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1 

~ b s t r a c  i )  

A c l o s u r e  a t  t h e  t h i r d  c r d e r  moment is presented f o r  t he  problem 

of the  decay of r e a c t a n t s  which obey a second ordey equation and whose 

ini t ial  d e s c r i p t i o n  is  given s tochas t i ca l ly .  The closure s a t i s f i e s  

pFescribed r e a l i z a b i l i t y  condi t ions  f o r  a l l  possible  i n i t i a l  assign- 

ments of the mean, the mean square f l uc tua t ions  and the  skewness of 

the concent ra - t ion  f i e l d .  



1 Introduction 

I n  a recent paper1 several kinds of c losure  approximations t h a t  

have been employed i n  turbulence s tudies  were applied t o  the  simple 

I but still non-linear system of s tochas t ica l ly  dis t r ibuted second order 
. 

-- 

reactants .  Such a system has many fea tures  which make it a t t rac t ive  

a s  a t e s t i n g  ground f o r  complex closure schemes. There a r e  no geometric 

complications, exact s tochast ic  solut ions  e x i s t  and most important of a l l  

t he re  is no conserved quantity which can play t he  ro le  of keeping the 

magnitude of t he  e r r o r  due t o  a closure i n  bounds i n  t he  way t h a t  invis- 

c i d  conservation of energy can i n  t h e  turbulence problem. It is also 

l i k e l y  t h a t  an understanding of t h i s  i d e a l  s tochast ic  s i tua t ion  is 

necessary before t he  more complicated r e a l  s i t ua t i oc s  of non-linear . 

chemical react ions  i n  t he  presence of tu rbu len t  mixing can be f r u i t -  

f u l l y  studied. In f ac t  it appears t h a t  f o r  l a rge  enough reaction ra tes  

t h e  s t a t i s t i c s  of s tochast ical ly  d i s t r i bu t ed  second order reactants 

describes qu i t e  well  t h e  behavior of a tu rbu len t ly  convected second 

order react ion over a s ignif icant  por t ion of i ts  decay 
2 

However, there  has been one unfortunate feature  of t he  non-convected 

s tochas t ic  system which has ser iously  de t rac ted  from i t s  usefulness as 

a vehicle f o r  the  study of closures. Namely, when t h e  r e l a t i ve  intensity 

of t h e  i n i t i a l  f luctuations a r e  too high none df the  exis t ing closures 

behave s a t i s f ac to r i l y .  This d i f f i c u l t y  w a s  avoided i n  the  or iginal  study 
1 

by taking low enough i n i t i a l  r e l a t i v e  i n t e n s i t i e s  t h a t  over the  moderate . 

t i m e  range studied a l l  the  closures were w e l l  behaved. The consequences 

of t h i s  s t ra tegy  were twofold. The d i s t i n c t i o n  between closures became 

less pronounced and the  'exact' so lu t ion  t o  which they were compared, 

and which was assigned an in i t i a l ly .norma1 d i s t r ibu t ion  of concentration, 

w a s  i n  f a c t  not exact since t h e  d i s t r i b u t i o n  was truncated a t  the  origin 
. > 



a t  every i n s t a n t .  If t h i s  had not been done t h e  'exact '  solution would I 

ul t imate ly  have produced unbolrnded moments. Although these criticisms 

Go not a f f e c t  t h e  l imi ted  conclusions of t h e  p r i o r  work they do indicate 

a need f o r  a c losure  which i s  not l imi ted  by t h e  range of i n i t i a l  re la-  

t i v e  i n t e n s i t y  with which it can cope i n  a phys ica l ly  sensible way, It 

is  a l s o  c l e a r l y  a d i f f i c u l t y  which must be removed before there can be 
1 
t 
I 

any genera l  progress i n  describing t h e  s t a t i s t i c s  of t h e  .behavior of i 
reac t ions  o t h e r  than first order f o r  media i n  tu rbu len t  motion. I 

I n  o rder  t o  obta in  a closure which is s a t i s f a c t o r i l y  i n  a global 

sense, t h a t  i s  one which w i l l  be physica l ly  acceptable  f o r  any possible 

spec i f i ca t ion  of i n i t i a l  conditions, w e  have borrowed from the view-points I 
3 of lbaichnan and 0rszag4, i n  p a r t i c u l a r  by ass igning a central  ro le  t o  1. 

c e r t a i n  r e a l i z a b i l i t y  conditions. The system with  which'we deal is l e ss  
t 

complicated, mathematically and physica l ly  t h a n  those  on which these 
I 

autdors have published and it may i n  fact be in te rp re ted  i n  part  a s  a 

study o f  t h e  extent  t o  which the  s a t i s f y i n g  of i m p o r t a t  r ea l i zab i l i ty  

condit ions determines' t h e  accuracy of a c l o s u r e .  A s  0rszag4 has pointed I i 
I ,  

Out a d i s t r i b u t i o n  function i s  not determined by t h e  specification of a . , 
I 

I 
f e w  lowest o rder  moments and it is c l e a r l y  untenable t o  expect tha t  a i (' 

s p e c i f i c  s t a t i s t i c a l  descript ion w i l l  be accura te  f o r  a l l  possible dis- 
I 
I 

t r i b u t i o n  funct ions  t h a t  display t h e  same i n i t i a l  values of the three 

lowest moments. We w i l l  a t  an appropr ia te  p o i n t  remember the origin of 

t h i s  problem i n  turbulent  mixing and be guided p a r t l y  by a principle 

similar t o  t h a t  of maximal randomness t o  which Kraichnan f i r s t  made 

e x p l i c i t  appeal.  



2 The Statistical Problem 

The system is described by the equation 
L 

'A% r - = - r  
A-t- 

where r' is the concentration which will be a random variable with the 

following bounds 0 L- r. 5- "O and t is the time which has been 

normalized by a constant reaction rate. 

The problem is made stochastic by assigning initial conditions in 

a statistical manner1. For example if 71 P@)] is a prescribed 

initial probability density for the concentration field then the exact 

solution for any order moment exists in the following form 1 

Theqe are some asymptotic properties of.(2.2) which will play a role in 

determining the form of the moment closure we will suggest: 

These follow simply from an asymptotic expansion of (2.2) and the pre- 
00 

6umption that 'fX'k~(x)d% exist, n = 1,2',3. 
6 

Since we expect to have available only the first few moments of the 

initial concentration distribution a moment formulation is pertinent. 

In fact 'our closure scheme will involve only the mean square and skewness 



of t h e  concen t r a t ion  f i e l d  which a r e  r e l a t e d  by the  followingmoment 

equa t ions ,  and o t h e r s ,  i n  an i n f i n i t e  unclosed hierarchy 

The ove rba r  denotes  an  ensemble average and t h e  decomposition 

- r(+), re) t b(t) has  been employed. - - - 
We w i l l  suppose t h a t  f@) 1 k L ( ~ )  and t3w) are pre- 

CC 

- s c r i b e d  and ask  t h a t  i3 b e  replaced by specif ied funct ions of  
0 - 
p and lL whose forms do not  depend on t h e  i n i t i a l  da ta  but  a r e  

such t h a t  (2.6) and (2.7) y i e l d  physical ly  acceptable descr ipt ions 
C - .  

of t h e  first t h r e e  moments. Since \'(o) is not prescribed we can- - 
not  employ (2.8)  even t o  t h e  ex t en t  of evaluat ing . 

< I  

( 1  

The r e a l i z a b i l i t y  condi t ions  which we impose an6 which spec i fy  a I 

c e r t a i n  degree of phys ica l  reasonableness t o  t h e  solut ion a r e  j ;. 

The r e l a t i o n s h i p  (2.11) a r i s e s  from a r e s t r i c t i o n 5  on t h e  skewness of 

any p r o b a b i l i t y  d e n s i t y  which is zero for  values of t h e  random var iab le  

I -- 



1 t h a t  are less t h a n  o r  equa l  t o  zero,  and t h e r e  e x i s t s  a hierarchy of 
r 

' s u c h  r e l a t i o n s h i p s  as t h e  o rde r  of t h e  moments become higher.  For 

exanple one can  d e r i v e  t h a t  f o r  such a random v a r i a b l e  a s  r 

where r is t h e  skewness; -& 
I= 
4 

It is o u r  Furpose i n  t h e  next  s e c t i o n  t o  propose a closure which 

s a t i s f i e s  t h e  r e a l i z a b i l i t y  condi t ions  (2.9 ) ( 2  . l o )  and (2.11) f o r  
- - 

a l l  v a l u e s  of rb c ~ )  and t5&.0) which themselves do not ' 

violate (2 .9)  (2.10) and (2.11). We a l s o  w i l l  r e q u i r e  t h a t  t h e  asymptotic 

behav io r s  (2.3) (2.4)  and (2.5) a r e  s a t i s f i e d  and t h a t  t h e  closure be a 

simple f u n c t i o n a l  form which is not  s p e c i f i e d - v a r i o u s l y  f o r  d i f f e r en t  

i n i t i a l  data. Evident ly  w i t h ' t h e  adoption of such r e s t r i c t i o n s ,  spec- 

t a c u l a r  p r e c i s i o n  f o r  a l l  poss ib le  i n i t i a l  s t a t i s t i c s  cannot be expected. 

  ow ever, t h e  n a t u r e  of . t h e  c lo su re  is our primary concern and it 

is t h i s  p r o p e r t y  which should be va luable  f o r  s t u d i e s  of turbulent  mixing. 

It w i l l  be e v i d e n t  from t h e  following how t h e  c l o s u r e  might be imprsved 

for s p e c i f i c  va lues  o f  i n i t i a l  da ta .  



3 A Proposed Closure 

The inequa l i ty  (2.11) suggests  a c losure  form of t h e  kind 
C1 cr- ri=) 

i= - - - 
where C is determined by t h e  va lues  r ~ u )  Po?"' and 1' LO) . 
Hoi~ever, it is easy t o  shbw t h a t  such a c losure  can viola te  (2.  S ) ,  the  

C- 

6 asymptotic condit ion on c )  , s o  fol lowing Orszag we investigate 

I *  i n s t e a d  combinations of  simple, dimensionally cor rec t ,  simultaneous ' 

func t ions .  

One such c o l l e c t i o n  of funct ions  could ,be as follows . 

us- 0 0  

and it is (3.1) which we s h a l l  pursue, r e a l i z i n g  t h a t  there is no 

reason  o t h e r  than s impl ic i ty  t o  r e j e c t  non-integer pow'ers of the  mean. 
I 

I We do note  t h a t  only in teger  powers of t h e  mean occur i n  t h e  rea l iz-  

1 a b i l i t y  condit ions and t h e  governing equations while t h e  existence of 

a p o s s i b l e  dependence of  on rYZ for example is indicated 

1 by t h e  asyniptotic statements (2.4) and (2 .5 ) .  . . 
I 
I 

These sane asymptotic r e s u l t s  and (2.3) a r e  suff ic ient  t o  eliminate 

I from (3.1) a l l  terms i n  which n < -1. This  fact and the  inequality 

1 (2.11) suggests  a rewri t ing  of (3.1) i n  t h e  form 
1 
I L .  

I - -I, 

1 
I (3.2) 

- - -2 
I where Y ~ o )  = a is obta ined unequivocably from the 

I 
i 

I i n i t i a l  values and Ao, A2, A3, etc.  a re  arbitrary 

I cons tan t s .  
I 

The c losure  (3.2) when combine'd with the inequal i ty  (2.11) yields 
1 4  



I 
t h e  fol lowing in fo~ ina t ion  about a 

The s i t u a t i o n  ' Y&(G) = 1 i s  very specia.1 s ince  t h e  form of the - 
c losure  i n  t h i s  case would force y@') 5 0 - whereas, from (2.11) , 

t h e  only  r e s t r i c t i o n  should be lo) ) 0 . If Y Lo) is  not iden- 
L 

I 
I t i c a l l y  un i ty  t h i s  d i f f i c u l t y  does not arise. For the  remainder of the 

i paper  we w i l l  assume r h a t  Y%@)f I. b u t  can. be made a s  close t o  unity 

I 
i as w e  p lease .  - 

Wheil (3.2) is  i n c o r p o ~ a t e d  i n t o  (2.7) and we define r(t) = Y,$) 

I (2.6) a ~ d  (2..7) transform i n t o  

I 
I One immediate consequence of t h e  f o ~ n  o f  (3 .6 )  and (3.7) and the f a c t  

i t h a t  y , ~ o ) & ~ ; y > o )  2 0 is t h a t  if y I ( c , )=  o fo r  some t = 

1 .  t h e n  so is  dL,k) -t f o r  a l l  n. S i m i l a r l y  if Y lr,);O so is d' ' ~ L & L )  
I At 

t oLt" 
I for a l l  n. Thus yk)> 0 and Y,t+)a 0 . 

I 

I The formal solut ion of (3.6) and a s imple r  version of  (3.7) are 

I poss ib le .  Define 

I 4 .' 



L -1 
AV1. = - Y , then - 

1 Y,(T) = YLO)[~ + y m i ~ I [  
A T  I 

A% 
and - =--k+Y 

A t  
VL + A  Y ~ L  +A.,Y, + - - - - .  

0 74 

Furthermore, TFO ,T 2 0 and from (3.8) t h e  r ea l i zab i l i t y  condition 

(2.9) i s  s a t i s f i e d .  

These are l i m i t a t i o n s  on t h e  values t h a t  Ao, A2---,An, can assume 

and still  have  (3 .2)  be a c losure  which s a t i s f i e s  (2.111, f o r  a l l  - - 
poss ib le  v a l u e s  of r @) , U) a id  . One way t o  

determine t h e s e  is  t h e  following.: It is convenient t o  rewrite (3.1) 

i n  t h e  form 

(3.10) 

Also, from (3.91, we have 
r 

r YPJ - - (d4 r )  Y,PI ~(A+L)  Yz@) 
d'i4 a - vL@) 

uhich w i t h  (3.3) and (3.4) y i e l d s  . For arbi t rary 

assignments  of 4 it is c l e a r  t h a t  the  inequal i ty  (2.11) can only hold 

fop small times i n  a l l  circumstances if A. (0 A2 >O .- ,A 
>O* But - - n - 

from (3.10)  if t h e  c losuqe  is sa t i s f ac to ry  the  a s p ~ t o t i c  behavior of - YL pJ i e FE) = - A o i s  



N o w f r o m ( 2 . 5 )  A 2 0  
o and the only globally s a t  isfactory 

choice of  A. is A. t 0. 

We will show i n  t h e  next  s ec t ion  t h a t  the  closure (3.1) with A. = 0 ,  

> 0 ,  n > 2 is indeed s a t i s f a c t o r y  i n  the sense tha t  a l l  the real- 
*n - - 
i z a b i l i t y  c o n d i t i o n s ,  i n i t i a l  condi t ions and asymptotic conditions are - C 

- 
s a t i s f i e d  f o r  a l l  permisskble values of ~ ( c J ) ~  tb@) and I' @) and we w i l l  

that t h e  most u n i v e r s a l l y  s a t i s f ac to ry  choice of constants is 

- An = 0. 
*2 = *3 = --- - 



4 proper t ies  of the  Closure 

In t h e  p r e v i o u s  s e c t i o n  we proposed the closure 

- - - 
where d. is o b t a i n e d  from fLo) , bZ@> and 

Such a c l o s u r e  automatically s a t i s f i e s  the i n i t i a l  conditions and 

in  order  t o  show tha t  t h e  r e a l i z a b i l i t y  conditions (2.9) (2.10) and (2.11) 

and. t h e  asymptotic behaviors (2.3) (2.4) and (2.5) are also obtained it 

is valuable t o  c o n s i d e r  first t h e  closure (4.1) with A = 0 for a l l  n. 
n 

and denoting t h e  s o l u t i o n s  of (3.8) and (3.9) for  such a closure by 
0 0 

and Y kj we have 
I I 5 

for which t h e  fo rmal  solut ions  ex i s t  and are 
' 

-.-I 

0 

Y, c.> - d YLc.) em" 
- &+ I) - d C~,I yi.1 - [(d+l) - .( Y'L~ - I  

(01 [(<+ l) - DL which when 
Now f r o m  ( 3 . 3 )  and (3.4) one has Y, o o 

combined with t he  e a r l i e r  r e s u l t  T 2 0, 7 2 O shows that  (t), yL( t )  

are lnono ton ica l l~  decreasing functions and cOnseque*tl~ 



-- - 
These r e s u l t s ,  and t h o s e  obtained i n  s ec t ion  3 which were f )a3 
i n d i c a t e  t h a t  ( 2 . 3 )  (2.4) (2.9)  and (2.10) a r e  s a t i s f i e d .  Also from 

(4.2) and  t h e  above asymptot ic  r e s u l t s  it i s  c l e a r  t h a t  (2.5 is a l s o  

s a t i s f i e d .  I n  fact C2 1 0. 

It remains t o  show f o r  t h e  closure (4.2) t h a t  t h e  i n e q u a l i t y  (2  11) 

1 s - s a t i s f i e d .  That is ,  given (4.2) we need t o  demonstrate t h a t  
0 - -x  - - 
rlf)) - d r f o p  a l l  t and t o  do s o  it is convenient t o  cons ider  t h ree  

r 
d i s t i n c t  s i t u a t i o n s  

Case I -- - 
Suppose b3~s \  C 0 then Y L 0 )  4 I and 0 )  d >-I 

since Y,n)C- Y p )  C 1 
-Lk r - ~i F] > r ~ ]  p 5 t ~ t . L ~ ~  yLco) 

a n d  also - 
ih bL 

3 - 
t 

-C - n 

P = r YJ+~ [ i . b ~  - 1'1 4 0 
I 

Hence 

Case I1 - 
Suppose and %lo) 1 

0 

then 

r 



' Z  - 
0 - 

But 
C r 

Case I11 Suppose 

0 -2. 

then F&) = d [-1+y:@)], - I  )a )-a 
F 

Since t h e  following inequal i t ies  hqld: 

-- 

Thus t h e  c l o s u r e  (4.2) s a t i s f i e s  a l l  t h e  spec i f ied  r ea l i zab i l i t y  and 

- 
asymptotic c o n d i t i o n s  f o r  every poss ib le  s e t  o f  i n i t i a l  data fco) ,  ?@I 

I- 

and i3@) . 
To show t h a t  t h e  more general  c losure (4.1) a lso s a t i s f i e s  the same 

s p e c i f i e d  cond i t i ons  we no te  from (3.10), with A. ; 0, t h a t  since 
a - 

- dY*Y < 0 then  An > 0 f o r  a l l  n and. - 9) fo r  t he  same values - - d'i4 
of and r . From (2.6) and (2.7) it is  fu r the r  evident tha t  

o o a 

< T(+lJ &J} Fi) . I n  p a r t i c u l a r  . Y,~L) 4 \ft[*) . From (2.6 ) 

s i n c e  29 y,? 0 t h e n  y, C [CO) and the  following bounds 

remain v a l i d ;  0 5  & ) 4 F @ ~  
. . - - 
5 y e )  L f @ )  

0 .  

Furthermore, s i n c e  )'..&) .( Y=k) t h e  asymptotic r e su l t  Y&@J' 
0 F 1. 

remai n s  i n  e f f e c t  . From ( 2.6 ) y&) < I&) < it) where Yak) 
2 0 - 1  

But l i m  Y tc) = l i m  Y,(t) = t = l i m  Y/%) . 
I t*d t ->a t 9 o o  0 

, . - 
- s i n c e  k and r have t h e  jam; asymptotic behaviors as  pb) 



0 - 0 

and pt$) then,  from (4.1) a l s o  display simiiar 

asymptotic r a t e s  o f  decay. 

It remains t o  demonstrate t ha t  the  inequal i ty  (2.11) is  preserved 

by t h e  c losure  (4.1). The proof follows c lo se ly  the  arguinents already . 

advanced f o r  t h e  closure (4.2) and we reproduce j u s t  one of the  three 

cases. 
- 

Case I Suppose b3co) C 0 then $ and 0) 4) '1 

, zn- L 4 
n = t  r 

- Since t h e  general  closure (4.1) sa t i s f i e s  a l l  t h e  required conditions it 

i s  pe r t i nen t  t o  ask whether there  is  any one choice of the  non-negative 

constants  A which' might be most useful over t h e  whole range of possible 
n 

i n i t i a l  da ta  and more importantly whether t he re  is any s t a t i s t i c a l  prlnci- 

pze on which t o  base a plausible  choice. A s  was mentioned i n  section 3 

3,4 . 
we appeal  t o  a kind of maximal randomness condition the  only basis fo r  

which can be t h e  i n t u i t i v e  hope t h a t  i f  a reacti.on is  carried by a f lu id  

in tu rbu len t  motion at a high enough Reynolds number then the  s t a t i s t i c s  

of t h e  concentration f i e l d  w i l l  be as chaot ic  a s  possible consistent  with 

t h e  k i n e t i c  equations. Since the  ultimate u t i l i t y  of the  closure discus- 

sed here  w i l l  be i n  i ts  r o l e  when turbulence is the agent t h a t  induces 

the  randomness t he  pr inc ip le  seems t o  be per t inent .  In  our case we w i l l  

r e q u i r e  t h a t  t he  constants An be so chosen a s  t o  minimize [ p d  . 
The consequences of t h i s  requirement a r e  c l ea r  f o r  the s i tua t ion  in  - - - which a.)@l> 0 , t h e  choices A2 = A3 - --- *n 

= o minimize ~ G I  1 . 
It should a l s o  be mentioned t h a t  on the  b a s i s  of t h i s  pr inciple  alone A1 

r ? 



- again be chosen t o  be zero. From (2.11) if F(o) ;4)( tL(0) then 

SO t h a t  t h e  condition under which the principle can be 

applied cor responds  t o  t h e  s i t u a t i o n  which could not be handled by 

previous c l o s u r e s .  It is therefore  a region of particular interest.  

The p r i n c i p l e  of mimimum has no sensible application - 
for s i t u a t i o n s  i n  which 1 C C . It is  easy t o  show that  its 

adoption and the use  of a subsidiary one, $&) & 0 for  a l l  t 

which is i n s p i r e d  by ( 2.5 j , ,, l e a d  t o  closures of the kind 

These can c l e a r l y  be made t o  approach zero as rapidly as one pleases by 

t a k i n g  n s u f f i c i e n t l y  l a rge .  Since ) can only be negative i f  
L V 

 LO) 4 F& t h i s  is not  only t h e  region of l e s s  interest but it can 

a l s o  be argued t h a t  it is t h e  s i tua t ion  i n  wh.ich the higher powers of 

yzb ) may be less and less s igni f icant  t o  the skewness. In the 

i n t e r e s t  o f  proposing a speci f ic '  globally satisfactory closure it is 

suggested that one which may be acceptably accurate a t  a l l  levels of 

i n i t i a l  i n t e n s i t y  is  (4.2) .  If one is specif ical ly interested in  

r e a c t i o n s  w i t h  low i n i t i a l  r e l a t i v e  in tens i ty  it would be possible for 

example t o  add t h e  first f e w  terms which involve say A2, Ag, etc. and 

choase their value by matching moments as-  accurately as  possible with 

t h e  exac t  i n i t i a l  behavior of t h e  moments of an appropriate truncated 

d i s t r i b u t i o n .  It is probable t h a t  without a correction of t h i s  kind - 
the c l o s u r e  behaves most poorly under t h e  circumstance in  which 13@)' ' 

f 

or, in t h e  terms of t h e  closure,  a = 0 and b3 t -  a O 
. In t h i s  case 

- 
the h i g h e r  powers i n  and f a r e  being ignored as compamd t o  7 
which is c l e a r l y  unfortunate. A measure of the accuracy of the svggested 

, - 
c l o s ~ r e  in t h i s  instance can be obtained fiom the previous paper1 since 

it c o i n c i d e s  with t h e  zero t h M  moment approximation. In i n t e r ? ~ e ~ i ~ g  



the r q s u l t s  presented t h e r e  it should be remembered t h a t  if i n i t i a l  

relative intensity much g r e a t e r  than 40% had' been used a l l  of t b e  other 

closures (and the 'exact ' solut ion)  would become unbounded. 



5 Conclusion 

The method t h a t  has been detailed i n  t he  previous sections has 

yie lded a s a t i s f ac to ry  closure a t  the  t h i r d  moment and there is every 

p o s s i b i l i t y  t h a t  by adopting fur ther  r e a l i z a b i l i t y  conditions l i k e  (2.12) 

and by knowing t h e  asymptptic behavior of each order moment simllar 

successful  closures can be obtained a t  higher orders. The problem is 

of course more complex then f o r  two reasons. The number of siinultaneous 

equations increase and t h e  r ea l i zab i l i t y  inequa l i t i es  become more and 

more awkward. There seems. t o  be no a l t e rna t ive  t o  t h i s  s t ra tegy of 

bui lding i n  physically acceptable behavior by using r ea l i zab i l i t y  

conditions of t h e  kind discussed here and t h e  necessity f o r  dolng t h i s  

seems t o  become more urgent as  the l e v e l  i n  order of the-moment a t  

which the  closure is  made increases. For example, i f  the  plausible 

c losure  

is adopted on the  bas i s  t h a t  is dimensionally correct ,  always positive 
- - 

and gives  t he  proper i n i t i a l  behavior of 1 z(t) out. - t o  the  s ix th  order . -  - 
v, 

i n  t i m e  one can prove t h a t  for  i n i t i a l  in tens i t i es '  t ( c )  > the 
20 

moments becorns unbounded. This is much lower i n i t i a l  in tens i ty  than 

t h a t  with which the  d i rec t  interaction cXosure a t  the t h i r d  moment 

was unable t o  cope. 

The method of deducing a globally sa t i s fac tory  closure which we 

have discussed i n  t h i s  paper should be d i r ec t ly  applicable t o  non-linear 

reac t ions  of other  than second order. Since concentrations a r e  by . ' 

nature  non-negative quanti t ies the r e a l i z a b i l i t y  conditions employed 

here w i l l  be relevant t o  any problem involving a s t a t i s t i c a l  description 

of react ions .  It i s  only i n  the cases p f  first order reactions where 



the mean concect ra t ion  and t h e  f luctuations in  concentration do not 

can be ignored except of course t h a t  even then the specification of 

i n i t i a l  moments must be proper, 
-. 

When r e a c t a n t s  a r e  turbulent ly  mixed, closures of the kind pre- 

sented here  can be useful ly  sppl ied  t o  moments tha t  consist only of 

the concentrat ioil v a r i d l e s  . Velocity f i e l d  moments and those with 

mixed ve loc i ty  and concentration variables w i l l  require the input of 

a closure s u i t a b l e  t o  them, such a s  r e s u l t s  fo r  example from the 

7 
' ~ a ~ r a n ~ i a n  History Direct In teract ion Hypothesis . 
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