amino acid

ue occurs first and that this is followed by release:
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I
HETH —EBTN

k
E T My ———1"—»MN+ET ,

k dis the rate constant associated with the release of bound

[t is convenient to summarize the mechanism discussed above.

Concentration of nucleic acid template.

Concentration of enzyme.

Concentration of monomer.

I

= Concentration of polymer consisting of i monomers.

Then the system of reactions is given by the set of equations:

kO'I

E+T—=—==5L&. T 5

k
M. E. T. 13 E. T. M ,

k21

M+ E T. MS=H E.T.HM |,
22

k23
M. E. T. M =3 E. T. I, ,

k31 _
M+ BTN, == M. E.T. N,

2
32

k33
M. E. T. M, 22pE. T. M, ,




In general, after the first equation in the above we have
yuence of the following pairs of reactions:

K(101)1

'k(

M+ E. T. I M. E. T. M, ,

i+1)2

M. E. T. M (i) E. T, M
. . ° i"‘—"'"""""—" . o (i+l) ,

i =o0,1, ..., N -1, and Mo is to be interpreted as the null
er (a chain having no monomers).
If N is the total number of monomers in the chain, then the last

~eactions are

K
S N h
M-kE.l'«%-1k - II.E.T.MN_1 s
N2
M. E. T, Mg_. —kI\—If-.MI\I+E.T .

Here MN is the complete protein.

Jrd =11, B !
hrlte Xi M, B, T. Iq(i—l) (i 2 l) ,
yi = Eo To I\‘ii (i 2 O) o

Then the system of 0.D.E's corresponding to the reactions (1)

2) is
;6%—:“@/ (E)(T)’*/(azyo s
% = — ko (EX T + Koz Yo .
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% = ko/ (E){T) ""koz Yo "é// Mja + A//z X, * /(A/S Xny )

A ‘
L= ks Xy Ry MYt Reians i

3

e e et
: : |

o X, _
E;?x:z A%ﬂ /W%ﬁvd (Anz * Kz XN ’
A Mn
d%

= ‘&&3 Xy

This system will be considered under the assumptions that M is

sant and the kil’ k ki3 are all non-negative numbers. Note

iz’
the last equation may be considered apart from the rest of the
am.

The system (3) has certain first integrals which are now de-

1. These may be used to eliminate some of the variables and thus
>e the order of the system.

If all the equations in (3) except the second and the last are

1 together, we get




Y |
'i-é-/-f/f/—?—ff(dx‘ )+"/X"’-/<M A KX, + Kys X
gt a? l=7 "y Yo 72 7% W3

N/

+ : , = A, -
a% (/(U My(__/ ,é(u*/)/ M.% A'L'Z e /((c'+02 Xewr

+/<N/ Mﬁ/\/—/ - (/(/\/Z+AN3) Xy =0 -
Thus
N-1
) E +Yy, + = (xc»-fy‘.)—fx/v:c/
i=/

where c, is a constant of integration.

v Similarly, if we add all the equations in (3) except the first

and last, then

28 <Ly d% Z(dx+f_@é - IXN =

- T Py v gt

i Thus we have the integral

_ M-/

}6) 7’+ya+2(>§‘+yz)+x/v=cz )
' {=/

where c, is another constant of integration.

> DNote: If we assume that all the x; and ¥4 are zero initially, then

1

! c, = E(o) = E, and c, = T{o) = TO , the initial amounts of enzyme and

template, respectively.
f The system (3) does not appear to have any other simple first
integrals besides (4) and (6) and furthermore, in general, no closed-

form solution seems to exist. However, in the special case where

r k02= 0, a closed form can be derived and this will be given in the

next section.
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2. Protein Synthesis in the Case ko2

N~/

Let  u = g+ Z (Xp+q) + Xy .
c=/
Then the two integrals (4) and (6) become
] = 4w = —
E C/ ) T+ L = (::a o

In (3), with k , = 0, add all the equations except the first two and

the last, Then

Yo
ﬂ 2( G )+ DX = fe CEX(T)
Writing this in terms of u by means of (7), we get

b C('C kQ/CC a)(Cz M) 5

an equation which is immediately integrable since the variables are

——

Separated,

Carrying through the integration, we find that

28Ks T
C,—CZC:;E o/

w =

S o

c. ¢ '
if c, ¥ c_ . Here B = 1; 2 and c, is an arbitrary constant of inte-
2

! gration.

Note: When ¢, = ¢,



CCCo~=1) + & ko, T

) € =

.-' C3 + /(0/ Z
For the initial conditions xi(o} = yj(o) = o, BElo) =E , T(o)=T
| (8) yields

7; - Eo e 2kot ’
with A= (z, - T )/2.
Then by (7),
264,
E=E,(7-fs)e /(7;,.53 gty

L= T (EmE)/Cr-g,e ™D

When the solutions for E and T given by (10) are substituted in

rp—

the third equation of (3), the system (3), starting with third equa-
tion, becomes a non-homogeneous linear system of 0.D.E's having con-
stant coefficients. Since the initial conditions are all zero, the

solution may be worked out easily using Laplace Transforms.

Let
LL )] = Xi(s) of[yé~(t27 Yi¢s) ) oL MY = mis) .
Then transforming (3) leads to following system of linear algebraic

}‘"Equations for the transforms:

SY, = —ky MY+l X+ s X+ oy LLCENT]

4 L4 . . . . - - . . . . . . . . - - . . . * - » - » . . . . . . -

$Xy = ’/(é/ M, - (/(4'2 + A’as))(z

S >/L = /<1;3 X{_' A/(w./)/ M)/ '/" (C+D2 /\/C’+/

|
|
¥
- - L . . ] * - - . . . . - » . . . . - . . e . . . . »* e . . -
10.



SXn = ANIM)//\F/ '_(/(A/z +/<N3)XN 5
SMES) = hyy X ,
or
(54 kMY, = ko X + ks + ko LLEXNT)
(s+ ko +k£3>X(_' = k“/M}f_/ R
& (d=p2, -, N1

(s + k([v‘w M) >¢/' = Aé3 )(L + ’é(c‘w)z )(c'-f/ 2

* s » . - . o a . » ° . . . o * * * o . . . - L] - - . . . Ed .

(S + Au +/<~3)X/v = Ky M A

-/ b

Smis) = /(n/a X .
Omitting the last equation in (12) for the moment, and pairing other
equations successively, we have as a typical pair (except for the
first pair)

X' = A3 XA ’

Tt/

(s+ /<<('+,)1M) y — X

¢ ((#+)2

| —ka'w)/ o+ 5+ Ktwppz +kfc'+/)s))(c’+/ =0 ;
i
. Then solving this set in terms of Xi s
{il3) >/ - /Qz (S*kciw)z 7 k(c’*/)J) X(: ,
¢ fé-/'/ (s)
14) X, = keizn) Kes M X
1% ][(:f'/ Cs) 2 ]

l- where JQ‘H (s)= (S+ k(,;,‘,)/M)(S + k[,;_f,)z * k(:',a/)s) - k(<’+/)/ k(:’w)z ’

11.



The first pair of equations in (12) yields

— {/(N3 XN + /(O/OC[{E)(T)]} {51“/(,2 ‘/“/(/3}

15) Y
r © £ (s
16) X = kn M{ s Xni + kot L LCEXTIT}

! £Cs)

Equation (1l4) is now iterated starting with i = N - 1, and the

value of X1 is substituted from (16). This gives

I
|

! X = Chng Koyt * Ko ) (Keweps * 7 /</3)MN{/‘~3 Xy * hor IE‘E){T)J}
, ‘W 2

| TT £.(s

| e e ()

which when solved for KN results in

;'m X = Ak ABM L LCENT)]
| bus [ TTHes)-ABM"]
{=/

| ~ |
Here A = 77_/(“ and B =

N
L=/ ‘=1

/‘53

& In view of the last equation of (12), we have, finally

by ABM L [CE)T )
S/ TT £oes)-ABM™]
(=t

h8) mes) =

|

| Eq. (18) may be inverted using the convolution thearem.
Ir

, N
= K’o/AgM )
o1 P =L, S[TT £.¢9~ABM"] /

12.




0)

then

M, (E) = F(t)* (EXT) ;

where E and T are given explicitly by (10). By actual substitution,

we can check that the polynomial multiplier of s in the denominator

~of eq. (19) has s = 0 as a simple gero. It can be shown, using a

continuity argument, that all other zeros of this polynomial are in
the left half-plane. Thus, assuming these zeros are simple, F(t) is

of the form
-t . :
Ft)= at +b+ (2, “Cospt + b€ “Csingd), (0.

The explicit "working out" of the convolution in (20), either
numerically or in terms of known functions, is left for a subsequent

investigation.

3. Perturbation Solution for Small koz(Protein Synthesis)

By assuming that kozis small in the system of 0.D.E's given by

(3), that system may be solved by using the standard perturbation pro-

cedure, and the solution given as power series in kozwith coefficients

which are functions of time. Because of the special structure of the

system (3), it turns out that these coefficients may be represented in

- comparatively simple fashion by means of quadratures.

For simplicity write A = K, If we add all the equations in (3)

- except the first two and the last, we get

5_%9+g K/XL )+0’X/v — kal(E)(vT)-ﬁ/\yo s

13.



| or in terms of the variable u introduced in Section 2,
l ,
Lot _ C,—wu)(Cop—U) + ANYo
b)) L= ko (6w (=) Ay
Denote k_, (c,
tion technique, write

- u) (cz - u) by v . Proceeding with the perturba-

n
22) w = L(o-/—u/)\_/-.-._f--uh)\.,l-... ,

- - [

Id
C AT
23) Yo = Yoo T y/o)\ + 7 Yno
where the W o, and Yno are functions of time. Then we may write

[=v2]
24 ) U = ko (¢ -u)(Co-tt) = E o A )

X
where, by virtue of (22) the Vn may be expressed in terms of the

un as follows:

Vo = Ky, (¢, —)(C, ~ty)

R5)

il

PR 2
1, Koy {“(C,Jrcz) Ly, + (Uplp + tytln, T -+ Uy, Q}) n>

 If (22), (23) and (24) are substituted in (21) and coefficients of
like powers of A are equated, the following system of D.E's re-

sults

U, = 7 Yoo Py

£

|

SN
+

¥
S

1k,



In (26), the wfn are to be replaced by their expressions in terms
of the U given by (25). We now find similar expressions for the Yno
in terms of the w, . These will also be substituted in (26) so that
the latter system will be written completely in terms of the u, .

For the case A = koz* 0, the system of transform equations (11)

. remains the same except that in the first equation the coefficient
of Yo becomes = k]]M - k02 in place of just = k11M' Thus tie solutim

of the system (12) will now yield the following expressions for YO and

X

“n

) >/ — s+ Kz + K,3)(Ang X + V) ,
;' o 9,Cs)
. N
) X = 48 .

A9 TT ) -nEm"T

! (=2

?

ff Here V= X[V(tﬂ = o Ko (E)(Tﬂ s
9= (s +Koz + bk, M)(s + Kip t kiz) = S Ay M,

and 4, B, fiis) have the meaning assigned to them in Section <.

Replacing X in (27) by using (28), we get

N
h g o (Stherhe) IED SV
| g 99 T f.cs) -ABM”
" l=2”¢

,Or, since

90 = (54 kyM)(S+Kgthkz)=kykz M + A Grby +Hs)

i

= f(5) + Als+hyrhs)

15.



we may write Y, (using the geometric series expansion) as a power

series in A in the following way:

f o0 n+i
(30) Y =V g [+ kz+ ka) " 179 AT/ hrcs)

where  A(s) = 7%75(5)-—,45/\//N s h(s)= #;‘.(5)
(=t ¢

(=2

; Let GE)= of~'2_ (S +kpp+ k/s)h,(Si/
h(s)

and Gn("f:)-’: é(‘t) X G(t) X « « - % G[tj) (x = co;vvo/ui‘/bn)’

'
(n+r)

so that Go(t) = G(t) . Then inverting eq. (30) yields
2 ” ”
b= v x> )'G,7H)X
=0

=2 A * 2 )G

(31) L= 2 *G@) =y %G, @r -+ )y Gt X7

n - 3 -
Equating the coefficients of A in (31) to the like coefficients

in (23), we get the relations

* .
(32) 4. = [ x Gye)— o K G ()t r=oye

770
i
!

16.



i Since the Gi(t) are "known functions® and the vy are given in

| terms of the u; by (25), éq. (32) represehts the y,o in terms of the
' B

u . Note that the functions uj, u yees,U, , only, are involved in

1
the expressions for y,, -

Coming back to the system of D.E's (26), the general equation
of this system reads

/

Up = Uy +\%-//o ’
or, in view of (25) anad (32) ,
i /
k33) Uy = Ko, Z:-(C,+C2)+2UO7L/,7 + terms InvolVing sy - s Upy
é Thus assuming U peeey W, . are known, (33) determines wo- Since

(33) is a linear equation-of the first order in un, its solution may

be given in closed form in terms of quadratures. In particular, note

that the coefficient of uy is the same for all these equations. Call-
ing this coefficient A and the terms free of W, B,, and taking ac-
count of the initial conditions un(o) = 0, the solution of (33) may

be written in the form

4 ¢ Z
¢ -
’(34) U, = e[Ad/eJMziﬁﬂdf .

Since the first equation of (33), giving uo is immediately integrable,

cf. Section 2), the induction may be carried through and all succeed-

) ing terms w, represented in closed form by means of quadratures.

For example, the second equation of (33) would be

U = Ky, [-Cc+c2) + 2]ty + Kof(c-to)(C ~tho)/X G(2)

17.




since Yoo =VHKG,(t) from (32) and vy =k (e, - u ) (¢, - u)
from (25). Here u, is to be replaced by the u, found in Section 2

(the unperturbed solution).

There remains the development of an expression for the amount

we have

— _4BM" / . )
X Ans (s+K,, +k35)h,CS) %

and since

mes) = L LMy )] = ks Xof5 by G20, s

| gives
;

ras) mes) = ABM" 5(s+/(/2+/k/3)/7/(5) Y

|+ I£ now,

?36) Ht) = oL [($+k,2+k,3)/;,(5)_7

{37) M, (t) = ABMA:;’:_[%G * /‘/(z‘]/\'7

Yy

E Since L HeE) % Gt 27:5(51‘/(/Z+//(/3M/(5) . (5+/(,2/7 +(A;j)ﬁ,(s): ?;7/_5
:

eq. (37) can be rewritten, in view of (32), as

38) =2 ”
| M,@) = ABM" > m,c) X,
? N=0

18.

of protein, I4;(t) , in the perturbed solution. From (28) and (29),
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where m (2) = H(t) % (_/)V?[U;? __Zj;_/%Gz(t)‘f“:], nzo
hﬁ(t) =L [5/7(5)_7
and v, are to be expressed in terms of the u, by (25),

L. Specialization and Evaluation of Results (Protein
Synthesis, k02 = 0)

In this section, the results obtained previously will be worked
out in some detall, and certain end formulas will be developed which
may be used to connect theory with experiment. In order not to com-
plicate the end relations unnecessarily, certain simplifying assump~
tions will be made at this point. Ve suppose that all reaction con-

stants of the same kind are equal to each other. Thus, let

kl] = k21 = .. = kN? = k1
k12 - kzz T e sz - kz

=k ::o-o" =
K5 23 s Kg s Tk

For the present st is not taken equal to k3 in order to allow for the
possibility of & slower reaction time in the last reaction when the
protein is separated from the enzyme-template complex. These assump-
tions seem reasonable in the light of existing knowledge concerning
the synthesis process. 4s a result of this specialization, the poly-
nomials f;(s), (i =1,2,...,N-1) become identical and we can drop the

subscript and denote all of them by f(s) where
£ls) = (s + kM (s +k, +k) - kkIHMs= s® +‘§s + >,

and 6 =kl +k, *k, ¥ = k kM.

19.
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For £ (s) we have

N
{ = + i) - T == 2 <! !
fi{s) = (s + k17 (s + k, * kNa) k kI =s% + 6 s +r
1 . ! .
= I + - = i
where § k?' k2 kN3 and » klstl .

In this notation, equation (18) becomes

—_ /Q;, Aps y
mes) = kjs[f/\/ (5)[][(527/\/-1- /<N3 XN//(_a] . 0(9[(5)(’727 .
The solution for MN(t) may then be obtained as usual, by expanding
the rational function in (18') into partial fractions, inverting
each term and convoluting the inverse transforms with (E). (T).
(a) Asymptotic Behavior for Large t.

As noted in Section 2, the rational function of s represented
by the fraction in ecq. (18!) has a double pole at s = o; all other
poles are in the left-hand plane Ilore explicit information regard-
ing the location of the poles can be given if it is assumed that

k

Ny T k3. This will be done later to get an indication of the tran-

sient behavior of the system for intermediate values of time. For
thie present, we are interested only in obtaining the asymptotic be-
havior of the system for large time and we can ignore the poles in
the left~half plane since it can be shown that the convolution of
terms corresponding to these with (E). (T) approaches zero as

t"—"OQ-

Thus, we are concerned solely with the principal part of
L Dibm ' kN3”'N
k(s) = L /sifls; £ (s) - »ks

T

at s =0 .

20,
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Ve may write

and find by standard technigues that

/4_ /(o/ AA/s
/< {+ -0k, d

A = — fu /<~3[2f(/<a + (N-Dbs) + (N-1)d (2 ksd+ N-2) ks I)T
K b 8+ (N =) ) hons T %

Thus the dominant terms in I"‘TN(t) for large time are given by

My@) = AT % CEXT)+ A, =] ¥CEXT) + o() .

Evaluating the convolutions, we find

o 7; o /o
¢ (ENT) = 2= {12l ¢ 4 Log( Lok ——)}
/ L %o,

kol £; c:/(ol/éf _

) % (ENT) = Eols /bt . kot )
, PP, ke,
0 Eo e~ Bt 7; e BT

Here, as.before, A= (EO - To)/2 .

These expressions may be simplified further if we subdivide the dis-

cussion into two cases depending upon whether Eo > To or EO < TO

Thus if Ej > T then B> o0 and we find for large t that

T (E)(T)‘sz/ Lttt 5 /Oj(f" T)j+o(/) s

/%(E)(T):/(z + o) ]

21.



In this case, then, we have

(9) M) =S [Tty (BE) 4 Al 4 0c)

Tre result for the case EO < To may be obtained from this one

by interchanging Eo and To in eq. (39).

We may perform a similar asymptotic analysis for each of the
x;(i=1, ... , N) end yi(i = 0, 2.+ , N=1). Thus, for our spe-
cialization, eqg. (17) becomes

t(l7') — _ko, y” ]
| XN As[]{, (S)Z][“Z]N-/—- /(Nj fy/g] agﬂf)(727
l

i

Using eq. (l4) to express XI in terms of X, then XN , in terms
N N —

of XN-?’ etc. we find by induction that

s(w) L /(o,{c’fN(s)[f(sg/’ . ENT)T
/5({ A’_; JQ (S)Z 7[(5)‘7/\/-/“ k/\/j 3/7%3] "([ -
| (ienz, e )
! Equation (13) then gives
'(lpl) V-1
| _ boy X (S # by #Fins ) CLSCENT)]
| e = o) a7 T ’
; ; N-C=2
(42) Y, = te LGk RO e ree)(T)]

T [ F] s k]
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(43)

(44)

(45)

i(lpé)

The dominant term in X and v corresponds to the simple pole of

X; and Y5 at s = o. Writing

X

.

we find

where

Note that both A

=[Aalp ] L LENT] s N

:Z:"\B'sig""]o(ﬂg)(w 3 ((=0,++ -, n=1) ,

,4_,,, = ko X/A ,
/4_/[, :/_(D/X/A s ( ¢ = /)2,"‘/\/—/) ’

5-/(/«—9 = Ko (Az ‘f‘k/\/.?)/A ,

/
B, = ko/a/(kz+//fj/)/rA s (d=0,/, " N-2)

A = [k S+ (N=1)kys 8] o

g0 (3= 1,2,000,8-1) and B_, ., (i=0,1,...,N-2)

are independent of i.

Equations (43) and (44) in conjunction with the previously eval-

uated convolution 1 %(E)(T) imply that as t—coo,

x:(t)

v (t)

if EO> J.O

= A .——Q +O(l) 9 (,j—:l;'-'yN) b

=B_,. §91+ o(l) , (i = 0,...,N=1) ,
C.

. Replace TO by &, in these formulas if Eo < To .



(b) Asymptotic Behavior for Small Time.
Equation (18"), written as m(s) = k(s) . L L(E)(T)], leads to

the time domain equation

147) M (t) = é’tK(t -7) - (E)(T)d¥
where K(t) i1s the inverse of k(s). Since lim s__’a>[ssz(s)] = 0
and lim S‘_*a>[szﬂ+qk(s)] = ko]kmser/k3 ,
it follows from the Initial Value Theorem that DiK(o) = o for
i=0, 1,...,20 = 1 while D*Nk(o) = kb £ N/k3 , (D = d/at).

Then differentiating (A7) with respect to t yields DiMN(o) = o,

. e qy2ii=1 = N
i=o0, 1,...,2.:5,D B%(o) = LOTO.kOIKNéE /k3 .

Thus, for t small,

) . N 2N + 7
(4.8) (5] = LOTOkaNBr t + o(l) .
MN k3(2N + 1)1

1
A similar analysis of eqs. (17 ), (40), (41) and (42) yields asymp-

totic relations for eaclh of the x; and ¥y, viz

ETk ¥i 217 » 5(1), (i = 0,1,...,00 = 1)
[1}9) 'y‘.(t) =_9_:_Q___O_]___ J bR} ) b
1 (i + 1)1

E

1 50) xi(t) E;TTEE??—

i

(¢) Intermediate Values of Tinme.
The question as to whether the asymptotic results obtained in
(a) and (b) above will suffice to delineate the behavior of Mﬁ(t) or

whether additional formulas are necessary for intermediate values of

2h.



time is still open. It depends upon the actual values of the char-
acteristic roots, i.e., the poles of k(s), and these in turn depend
upon the numerical values of the reaction constants. In order to
get some indication of the location of the characteristic roots in
the complex plane, the case in which kNB = k3 will now be considered.
Here we can solve the characteristic equation explicitly in terms

of the reaction constants.

With kNB

conmes kss[f(s)

k,, axd f;{s) = £(s) the denominator in (18") be-

] Y .
! -¥"]. Thus, we must solve the equation

5(51) [f(s)]N -b‘N = 0

to get the characteristic roots other than the one provided by the
factor s, i.e., s = o. First, we note that (51) can have multiple
roots only if N[f(s)]mij'(s) = o for s a root of (51). This
leads to the conclusion that the only possible multiple root cor-
responcs to s = 7 Q/Z, and this value of s will be a double root
if and only if &% =8y and N is even. Thus for all practical pur-

poses, the roots of (51) will be simple.

Now let = exp §§5 so that @ is a primitive Nth root of unity.
Then
flg) = (3 =0, 1,00.,N = 1),

and solving this quadratic equation we find the 2N roots of (51)

given by

~ & * 1 . ) i
_ (52) S35 T =2 - = V8 -4 (1-f3) (3=0,1,...,0 =1)

Note that for j = o, we get the roots o and - 6. Thus o is a double
N I:;'
pole of k(s). If N is even and j = N/2, then F‘Vé = -~ 1 and it can

be shown that we again have two real roots. Except for these cases
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the roots Sj are all complex.

Equation (52) expresses the S). in terms of the square root of a
complex number. As is well-known, this square root may be written
in the form a *+ bi where a and b involve only real square roots. For

possible future computational use, we list this alternate form of

(52).

- &6 + 1 .
Sy =T Ty T 5 (a + bi) ,
. Ve 2 2
a = af + a? + b12 b = sgn bj- a7 b? -3y
2
’ 2
\Y > \
_ 2 2 _ . 2n]
a, § + ¥ (cos o - 1) b, b ¥ sin =+
(3 =0, 1,00.,0 = 1) .

5. Conclusions

The results in Section 4 indicate that the synthesis of protein
(Mﬁ) in the model under consideration can be regarded as consisting
of three stages: (a) an initial stage in which the concentration of
protein is given by My~ C1t2N+1, and therefore representing an ex-
ceedingly slow buildup of the protein complex quite indistinguishable
for awhile from a zero protein concentration; (b) an intermediate
state in which Mﬁ is determined by an exponential polynomial; (c) a
final state in which My~ Czt + C3, i.e. linear growth but with an
offset 03' The constants C1’ Cz and G3 are given in Section 4 in

terms of the various reaction constants.
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Nirenberg [5] has reported the results of certain experimental
studies of protein reaction kinetics in vitro. Comparing his actual
findings with our theoretical prediction, we see that there is sub-
stantial agreement between the two. Nirenberg also shows a fourth
stage following the linear one in which the protein concentration
approaches an asymptotic value. The latter can be interpreted in the
light of our model to reflect the situation resulting from a decay in
messenger RNA.

As a first consequence of this agreement between Nirenberg's ex-
perimental results and our formulas, it becomes possible to use the
former {or the results of experiments similar to them) to determine
values for certain of the fundamental reaction constants which under-
lies the protein synthesis process. For example, the slope_(Cz)vof
the straight line in the third stage of synthesis can easily be de-
termined from the experimental data. On the other hand, the formu-

las in Section 4 (cf. eq. (39)) show that

c, =¢C, (B, B, M, I,k , k. ki3).

If we conduct the experiment several times with different concentra-
tions of monomer M(j), but fixed EO and To, and denote the measured

slopes by CéM(J), we get a set of algebraic equations
() (J3)
C(Egy T, M "'ykyy wevn kg ) = CM
which serve to determine some of the reaction constants.

To illustrate this procedure, let us assume, for simplicity,

that the specialization of the constants assumed in Section 4 applies
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and that, furthermore, ky =k and E_< T - Then we have

1

1
y=o0 =Kk 6=5=kl+k +k, andeq. (59), with these val-

ves insexrted, yields

k. k T I
i) CE ) 'I‘s;(k:ﬁ}‘lo-‘r k +k )’
1 2 . 3

Using two different valucs of i, designated as M(T> and M(z), in this

relation, we readily find that

5) M(])-M(g) 1 M('l) A]
| k, = z. -
! CM

3 T ol
o CzIVI

+

i

Thus it becomes possible to determine the important polymerization
constant ka' By making assumptions regarding the relative magnitude

of the other constants and also by using the M. intercept, represent-

{
ed by 03 in the linear asymptotic form, further reaction constants

may be evaluated.
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