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Abstract
A study has been made of the asymptotic behavior of a dynamically
passive scalar when it is undergoing decay according to a second order
reaction, and when it is being simultaneously convected by a weak, homo-
geneous turbulence. If ['(t) is the mean concentration and }‘(t) the

rnean_sqxiar,e fluctuation in concentration then the following asymptotic

behavior is found:
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By an analysis of the non-diffusive limit it is shown that even the simplest
Closu;e scheme - the zero third moment approximation - may give useful

decay estimates for relatively large initial scalar field fluctuations.



The Decaying Second Order Isothermal Reaction

in a Weak Turbulence

by

Edward E. O'Brien™

_Igu_gioductlon

S P o oy

Study of .the mixing of passive scalar fields by turbulence was initiated
by Cor‘rsinl and Obukhoffz. Subsequently various facets of it have been pur-
Sued, In particular, an extension of considerable interest was introduced by
C'orrs:qin3 in his study of the statistics of an isothermal reacting mixture in
isotropic turbulence and he was able to obtain estimates of the rate of decay
of mean conc entration and concentration fluctuations for certain limiting cases
6f both a first and A second order reaction.

This note is concerned wholly with a decaying, second-order, isothermal
Teaction in the limit of a weak, homogeneous turbulence. We first deduce
explicit asymptotic decay rates for both the mean and the fluctuations and then
show évidencé that the zero third moment approximation, which is generally
of very limited value in turbulence dynamics except asymptotically, is a use-
ful closure technique even non-asymptotically when applied to the reaction
fieid. Useful, that is, in predicting the decay of the mean and the fluctuations.

It of course cannot represent spectral behavior adequately.
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The material cons ervation equation for a reactant undergoing a second

. 3
order 1sothermal reaction” is

2 2
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where F(’S ) 't) is a random function of position and time, W, &,t)

is a turbulent velocity field whose behavior, by reason of the isothermal as-

sumption, is uncoupled from that of the reactant, D is the diffusivity and

C. is the reaction rate.
- Following Corrsin3 by defining [“(¢) as the mean and }' ()—‘»'t)

as the random fluctuation in concentration the following relationship holds;

.z%_sz rs.-—C(E"‘ ;—g) (2)

Also a correlation equation which makes explicit use of the homogeneity of

the velocity and scalar fields is easily derived to be

(‘g" ;m) V) =40 T8y 1) (e)-2C JRY(E) - 25 [}u}é 9] ®
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The isotropic form of (3) has been previously given by Corrsin .

The classical arguments of final period turbulence, pertinent to

dsymptotic decay regimes, in which, effectively, for any given wave number

the inertia contribution becomes negligible compared to diffusive effects can

be used to omit legitimately the final term of (3) There remains a non-

linearity due to the reaction which appears as the triple fluctuation term in

(3) and precludes solving (2) and (3) as a closed set. However in the next

oy co—— — —— pr—
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* . Such has been done for the nonreacting scalar and the scalar under-

going a first order reaction”.



section we show that even in the absense of molecular diffusion the exact
statistical solution of a second order reaction in weak turbulence is always

such that

. 3 (@
Lo Y9 o

— -
tm~ [ e

The existence of diffusion can be expected to strengthen this result.
T
Defining the Fourier transform of }\’)\ (g, ) by 49(8—/*) and
applying the zero third moment approximation to (3) we obtain the following

restatements of (1) and (3).

LDy _ Firey _ 4 &
L = eI cfcp(%ﬂc) R,

2 —
P + 4 C M) =0
= * 204+ 4 Cp(é,é) .

Solving (5) to yield

| Cﬁ(@»*) = 49/@)1‘0) %)O{~ ZDQYf—"tQ»ACfF‘Ct') dr’} , (6)

where to is a virtual time origin, and substituting (6) into (4) we obtain

‘%9+ C,F-“zu) = “C[@/Q,‘%) @//o[‘ w%*cf—to)}al@:] w,b[-éct 7:'0'3 Az’}.

It is easy to show that the asymptotic solution to (7) is, in agreement with

.3
Corrsin’,

feys L ) t-t, = = (8)
C(t".to)

The proof, whose detail we omit, consists of showing that the solution of

(7) with P(k,t,)= 0, which we call [T@e) , satisfies [7(¢)S [i¢e)

(7
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‘ = - ~T -
and f;(t) = C(*"%} J t °o=> . Also the solution of (7) )

with D = 0, which we call L?@) , satisfies

ﬁ@) < [¢ee) = fil_ée)

and ﬁ@\: I — Lt =T, = =0
C{t“tQB

Now the substitution of (8) into (5) yields
-t 2
Y& = 7 i) xp [~20h (s-v)]| | ¢
| Thus
" x
) = (‘2. + = Y 2
,k j‘cp - )J% t fcp/é’l"‘o) Q*F{‘Zpﬂ\(t'rb)}dé’t“b‘;’-c. (9)
The integral in (9) is identical with that which gives the asymptotic decay of

a nonreacting scalar and the kinematic requirement of a quadratic behavior

in 'g, of the spherical shell mean of ¢/g.)‘{:) is also the same. Thus

the integral in (9) behaves asymptotically as t- 2‘, and we have the result
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For weak turbulence in which the inertial transfer terms of (3) can
be ignored, the role of diffusion in the decay of the mean and fluctuations

is clear, and we argue below to the usefulness of a zero third moment
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approximation applied to the scalar field in this case . It is probable that
similar arguments can be made in the more general case of strong turbu-
lence, but they become quite intuitive and are not yet able to be verified

by calculation. We therefore restrict ourselves to those cases in which

the last term of (4) is negligible.
In terms of mean and root mean square concentrations the appropriate

forms for (1) and (3) under weak turbulence are

3 _ Or 3 = ALy "3
2 Fery=-2> Ay ~4C PO RE) - 2CRE) .
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The diffusive term plays two roles. It contributes directly to the decay of

the fluctuations and the mean, and it plays some role in determining the

PR

value of the triple moment ?{tﬁ . If we consider the case D =0, ’f (t),

in the absence of a mechanism whose characteristic probability distribution

is Gaussian, is likely to be larger. Thus we can expect that the limit of no

e

/f(t) is most

diffusivity is almost certainly the one in which the role of

crucially tested. In particular, if the zero third moment approximation is

satisfactory for some range of initial values f(o) N }3 (0) in the ab-

sence of diffusion, it is most likely to be so also for the same range of
initial values when D # 0.

. e . e s,

* By employing a zero fourth cumulant approximation, Corrsin~ ob-

tained an equation for the mean concentration in situations in which the
The point of emphasis here is that

reactive terms dominate the decay.
This feature

even the least subtle of the usual approximations is useful.
of second order reactions is analogous to Kraichnan's remark? that closure

schemes for turbulence are likely to be much more difficult for isotropic
turbulence than for shear flows.

4 R. H. Kraichnan, in Proceedings of Symposium in Applied Mathematics
(American Mathematical Society, Providence, Rhode Island, 1962) Vol. 13,

p- 199.
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‘ The importance of the above remarks lies in the fact that the non-
diffusive second order isothermal reaction in weak turbulence is able to be
solved exactly, as we see below.

The system to be investigated is

AL _

—

dt (12)

With'initial statistics given by a probability density P [Pfo)j

It is convenient to consider [1(1‘;) as a dimensionless concentration
given by the ratio of the concentration field to its initial maximum value
and to define a dimensionless time T = ct . Then it follows that

the system to be solved is

LU
A . - , osr =1
AT ) (13)

P[P(oﬂ prescribed.

The solution of (13) for moments of any order is

My - ‘(ijt} P(x) kx| (14)

—_ .
from which () and ’kn (t) can be obtained.
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The following limits can be deduced from (14) provided that P[["(o)]is

a reasonably well behaved function.
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The first two are in agreement with the final period results for D = 0, and

the three combined together verify the statement made previously that

A 2
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The Multivariate Gaussian Initial Distribution

Solutions of (13) for arbitrary time are easily calculated once an
explicit form for P[[‘*(o)] is prescribed.

By far the simplest initial distribution to work with is the multivariate
Gaussian for which of course ;}? ( 05 is zero, and by which, therefore,
we can examine the generation of triple moment due to the nonlinearity of
the reaction. The Gaussian does not, however, lie between zero and unity
and the possibility arises that even if the initial distribution is essentially
located in that region subsequent distributions evolved by the decaying process
may not be. The problem turns out to be not a significant one in practice
since for all feasible initial Gaussians the fluctuations decay faster than the
mean for all times.

Moreover the numerical results that will be presented in section 7 indi-
cate that the decay rates of the mean and the fluctuations are insensitive even
to the assumption of a zero triple moment as compared to that generated from
an initial multivariate Gaussian, and thus the same decay can be expected to
be insensitive to the precise form of the initial distribution if the initial triple

moment be negligible.
Therefore for the remainder of the paper 'P[["”LO)J is given the

P LI"(O)] r"ﬁ“é@i—%% (PCO) -PCO)) f
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form
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Small Time Results

Straight forward expansions of the exact solution with the above form

of P[Pw©)] vield .
C () = oy - [E}o) PR T [ﬁ3+ R [l ?@)} o
~[Ha+¢ ﬁé)g—f‘@) +3(Fw) T’
+ [f“r(o)# /10 ﬁéﬁm + 1§ Ne) {?@))zj (AT )

S

(Y = PO - [4FeyFe] T+ [10Fey Foy +8(Fo) [T

_.[20 L:‘go) ?@) +48 [:'(o) C?@Q)j z3+ o

Similarly the zero third moment description of the same quantities can be

shown to be
F(2) = Boy-[FoyeFa]t « [Fr sFoyye ] 2
"[1:‘20) + 61:’(2) + C’?b))z] z*
*[ﬁiﬂ +10 Fv’@;:@ + 5‘5@)(?@))1‘] Z:L' -,
T = Q;‘(o} ~ [4Fw) ro]r 4-[/052,) e + Lu}:@))zj =

_[ZOF'EQ\FCO) +/0 FLO)(?@})LJZ‘Z%* e~

It can be shovvn5 that Kraichnan's Direct Interaction Hypothesis applied
to the same problem yields precisely the same results as the exact solution
to the orders in 2. shown and, moreover, for longer times it is a closer ap-
proximation than the zero fourth cumulant.applied to the same problem.

5. . .E..E.'O'Brien, To be published.



The implication of the above is that, at least for small times, the error in

computing decay of the mean using the zero third moment approximation is

Feo) e
=1 [fand similarly the error in computing ’&»@) is

— L
[ o)
no greater than OZ,(}:_(D—) )]

L)

no greater than O[
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Since the asymptotic behavior of the approximation is identical with that
of the exact solution, it is plausible that the error introduced by it will be
satisfactorily small for all time, for some range of values of }\T{yﬁz@) .
To test this notion numerical computations were carried out for both solu-

tions using the following sets of initial conditions

f"zo) = 0.5,
(?[a))yi—;- .05, 0.1and 0. 2.

The last corresponds approximately to a Gaussian for which 98 percent of
its area is between zero and one, and this is taken to be the largest physi-
cally sensible intensity that can be examined with a multivariaté Gaussian
initial condition.

Figures 1, 2 and 3 show decay of the mean and the r.m.s. fluctuations
from the exact solution and as predicted by the zero third moment approxi-
mation. Even for an initial concentration field relative intensity, defined
byQ})y/ﬁ , of .4 (Figure 3) the mean, as represented by the approxima-
tion, is within 2 percent of the exact. Decay of r.m.s. fluctuations is pre-

dicted to within 10 percent for an ititial relative intensity of .2 (Figure 2).
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Conclusion

We can conclude that the second order reaction problem will be more

tolerant of statistical approximations on the concentration fluctuations than

is the case for the nonreacting scalar or for the reactant undergoing a first
order reaction. It seems possible that the argument may be able to be ex-
tended to strong turbulence bsr noting that Mills and Corrsin6 obtained the em-
pirical result that a skew-isotropic field of temperature fluctuations behind a
heated grid tended rapidly toward non-skewness. The implication is that the
inertia terms which we have suppressed by the assumption of weak turbulence

do not generate skewness of the scalar field even when the turbulence is in-

tense.

— o e —

The author is indebted to Professor Michael Bentwich for extended dis-
cussions of the matter in this paper and for some of the calculations of sec~
tion 5, and to Mr. Richard Reis who carried out the computations presented
as Figures 1 amd 2amd 3.
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