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Abstract
ADSLEo~

Dynamically passive transfer of heat across a thin
film supporting a progressive, periodic surface wave is
approached from a Lagrangian viewpoint. For most fluids
the fluctuations in temperature of any fluid point is
shown to be negligible over the time scale of the passage
of a wave and thus a very close approximation to the heat
flux can be easily obtained for waves described by
material variables when the boundaries are material sur-
faces and temperature is a constant on the boundaries.
Specific flux and profile results are deduced for

Gerstner waves and shallow gravity waves.




On the Flux of Heat Through Laminar, Wavy Films

Introduction

A situation of some interest and considerable
complexity arises when an interface takes the form of
a train of progressive waves. 4 great deal of prog-
ress has been made in the 1ast decade toward understand- 3
ing the physics of the generation of such waves from
the quiescent state[1],[2]. “xperimentally it has
long been observed, for eéxample in condensation Studies,
that interfacial waves are the norm rather than the
exception and a recent article{3] has reviewed and cata-
loged the kinds of waves that have been obtained and
the conditions under which they occur.

It frequently becomes of interest, in situations
in which wave trains are generated, to ask to what
extent has the existence of the waves affected the flux
of heat through the interface, For example McAdams|4]
apparently recommends an assumption of 20% increase in
flux due to waves for film type condensation on verti-
cal tubes. We consider a specific boundary value prob-
lem in two space dimensions in which the temperature at
the upper boundary is maintained a constant and the
temperature at the other boundary of the film is also
held fixed at a lower temperature so that cellular
motion due to bouyancy instabilities does not arise.
No transfer of matter at the surface is considered al-

though it appears that for many condensing phenomena
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the most significant influence of condensation may be
to maintain a fixed temperature. <Certainly this is
true for the situation in which the condensing film

is in a quasi-steady state. That is for situations

in which the wave train constitutes a perturbation
about a steady (thermal and hydrodynamic) plane hori-
zontal condensation layer. For the type of problem
just described one can identify several mechanisms
each of which leads to an augmentation of the magni-
tude of the flux. The surface area is evidently more
extensive than that of the undisturbed surface and
likewise the isotherms are, in the mean, closer to=-
gether, Furthermore the particle motions which corres-
pond to the surface traveling waves are periodic tra-
jectories with a possible drift in the direction of
wave propagation 5] and thus they can perhaps perform
the function of carrying a high temperature from near
the hotter surface and essentially dumping it in the
colder regions at the bottom of the trajectory, and
then reversing the procedure for theﬂremainder of the
cycle. In the quasi-steady situation with a homogene-
ous film and wave system they are condemmed to this
role with an invariable temperature cycle for each par-
ticle. The role of diffusion by continuous movements,
so crucial in turbulent transport,can be seen to be of
no interest in this situation. If the temperature of
each particle were to be conserved in the metion

(essentially a low peclet number requirement), it is
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the continued increase in time of the mean displace-
ment of a particle which constitutes turbulent trans-
port and when the particle is in periodic motion in
the direction of the mean flux one obtains no mean
contribution to the flux from this particle motion.
In an incompressible fluid the energy equation

takes the form

VBT- { N oy S et
5= ¢ %{XQLT) = j}r‘z (l"l)n

where viscous dissipation has been ignored and the
effect of temperature variation on density is not in-
cluded. D is the diffusivity of heat.

Consider a film of liquid with constant tempera-
ture I} maintained on its upper surface and a constant
temperature T, maintained at its lower surface. T, is

less than Ty. Let a progressive wave train consisting

of periodic waves of wave length A occupy the space

from - to #o0 in the horizontal direction on either surface

or both surfaces. Then we ask for the flux of heat
through such a moving geometry. Great difficulties
exist in the exact solution of (1.1) for finite ampli=-
tude waves which are the ones that are likely to be of
most interest. 1In fact it appears evident that two
length ratios should play a major role in determining
Q, the ratio of wave amplitude to wave length and the
ratio of wave length to total film depth, and unless
both are 0(1l) one expects no significant flux increase

over that through a quiescent film.



Our objective is to obtain the value of Q for a
class of representative finite amplitude waves and for

that purpose, particularly in view of the boundary con=-

ditions being applied at z material surface, a:Lagrangian

formulation is natural. Also there exists a closed-
form  solution in material variables to the hydrody-
namic progressive wave problem in the absence of vis-
cosity which will therefore be the natural velocity
field to assume for the purpose of studying heat trans-
fer across finite waves. In section (4) we show that
for one case we have studied the temperature profile
for this wave system, the Gerstnervwaves[b] is in-
distinguishable from an extended shallow gravity wave
solution under the same thermal, and equivalent geo-

metric, boundary conditions.

Energy Equation for the Gerstner Wave

The Gerstner wave is a solution of the inviscid
incompressible hydrodynamic equations presented in
terms of Lagrangian variables a and b. The trajectory
of any particle whose material coordinates are a and b

is given by

/(0\' ‘_\_ a + ?"14‘&5 . ‘e{/
/A{%bYy = & oun (Ct+é,t>

-t (2.1)
\} (C‘; 53) = b - p{ e%\b Lo f;;‘/({ +(‘-§-)
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where ¢ is the wave speed, ¢ = gk 2, and k the wave

number. Thus a physical interpretation of (a,b) is
that it is the center of the circle in which the par-

ticle moves.

T= 38

2
. - . —ar . - &
The Jacobian of the transformation3 é@gb)?*sl

from which it is taken that b can have all values less
than zero.

The shapes of such waves are given by Lamb and
are reproduced in FRigure 1. Some significant features
are: (1) any surface b = const is a trochoid and
is a possible free surface and, naturally, a material
surface; (2) the limiting surface b = 0 forms a cusp;
(3) such a wave exhibits considerable vorticity and is
thus unlikely to be generated by conservative mechanisms;
and (4) b = constant is essentially a horizontal
surface for |b| greater than a%;lo

For our purposes (3) is probably not a serious
drawback since the major mechanisms of heat transfer
are the gross straining of the isotherms and the
periodic motion of individual particles both of which
occur in the Gerstner wave in a manner quantitatively

similar to all progressive surface waves. There is no

. drift of particles in the Gerstner wave but this is also

pt expected to be a significant matter for heat trans-
“ across an homogeneous wave system.
| The Gerstner wave has considerable analytical ad-
tages over other kinds of wave solutions. Namely

Jacobian is time independent and, within the

kb
s



approximation to be developed in section(3), a closed
form solution to the temperature field caﬁ be obtained
for all amplitudes, waveiéngths and depths that Gerstner
waves can exhibit. | |

In terms of the variables a, b and t, as defined

in (2.1), (1.1) becomes

T (abe) = {[( |+ e Zkb ﬁ‘&bc@a %(o;»(:t)jf T

+[@+@29{b> +Z€;&B C o Q{(fﬁ.‘*f_-‘t)]ﬁg

~ a{b . b%b
—4e eimblarct) T, — 4 A Lo T
(Q c ) ab Ai___pzb) %éﬂ&t} N

(1 -e?

3406

ek

{ by (1 em)

C&':P—{(G\.*{,*/] 7;/

(2.2),
where subscripts refer to partial derivatives. For
OT
dadb "
In nondimensional form with o = Ra .

@_:plb , ’C:%ct we obtain
T (q)@)@) D_%_J {[ l+e ~.{€ m(a{& L)] +[I+Qk@+2€@¢oa(o{f?:j7—@@

example T, =

/
~ 4efoin (442) T, _466(1 jw(awz)”{‘;_

Y 3@ ‘
4€ 4e N
+[/‘62© + et Cooeol+ L)] T@J

(2.3) .



The boundary conditions are

it

T(@l) T; a constant (2.4),

T(@E) = T2 a constant (2.5),
T is a periodic function of {«+T) (2.6),
where 3= (3, is the upper surface

and G =(§2 is the lower surface.

Equation (2.3) is a linear partial differential
equation with periodic coefficients, a situation for
which there seems to be little theory. The BEulerian
form of the energy equation is of course of just the
same type but here there are several advantages. As
previously mentioned the boundary conditions for the
quasi-steady situation are, in the Lagrangian frame,
of the simplest type, but more significantly a natural
and accurate first approximation suggests itself from
this viewpoint.

The parameter I%%— is a ratio between the velocity
at which molecular diffusion can be considered to
travel and the speed of the wave and one expects it,
for ordinary liquids, to be extremely small except
for very large wave numbers. In fact if surface ten-
sion is to be included this parameter would be small
for all wave lengths. The smallness of the ratio re=-

flects the fact that in the time scale of one period



the diffusive loss or gain of temperature by a particle
must be minute. For the diffusion of heat in water at
room temperature if the wave length of the wave be 20 cms.
thenj%igg can be computed to be approximately 3 x 10“6w

For such a case we expect that the final quasi-steady
solution will be one in which the particle teﬁperature

is effectively constant during the motion. That is

T (8 T)=0

or T == T (<« g)

But by the boundary condition, cgquation (2.6), the
mean temperature must be a function only of @ and the
fluctuation temperature must be as weak a function of o
as it is of T . Hence we can conclude that the mean
particle temperature depends only on the @ coordinate
and that the fluctuating temperature of a given particle
is almost rigorously zero during a cycle of the motion.

Now any function 7T (g)satisfies 'T?ij and evidently
an other criterion must be invoked to determine its form.
For example we expect the long time effect of diffusion
is at least to make T a continuous function of its
argument and of course the boundary conditions (2.4) and
(2.5) are to be satisfied.

To obtain the quasi-steady state form of 7‘(@) it
is postulated that any dependence of T on @L+2j is

infinitesimal and that the contributions of the periodic



coefficients in (2.3) with the fluctuating part of the
particle temperature field is negligable. A more formal
argument in favor of the above postulate can be presented

by expanding the temperature field in the form

T(*,8,z) = 2 {Q(@} m"(‘**‘ﬁ) “”2 %W(P) o (42 .
Mn=0 =0

Substituting this series form into the governing
equation (2.3) and collecting coefficients of the same

harmonic function the general terms are of the form

O (4 T S N AOR R SS

Dﬁ_ )
{ - (8) = (f 9. ¥4 9. +£§“%w“§ nx1 (2.8),

where



AlSO %OZO (2-9),
ciafi (©) f‘“

and | satisfies fl £ =4, §\ (2.10).

In particular from (2.7), (2.8) and (2.9)

jw and §| satisfy the following equations

2= 2 L0t

(2.11),

(€ 20y
(2.12),

Boundary conditions take the form

f.(8)= T

jcg (8)=T. , (2.13).

J&(Q,) ) 3'“(8') = §h(@2f): j"n(@:)so )y M FEO,

The operators do not contain %%‘ and are generally
smoothing. Hence in view of the boundary condition it
is pertinent to assume all -§ and % are 0(1l).
n n "
From (2.11) and (2.12) we see that fl and gq are C)<l%l) .
Thus to the first approximation, which neglects

terms of order DR , { satisfies
C (o]
(0)
£ f

e NED
§°((32.> =T,

1"
O

T, (2,14).

it

3

Integration is straightforward and yields as a solution



and T =-— ( -T2 (iglgifj (2.16)

(m#k@> (!+e‘§)

(ij@

sinee £ = 0(%)g, = 0BH]") ens g,= 0(%) 4, = O(CE),

application of equations (2.7) and (2n8) shows tn and g,
are()ﬂ}éf} Since E£~ has a value 0(107%) for water it is

evident that in this case there is no need to proceed be~

yond the zeroth approximation as given by equation (2.15).

In general for arbitrary vaiues of I%g' the system de-
fined by (2.11), (2.12) and (2.13) 1s evidently vastly
complicated. For the remainder of the paper we restrict
our attention to those substances*and circumstances in

which the parameter Q@- is several orders of magnitude
-

less than one.

Evaluation of Heat Flux

Since @ =§51 is the free surface the instantaneous
heat flux (¢J through a wave length of surface of unit

width is given by the integral
%
Q=7 g vr| . X da 5
. o da
&)
where va is the unit vector normal to the surface, Xy is
the EBulerian position vector of the surface, and all

quantities are to be evaluated at G :(3lc

* Even for the more usual liquid metals D is no greater

3
than 10 °Dwater'

(2.15) ,

11
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Thus Q = :Dg [vTl {nga+%£ %‘Li dLa
0
3?
or Q= Dfaivﬂ {X:* %”Sa‘gm
(o]

A R

a

1% .
and hence Q a 'Df }VTf {X: ‘*‘%LELJ% ‘
4]

Also | - N a6
Tl = [T5-T, |

which transforms to (a,b) in the following way
-1
« 2
T,=(i-¢ K‘) (—g;ﬂ:* 5‘571))

Ty (1) (x5 -0 T

So that to the accuracy of the zeroth order solution we
find
a3

vT| = (mez‘gyl {x& g.jjg T,

Thus

] Eﬁ‘ z N
Q =(i-et) T()ﬁj [ X fh] Ao
®=% ’

‘From (2.1) this becomes

12



Q = 20D (l ZZ) @)
(1-ett) C=¢,

or from (2.16)

Q= -21D (T,»TLB {&\“0@0&@( % (3.1)

i-(.v_w? GL‘

It is useful to compare such a heat flux with the
flux one would observe through an equivalent slab, that
is a quiescent film obtained by allowing the wavy film
to come to rest. If b = b1 is the wave surface then the
height of thevequivalen”ﬂ quiescent surface is given|7]
by v = y;, where b“"&(‘z ( %) e 29{

If AV is the dimensionless equivalent slab depth corres-

l!’

aY = %‘(%‘!“%LB = @~ 6. '“:5\ {87\@'—&‘,2@1)‘

ponding to the surfaces % :(5 and (3»: GZ we have

The heat flux per unit wave length per unit width

through such an equivalent slab is given by

Qélab = amb (T'_Tb> (ay) ” (3.2)

and thus finally

Q L(B-§)
silab '(i»\, (CQ/J\EI )

- Le-s, *ﬁ_(&a(glmcff&)] (3.3) .

13
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Some Numerical Results for Large Amplitude Waves

Consider the maximum amplitude wave which occurs

when @l approaches zero,

Then

Q @ pi(1-et%)
QSlé}bw -—- 6\‘,\ w\@z_

If we further consider films of sufficient depth that

f._
C.

thus

For@z’f -1 or |b]

, then Cosh éz X @;_@i and ] - e{léz”f;: 1,

Z
@__ (@1 Ji) ~ ((éz_ +JZ:§ (3.4) .
stzlab +l2 (Bot:7)
:’f\u , where A\ is the wave length,

equation (5.2) pred:.c'ts a heat flux ratio of 1.31,

and

for @2 = =2 Q = 1.15,
Q 1 l
slab

for @, = -3 CQ.\: = 1.08,

slab

when (32 = 2 T the depth |b| equals the wave length and

Q

P—.

= 1.03.

Qslab

Maximum Heat Flux Ratio:

Then

or

A maximum heat flux should occur at (51: 0 andez-—ﬂ)

Q@ _ e 5 (1-Doepiep) 1)
Qslab & Cﬂw@k@z_

Q kN

2 - 8.

CQslab &M?

14
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Now cosh@z = 1 % é@; for (J’»z small and therefore

bimh B, = 18" o p—o

Thus, finally
@
— “"?Z\_ ) = O @l“>@
R 5140 Y o\
Hence, as one would expect, the maximum heat flux
increase is for a thin ribbon of wavy film and the flux

in this case is just doubled.

Therefore, for a Gerstnmer wave, | & Q ¢ Z

Ggﬁlab

In Figure 1 the Gerstner wave, with lines of constant @
inscribed and identitfied, is presented with the object |
of relating the above results to an Bulerian frame.
Detailed caiculation of EBulerian quantities such as temp-
erature at a point is of course possible but hardly more
infermative than Figure 1 when combined with the Lagrangisn
temperature solution (2.15). PFor the special case @l: 0,
@2 = =3 the solution (2.15) is shown in Figure 2 and the
instantaneous Eulerian profiles are piotted at several

cross sections of Figure 1.

Shallow Gravity Waves

A classical hydrodynamic solution for the shallow
gravity wave of small slope exists and from it approxi-
mate particle trajectories are calculable. These trajec-
tories turn out to be ellipses and it is possible to write

an approximate wave solution in terms of material variables

15



which correspond to the geometric center of the ellipses
in close analogy to the Gerstner wave formulation of the
previous sections. We find that the solution takes the

form[S]

X[Qk)-— CL."-LA C‘Vva\,‘g&(b-f-a) -MM Q\(CL-M’_‘C)
Lol KB

\}(q AR A Sl (!"LP‘) cw&(q-«c-t)
SN

(4.1)

where A is an arbitrary constant related tc the wave
amplitude, h is the mean depth of the film and ¢ is again
the wave speed.

The solution for the flux in the quasi-steady state
in which uniform temperatures are applied at b = 0 and
b = -h follows precisely as for the Gerstner wave. The
Jacobian in this instant is not independent of time and
a considerable algebraic complexity is the result.

However applying the postulate of section (2) that
isotherms should coincide with lines given by b = constant

it is found that the zeroth order solution is described by

[ WA g (b a)]
boand B € L

\ [zef 5 Mom(wsj r =0
PO RN |

16



Considerable simplification occurs in the event that

L, rbw\ﬁ\qeae\.
VAN

which is certainly the normal case. For example if

>>1

h:m:z\-—
k 2
{
.(
andA=-—‘-= then q’""’""a\ AQL A~ 100
k er 1'.( & v " ¢
. AR

Under this condition and with the boundary conditions

T(x):T, )7—6_&> =T, the solution can be written
j+Ptand (6~62) [-Plad
T _ - ‘ ! 2
_ lr :(@: @ e‘—\f | =P Gk ((3_(3_&) + }“—_———-p’PZLM @z’ .
T\ i @\ ( | - ’Péa,\,vﬁ\_ Ql 5
[ +P bt 6
where

2o tthl A\
P Bar - o &b

ZM_”‘".;_ 1
A A

it

~=

and @ = -kh.
2

To show the similarity between the Gerstner wave
with surfaces @1 = 0, G% = -3 and that of the shallow
gravity wave with A = % and @2 = -3, the temperature as
a function of G is tabulated in Table 1 for both cases

and it is evident that there is no significant difference

between them. The choice A = % = f%$ is determined by

17



noting that for @ = 0 in the Gerstner wave the amplitude

of the wave is just as can be seen from (2.1).

9?—{,
Although the shallow gravity wave particle trajectory
as given by (4.1) is not strictly valid for large ampli-
tudes the above result reinforces the notion that Gerstner
waves of equivalent amplitude to wave length and depth

to wave length of any non-turbulent progressive wave

system will yield useful flux estimates.,

General Lagrangian Formulation

The Gerstner wave of sections (1), (2) and (3) and
the shallow gravity wave of section (4) can both be in-
cluded under a more general Lagrangian description.

Suppose the periodic particle motion can be described
by

X(Q,‘9> = Q’*’UC@) A ’Q*[“%'C‘t> (5.1)

@by = brglb) wo kfasct)

Then (a,b) is again {ihe center of the motion of a certain
particle which can therefore be identified by its unique
description (a,b).

Proceeding as before we obtain the following general

statement for the energy equation in material variables.

18
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-2 . LR
—?:_— (Ck)b;‘:> = D3 {D +42 (3’ +.§" ) 4—23/&.“35*» "’i’(} ‘—§ ) ‘mlér‘] Ta
+[1+ 48544 8) +2 Afun g+ R(E-4) cngr] T

- [G'-ﬁ@nmw»% (58~49) pmap [ Ty

- ("¢ ) o (RS- g Wi@%z")w”ﬂ";
LR g ) (b e T T2
"3 Lsay) t)menp LA (5t g g) w24 ] T,
B[O g 1) g
PRy e ) g ] T
o148 )0 b L (55 ey [ T

(5.2)

~—

it <,

In the above equation / = d ;
g
- 20 y) 33
= =99 .
dla b)) 53“- Yoo jb“s'b and rE %\(CL‘FC"(‘:) .

The dependence of J and its derivatives on t complicates
the resulting equations describing the zeroth solution TCG}
but it is a straight forward, if tedious, matter to obtain

by the previous technique
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*[[FF‘Z QG»IJ[H ﬁ_(;:(;’+/:’g)J+§(é+F’}(F+C-') '[F;‘i“l*’i"?éﬂ“fFIC/J[’*ﬁ(F}*Gi)]
) gl

SR ) i pe)eriee) - e | 7

(5.3) 4
= = = . /_&.
where [ ﬁ'ﬂ@ &%)gm%b and = LB
The boundary conditions for the quasi=-steady prob-
lem are as before
() =Ty
T(@z) = Ié (5.4).

Unsteady Heat Transfer

The postulate adopted in section (2) which depends
on the smallness of the ratio between the time scale for
a particle period and the time scale associated with
molecular diffusion over the diameter of the particle

orbit is equally useful in estimating unsteady transfer



of heat across the same kinds of waves. Over the time
of one period the contribution of molecular diffusion to
the temperature change of a particle is negligable and we
may, as before, ignore the contribution of the fluctuat-
ing component of particle temperature over such a time
scale. Thus as far as molecular diffusion is concerned
we may again, provided the boundary conditions involve
T = constant on constant b surfaces, consider lines of
constant b to be isotherms and ignore the infinitesimal
fluctuation in particle temperature associated with the
passage of each wave.

Thus for the Gerstner wave we have the zeroth order
solution, which now is permitted to suffer a drift in
temperature over time scales appropriate to molecular

diffusion, described by the following system of equations

y

T (b)Y = Defzr“z}(l‘el‘ﬁ)"%@ et 5 (6.1,

T(8.c) =T, (@) (6.2),
T(@.)'t> = T‘ t 2 &) (6,3)
and T(g. t)y =T, t=20 (6.4).

For the case Ib(@) = Tl, Gl = 0, GE = =2, @

numerical solution is shown in Figure 3.



The behavior is qualitatively as expected,

The time
w ° - - W
scale for obtaining a quasi-steady state is just f; where
D

h is the mean depth of the wave,

Summary

The major effect in the augmentation of heat flux through
a surface which supports a progressive wave is shown o be
the stretching of isothermal surfaces and the consequent
narrowing of the distance between any pair of isotherms.
Molecular diffusion in liquids will normally be too slow to
cause significant dumping by conduction in 2 single cycle
so that the basic phenomenon in such a case is one in which
the particles can be considered to retain their 2quilibrium
temperature throughout the entire cycle. This condition,
if the boundary conditions can be suitably stated in
Lagrangian form, leads to a simple and accurate solution in
terms of material variables from which heat flux informa-
tion can be easily extracted.

For the Gerstner waves which are taken as kinematically
typical of laminar, homogeneous progressive waves the flux
through the wave is specifically calculated and is shown to
be not less than the flux through an equivalent silab and no
greater than double such a flux. Extension of the basic
postulate to waves described by fairly general particle
trajectories and to certain transient heat flux problems is

shown to be quite straight forward.

22
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Captions for Figures and Table

Figure 1

Figure 2
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Figure 3

Table I

Gerstner Waves [6]
- - - = Two Quasi-steady Normalized
Temperature Profiles .,

Temperature Profile for Gerstner Wave
(@\ :__::ﬁ) (‘3&:”3) .

Transient Temperature Response

(@4:‘(33(31: ~2 \,T{G’JO) "'""T:) \

Normalized Temperature for Equivalent
Gerstner and Gravity Waves



Rigure 1 Gerstner Waves [6]
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=710 0017 0021 ]
.20 .0087 .0086
-.30 | .0191 - .0192
-.40 | L0337 .0337
3 -.50 . .0521 .0520
-.50 074 074
| -.70 .093 . .098
? -.80 .126 - 126 i
: -.90 .156 .156
-1.00 .187 .182
~1.25 .276 .275 |
-1.50 .372 .370 q
-1.75 472 471 g
-2.00 | " .sts 574 §
~2.25 .680 670 ;
' -2.50 .786 ~ .785 %
-2.75 894 .892 ;
-3.00 1.000 1.000 -

Table 1 Normaiized Temperature for Equivalent
Gerstner znd Gravity Waves
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