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Abstract
An entirely Lagrangian similarity analysis is used to determine
the mean particle trajectory and mean ground level concentration re-
sulting from continuous sources located at the origin in a strongly un-
stable turbulent boundary layer. The results obtained reduce to pre=
vious free convection results for L — = 0, where L. is the Monin-
Obukhov characteristic length. Specific predictions cannot be made

since no data appears to be available that would enable the unknown

universal constants in the equations to be evaliuated.




A Note on Diffusion in a Strongly Unstable Turbulent Boundary Layer

Introduction

In this paper particle trajectory and mean ground level concentra-
tion results are obtained for diffusion in a strongly unstable turbulent
boundary layer. Batchelor (1964} obtained trajectory and concentration
results for the constant stress region of a neutrally stratified boundary
layer and Mandeil and O'Brien (1966) obtained the corresponding results
for a slightly unstable boundary layer. The trajectory equations for
thermal furbulence are given by Yaglom (1965}.

The basic equations used herein, which were discussed by Mandell
and O'Brien (loc cit) were obtained from dimensional reasoning by assum-=
ing Lagrangian similarity. The first order corrections to thermal tur-
bulence given here depend upon the Monin=Obukhov characteristic length

L. For L — = (0 the results reduce to those given by Yaglom.

Lagrangian Equations
The trajectory equations given by Mandell and O'Brien for the

downwind and vertical distances x and z are, respectively:
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where A and f are two unknown universal functions, u, [=¢ po )7 ]

= U,

is the friction velocity, L ( = T:EE.E .} is the Monin=Obukhov
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characteristic length, t is the time since the particle left the origin, T
is the constant shear siress; Cp” po and TI(') are the reference
specific heat, density and temperature respectively, k is von Karman's

constant, g is the acceleration of gravity and q is the constant

vertical heat flux, positive upward.
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When L — = 0, =~ = < oo, o > a coustant and equations (1) and (2)
L

become identical to Yaglom's equations
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where ¢ = %k f (=0 ) is a constant introduced by Yaglom.

Solution of Equations for Strongly Unstatle Conditions

u, has no physical significance in a strongly unstable boundary

s

layer and therefore by using the definition of L, equations (1) and (2)

can be rewritten in the following manner:
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where A, and 7

1 ‘1 are new unknown universal functions.

If it is assumed that A1 and fl are analytic functions in a

L2/3 0, th A d
neighborhood about 1PA " 175 = 0, then A, an fl
k (_j_ gm) t
c p T
p o o

can be expanded in Taylor series about the zero value of their

arguments. Equations (3) and (4) become
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Integrza;ion of equations (5) and (6) twice with respect to t gives
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where the constants of integration were chosen so that the source i !;.'
height is zero, the z wvelocity is zero for q = 0, to is the time at i r?l
if i{
which the downwind velocity equals Uo and ¢ and U'0 are universal |
constants introduced by Yaglom. 1
Equation (8) is a cubic equation in t which has one real root A
o
||
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Substitution of equation (9) into equation (7} gives for the mean

particie trajectory
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Mean Ground L.evel Concentration g:‘

The mean concentration for a point source is taken to be
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where Q is the rate of release of particles from the source and { is

the probability that a particle will be at positiog/,)g7 v, z at time t. If
/3

L
y is expanded in a Taylor series about ———=77= =0 and t is
c p T
p o o
L
. . L3, .. L
replaced by using equation (9), then to O0[(=)"], ¢ is independent of = .
z z

The concentration at ground level from a point source, by using Batchelor's

method is

—— = Q Cm—
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and a similar expression for the concentration from a line source Cl(x, 0)
. 2 —_—
with Z  replaced by z.
Discussion
The authors have found no data that would enable the unknown
Thus no

and ¢ to be evaluated.

universal constants c, c1 >

quantitative results can be obtained from the derived equations.
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