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A closure at the third order moment is presented for the problem
of the decay of reactants which Qbey a second order equation and whose
initial description is given stochastically. The closure satisfies
pr-escribed realizab?’.lity conditions for all possible initial assign-

ments of the mean, the mean square fluctuations and the skewness of

the concentration field.
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1 Introduction

In a recent paperl several kinds of closure approximations that
have been_employed in turbulence studies were applied to the simple
but still non-linear system of stochastically distributed second order
reéctants. Suéh>a‘system haé many features which make it attractive
as a testiﬁg ground for complex closure schemes. There are no geometric
complications, exact stochastic solutions exist and most important of all
there is no conserved quantity which can play the'role of keeping the
magnitude of the efror due to a closure in béunds in the way that invis-
cid conservation of energy can in the turbulence problem. It is also
likely that an understanding of this ideal stochastic situation is
necessary before the more complicated real situations of non-linear
chemical reactions in the presence of turbulent mixing can be fruit-
fully studied. In fact it appeafé that for large enough reaction rates
the statistics of stochastically distributed second order reactants
describes quite well the behavior of a turbulently convected second
order reaction over & significant portion of‘its decay

However, there has been one unfortunate feature of the non-convected
stochastic system which has seriously detracted from its usefulness as

a vehicle for the study of closures. Namely, when the relative intensity

of the initial fluctuations are too high none of the existing closures
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behave satisfactorily. This difficulty was avoided in the original study

by taking low enough initial relative intensities that over the moderate
time range studied all the closures were wéll behaved. The consequences
of this strategy were twofold. The distinction between closures became
less pronounced and the 'exact' solution to which they were compared,
and which was assigned an initially normal distribution of concentration,

was in fact not exact since the distribution was truncated at the origin
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at every instant. If this had not been done the 'exact'! solution would .
ultimately have produced unbounded moments. Although these criticisms

do not affect the limi‘c_ed conclusions of the prior work theyv do indicate

a need for a closure which is not limited by thé range of initial vela-

tive intensity with which it can cope in a physically sensible way. It

is also clearly a difficu’lty which must be removed before there can be

any general progress in describing the statiétics of the behavior of
reactions other than first order for media in turbulent motion.

In order to obtain a closure which is satisfactorily in a global
sense, that is one which w:ill be physically acceptable for any possible

specification of initial conditions, we have borrowed from the viewpoints

of Kraichnan3 and Orszagu, in particular by assigning a central role to
cértain realizability conditions. The system with which we deal is less
compllcated mathematically and physically than those on which these
authors have published and it may in fact be interpreted in part as a
study of the extent to which the satisfying 'of important realizability
conditions determinesﬁ the accuracy of a closure. As Orszagu has pointed
out a distribution function is not determined by the specification of a '
few lowest order moments and it is clearly untenable to expect that a
specific statistical description will be accurate for all possible dis-
tribution functions that display the same initi'al values of the three
lowest moments. We will at an appropriate point remember the origin of
this problem in turbulent mixing and be guided partly by a principle
similar to that of maximal randomness to which Kraichnan first made

éxplicit appeal.
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2 The Statistical Problem
- The system is described by the equation .
. .
Ar__1 ~
1t ° | (2.1)

where [7 is the concentration which will be a random variable with the.
following b'ounds 0% [ £ =0 and t is the time which has been
normalized by a constant reaction rate.

The problem is made stochastic by assigning initial Conqitions in

a statistical mannerl. For example if ’P[l"@)] is a prescribed

.

initial probability density for the concentration field then the exact

solution for any order moment exists in the following forml

0
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There are some asymptotic properties of (2.2) which will play a role in

determining the form of the moment closure we will suggest:

s (2.9)

L Yo =ct™  (so0 |
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These follow simply from an asymptotic expansion of (2.2) and the pre-
[-s)

sumption that (X‘“ P(x)dx exist, n = 1,2,3.
o

Since we expect to have available only the first few moments of the

initial concentration distribution a moment formulation is pertinent.

In fact our closure scheme will involve onlj the mean square and skewness
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of the concentration field which are related by the following moment
equations, and others, in an infinite unclosed hierarchy
— L
AC __F _ ‘f
Y = -
‘J‘,\‘ - —-14{_' ’X‘ "‘Z.X‘ !
(2.7)

A > = .3 _ a3
‘l"ér' —3(? X ) . . (2.8)

The overbar denotes an ensemble average and the decomposition

r&) = Fu;) + }&) has bégn employed.

We will suppose that [ ©) \ r'(o) and %BLO) are pre-
- scribed and ask that }3 *  be replaced by specified functions of

—

' and .%I whose forms do not depend on the initial data but are
such that (2.6) and (2.7) yield physically acceptable descriptiocns

of the first three moments. Since —:’-(Oy is not prescribed we can-
not employ (2.8) even to the extent of evaluating ”LZ;‘E_LO) .

The realizability conditions which we impose and which specify a

certain degree of physical reasonableness to the solution are

o % Ftt) < =0 (2.9)

© g‘?“’ < (2.10)
.———l —
TS R _ e

o (2.11)
M)
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The relationship (2.11) arises from a restriction” on the skewness of

any probability density which is zero for values of the random variable
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that are less than or equal to zero, and there exists a hierarchy of
" such r:alationships as the order of the moments become higher. For
example one can derive that for such a random variable as /”’
2\ T\ e gm et S E T i _3__¥,
,(P*XLM /rrﬁf’x LS Gl Fomarey < (2.12)
where y~ is the skéwness,' *E::,;;_ .

It is our purpose in th;knext section to“ propose a closure which
satisfies the realizability conditions (2.9) (2.10) and (2.11) for
all values of. [:Lo) ) —%:: ) and F@) which themselves do not .
violate (2.9) (2.10) and (2-.11).. We also will require that the asymptotic |
behaviors (2.3) (é.u) and (2.5) are satisfied and that the closure be a
simple functional form which is not specified variously for different
ini.tialk data. Evidently with the adoption of such restriétions, spec-'
tacular precision for all possible ini‘tial statistics cannot be expected.
Howe\;er, the gl-obal nature of the closure is our primary concern and it
is this property which‘ should be valuable foij studies of turbulent mixing.

It will be evident from the following how the closure might be improved

for specific values of initial data.
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3 A Proposed Closure

The inequality (2.11) suggests a closure form of the kind

..—-}_2.‘ e -
-3 L9
T - C(&— 5 r)
r

where C is determined by the values [ &) \ K"@) and 'XB ©) .
However, it is easy to show that such a closure can violate (2.5), the

13 . 6 . e
asymptotic condition on 'f(c\ , so following Orszag we investigate
instead combinations of simple, dimensionally correct, simultaneous

functions.

One such collection of fuhctions; could be as follows

N= °O
+ -no

}Ltﬁ é Ay\,k‘ F ‘ ‘ ‘(3_1)
ws =0
and it is (3.1) which we shall pursue, realizing that there is no
reason other than simplicity to reject non-integer powers of the mean.
We d'o note that only integér powers of the t;'iean occur in the realiz-
ability conditions and the governing equations while the existence of
@ possible dependence of 7(]?: on F = for example is indicated
by the asymptotic statements (2.4) and (2.5).
These same asymptotic results and (2.3) are sufficient to eliminate

from (3.1) all terms in which n < -1. This fact and the inequality

(2.11) suggests a rewriting of (3.1) in the form

F“t“"’“.g% 1+ho)+o<m@> +O<Ay@+~J Mf Mg Ol

(3.2)
where Y (0) k\ ©) Mo , & is obtained unequivocably from the
initial values r'@ﬁ k @3 3‘ ) and Ao, A2, A3’ etc. are arbitrary
constants. .

The closure (3.2) when combined with the inequality (2.11) yields

e e e
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the following information about a
Yoy >t -1
1r Y > , &< (3.9)
1 yz£°><1)a< >-1 N C )

The situation ylca)z_ 1 is very special since the form of the
closure in this case would force }‘BLO‘_) = O- whereas, from (2.11),
the only restriction should be ?Lﬂ) O . If YLLO) is not iden-
tically unity this difficulty does not arise. For the remainder of the
pPaper we will assume that Y;Q)aé 1 but can be made as close to unity
as we please.

When (3.2) is incorporated into (2.7) and we define [ &)= Y'(;)

(2.6) and (2.7) transform into

%‘Zf - - [¢+ Y,_] .Y,L _ | (3.6)

. N . ¥ %- | 5Z_
Ly i Ay -] vt A ]

(3.7)
One immediate consequence of the form of (3.6) and (3.7) and the fact
that Y'LD):\: O) Ya_(o) > O ) is that if y, ({:‘) - O for some t = tl’
n
" : ) .
then so is oL _Y,&)  for all n. Similarly if yL (t,,)r—o so is da(_ V,fz.)
™~ t

for all n. Thus y‘&)é O and \/Lét)é O .

The formal solution of (3.6) and a simpler version of (3.7) are

possible. Define




t + ~ _
T =§[§+\I,§c‘)JaLt’3 > fuiawt' |
. 0 O -

o AN L ov® ") = T
th et ' , Yt (T’) = Y‘Lo)[i + y‘@)'T’} (3.8)

\/ . . -1 y e
ma Ay Ly [(om) ~ Y(0) - A Y )= A, Y - | (3.9) |
LT |

+AY"+A‘,_,YL"+—-—-‘ |

0 v

Furthermore, T>0,t > 0O and from (3.8) the realizability condition ;

(2.9) is satisfied.

N—

These are limitations on the values that Ao, A2-—--,An, can assume

and still have (3.2) be a closure which satisfies (2.11), for all

——

possible values of —(:’LO) R k"“w) and }3(03 . One way to
determine these is the following: It is convenient to rewrite (3.1)

in the form |
. b ' Y
2
Yoo J ;J J+A‘L (Y ),1]4-.-
&)=
‘k { ko)v RS YU;J
-32: @) Lnb )
+AT T ) R
=i th,)

Also, from (3.9), we have

A%.9 (o<+ 1) Y,©) +{£+) \" ©)

AT

(3.10)

1“#4

d vu_@’) £ O

which with (3.3) and (3.4) yields At - For arbitrary

assignments of of it is clear that the inequality (2.11) can only hold

. i i >0. But
for small times in all circumstances if A <0 A, 20 A2

from (3.10) if the closure is satisfactory the asymptotic behavior of

— — =7
'&3&:\ will be. ’(}Nb e) =~ A,.,&- <
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Now from (2.5) A >0 and the only globally satisfactory

choice of Ao is Ao = 0,

We will show in the next section that the closure (3.1) with Ao =0

k]

A > 0,n > 2 is indeed satisfactory in the sense that all the real-
n - - :

jzability conditions, initial conditions and asymptotic conditions are
satisfied for all §ermiss'able values of [ (o)3 F@) and XB(_O) and we will

argue that the most universally satisfactory choice of constants is




11
. Properties of the Closure
In the previous section we proposed the closure
l - - ¥, -uu-l -uu-L
5y o 1+Y .- A
s oy +A A V() +
[ " T X. y P20

where o is obtained frc;m F ©Y E}(p) and ?@).

Such a closure aufomatically satisfies the initial conditions and
in order to show that the realizability conditions (2.9) (2.10) and (2.11)
and the asymptotic behaviors (2.3) (2.4) and (2.5) are also obtained it

is valuable to consider first the closure (4.1) with An =0 for all n

[ 14—‘/@)] (8.2)

and denoting the solutions of (3.8) and (3.9) for such a closure by
o o

\\"”e

Defining ? @) =

Y'&’—)f and Y:.&) wve have

\ c 2
Y, ==Y,

e | ' (4.3)
A _fueve Jeerh- x (5.8)
AT |

for which the forvmal solutions exist and are

¥, (ry = Yoy [1+ e ] (.5
;(@ ' Y.6) -»25 (4.6)
Y, - [ 1) - ocvm] oy - [E) o<m]

NOW from (3 . 3) and (3 . u) one has YL(O) < [(°<+ ‘> -~ «. \/_‘_(O)J . owhicho when

1 > 0 shows that \{{*3; YL(.T)

combined with the earlier result T > 0,

: ¢ . : entl
_are monotonically decreasing functions {md consequ y




1 &L

aG

t>os + >0

= o@"—) A ?’@: O(+%)

' Thése results, anci those obtained in section 3 which were FaOJ F_Z 0
indicafre that (2.3) (2.4) (2.9) and (2.10) are satisfied. Also from
(4.2) and the above ‘.asymptotic results it is clear that (2.5) is also
satisfied. 1In fact 02 = 0. |

It remains to show for the closure (4.2) that the inequality (2.11)
is*.satisiied. That is, given (4.2) we need to demonstrate that

%C*)} X_r—; '.&}F‘ for all t and to do so it is convepient to consider _three
distinct situations
Case I

Suppose FL03 L0 thex‘i‘ YLLO) < | and O > =« > -1

%(ﬁ = — [« :}g; (~1+Y;én) , oL (<< 1,
Since Yli)é Yoy <1 - —
s Iy Y ur _—F]
rﬂ*l[%"@k ]>w[ B
'_?fj__ -YF - PYM[Y@-t] ge
=

Hence ?*BN"‘IPL T J>L }f

‘J\F'?

and also

Case II

Suppose ?@) No and Y (o) < 1

. 'S """;_,L _

o ek F ] oo
| . r | | .




or

_ o a
<y M Yo Y0 - 1] S0
But ,E_— -—“

=

13
-1 0 f
Y 16 Lj < |
z
o - _
and therefore '5\3 > 35; — F’ N
, ~ [
Case III  Suppose

[«

?@ >0, V@31
o -2
then ,6—3 @®) =

[~l+Y:(o)] J~1 X Y0

:(10)\] £ O
7’?6*5 o

i
the fc;llowing inequalities hold:
N
N F'r‘] > ]| = -
r ve

K‘L l-—\ > :E: 3\’3— T:
r 'l
Thus the closure (4.2) satisfies all the specified realizability and
13,
and %— ©) .

asymptotic conditions for every possible set of initial data ) r(ﬁ)

ofa~

(=]
A >0 for all n and al_\/t) < 0 then k>k—

0, that since
3\ 43
'&' &) < a}é‘\ r1(2‘>)> r'(t) . In particular Vo) L y(f)
smceuiﬁ 20 V. >

)
To show that the more general closure (4.1) also satisfies the same
specified conditions we note from (3.10), with A

and

remain valid

for the same values
From (2.6) and (2.7) it is further evident that
then Y

From (2.6)
< Y,@) and the folJ:owing bounds
0« Fe)4 o)
o <
Furthermore, since

k e < [
Y,e) < YEc) the asymptotlc result )’te) O(t )
remains in effect. From (2.6) YG)(Y% 1< ‘/(t) where ‘/&)
But lim \/&c) = lim Y,(e) = !
+D0 t o0
Since ’};@:5

- y@)[w@)f]
= 1im y,&) .

+ 220 ’
~and F(t) .

have the same asymptotic behaviors as

)
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and F'¢t) then, from (4.1) bﬁt\, Bfée) also display similar

asymptotic rates of decay.
It remains to demonstrate that the inequality (2.11) is preserved

by the closure (4.1). The proof follows closely the arguments already

advanced for the closure (4.2) and we reproduce just one of the three

cases.,

Case T Suppo;e ?@) e then YLLO)< {1 and O> & > -1
luﬂ
and — y&) y - YQ} 1HJ
Feos = [ ([3.;—_ Lopr ZA (w 1
| - '_E?L —_— =
Since P o T +
Ao Peyl | L-pT > %_Y ro.

Since the general closure (4.1) satisfies all the required conditions it
is pertinent to ask ﬁhether there is any one choice of the non-negative
constants An which might be most useful over the whole range of possible
initial data and more importantly wﬁether there is any statistical princi-
Ple on which to base a plausible choice. As was mentioned in section 3
we appeal to a kind of maximal randomnessa’u condition the only basis for
which can be the intuitive hope that if a reaction is carried by a fluid
in turbulent motion at a high enough Reynolds number then the statistics
of the concentration field will be as chaotic as possible consistent with
the kinetic equations. Since the ultiméte utility of the closure discus-
sed here will be in its role when turbulence is the agent that induces
the randomness the principle seems to be pertinent. In our case we will
require that the constants An be so chosen as to minimize {\‘3 @'

The consequences of this requirement are clear for the situation in
which —’F@)} O , the choices A, = Ay = —-- = Aﬁ = 0 minimize (k—}@)\
It should also be mentioned that on the basis of this principle alone Al

w2
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would again be chosen to be zero. From (2.11) if Moy < F—@) then

,&_3 @S O so that the condition under which the principle can be

applied corresponds to the situation which could not be handled by

previous closures. It is therefore 3 region of particular interest.

The principle of mimimum - ! 'Qf}’ct)‘ has no sensibie application

for situations in which ’E{o)i o . It is easy to show that its
adoption and the use of a subsidiary one, :&S@) 4 0 for all t
which is inspired by (2.5),=-lead to closures of the kind
. — -4zt ‘ =
> = -
'56‘32\0'\‘/@) (f"Y@J .
2 b —

-

These can clearly be made to approach zero as rapidly as one pleases by
taking n sufficiently large. Since ?Lo) can only be negative if
’gx(o) £ F‘@)L this is not only the region of less interest but it can
also be argued thgt it is the situation in which the higher powers of
' y’_tb) may be less and less significant to the skewness. In the
interest of proposing a specific globally satisfactory closure it is
suggested that one which may be acceptably accurate at all levels of
initial intensity is (4.2). If one is specifically intérested in
reactions with low initial relative intensity it would be possible for
example to add the first few terms which involve say A2, Aa, etc. and
choose their wvalue by matching moments as accurately as possible with
the exact initial behavior of the moments of an appropriate truncated
distribution. It is probable that withoﬁt a correction of this )jnd
the closure behaves most poorly under the circumstance in which F@): 0
or, in the terms of the closure, a = 0 and ?tc)a © . In this case

g Iz : $ ared to zero
the higher powers in 'k and [* are being ignored as comp

ested
which is clearly unfortunate. A measure of the accuracy of the :ugg
. i er~ since
closure in this instance can be obtained from the previous pap

; sl terpreting
it coincides with the zero third moment approximation. In interp
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the results presented there it should be remembered that if initial
yelative intensity much greater than 40% had been used all of the other

closures (and the 'exact' solution) would become unbounded.
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5 Conclusion

The method that has been detailed in the previous sections has
yielded a satisfactory closure at the third moment and there is evefy
possibility.that by adopting further realizability conditions like (2.12)
and by knowing the.ésymptptic behavior of each order moment similar
successful closures can be obtained at higher orders. The problem is
of course more complex then for two reasons. The number of simultaneous
equations increase and the realizability inequalities become more and
more awkwafd. There seems to be no alternative to this strategy of
building in physically acceptable behavior S& using realizability
conditions of the kind discussed here and the necessity for doing this
seems to become more urgent as thé level in order of the moment at
which the closure is made increases. For example, if the plausible

z -2

; f: 3?-&- 2\_—85/?—’-

is adopted on the basis that is dimensionally correct, always positive

closure

and gives the proper initial behavior of’-§;¢) out. to tﬁ?‘sixth order
in time one can prove that for initial intensities );(c)g— > —211-0 the
moments become unbounded. This is much lower initiai intensify than
that with which the direct interaction closure at the third moment
was unable to cope.

The méthod of deducing a globally satisfactory closure which we
have discussed in this paper should be directly applicable to non-linear
reactions of other than second order. Since concentrations are by -
nature non-negative quantifies the realizability conditions employed

here will be relevant to any problem involving a statistical description

of reactions. It is only in the cases of first order reactions where
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the mean concentration and the fluctuations in concentration do not a ‘ |
|

jnteract that this special nature of concentration as a random variable

“can be jignored except of course that even then the specification of

initial moments must be proper.

* When reactants are turbulently mf.xed, closures of the kind pre- ‘
sentedA here can be usefully applied to moments that consist only of
the concentration variables. Velocity field moments and those with ’
mixed velocity and concentration variables will require the input of
a closure suitable to them, such as results for example from the !

° s L) 7
Lagrangian History Direct Interaction Hypothesis .
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