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ABSTRACT

Optimal load allocation for load sharing a divisible job over processors interconnected

in either a bus or a tree network is considered. The processors are either equipped with

front-end processors or not so equipped. Closed form solutions for the minimum finish

time and the optimal data allocation for each processor are obtained. The performance

of large symmetric tree networks is examined by aggregating the component links and

processors into a single equivalent processor.
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1 Introduction

A divisiblejob is a job that can be arbitrarily split in a linear fashion among a number

of processors. Applications include the processing of very large data files such as occurs

in signal and image processing, Kalman filtering and experimental data processing. Most

work to date on load sharing has involved indivisible jobs, that is jobs that can only be

assigned to a single processor [6, 7, 8, 9, 10, 11, 12, 13]

Load sharing of a divisiblejob among a number of processors which are connected

together by an interconnection network such as a tree network and a bus network was

examined in detail in [1, 3), respectively. A set of recursive equations were developed to

calculate the optimal fractions of the load that have to be assigned to each processor in

the network in order to achieve the minimum finish time. The processors were assumed

to have different speeds.

In this paper, the processors are all assumed to have the same speed. This enables

us to find a closed form equation by which one can calculate the optimal fractions of the

load that has to be assigned to each processor in the network in order to achieve the

minimum finish time. Moreover, compact simple expressions for the minimum finish time

for different networks are also obtained. This has the advantage that one can perform

different mathematical operations of importance simply.

This paper is organized as follows. In the second section bus oriented networks are

examined while in the third section we examine tree networks. Performance evaluation

curves are presented in section four. Section five contains the conclusion.
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2 Bus Network

2.1 Architecture 1: Bus Network with Control Processor

Consider the case where the networkmodel consists of one control processor and n commu-

nicating processors. As shown in Fig. 1, the control processor receives the measurement

data and communicates it through a broadcast bus to the processors. The communication

time for processor i, i = 1,2,. . . , n, is proportional to the amount of measurement data

that has to be assigned to that processor. Each processor begins to compute its share of

the load once the share has been completely received. Bus propagation delay is ignored.

The timing diagram of the system is depicted in Fig. 2.

Let us first introduce the following notation.

CXi: The fraction of measurement data that is assigned to processor

i by the originating processor.

Tep: The time that it takes the ith processor to process the entire

load when Wi = 1 .

Tern: The time that it takes the control processor to transmit all the

measurement data over the bus when Z = 1.

w: A constant that is inversely proportional to the computation

speed of any processor in the network. Any processor can pro-

cess the entire load in time wTcp-
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Z: A constant that is inversely proportional to the speed of the

single bus. The entire load can be transmitted over the bus in

time ZTcm.

Ti: The total time that elapses between the beginning of the pro-

cess at t = 0 and the time when processor i completes its com-

putation, i = 1,2,... ,n . This includes, 'in addition to com-

putation time, communicating time and waiting time. Waiting

time is the time between the start of the communication by

the originating processor and the time that the ith processor

begins to receive its share of the load.

Tj: The finish time of the process is the time when the last pro-

cessor finishes processing.

Tj = ~ax(T1,T2,...,Tn) (2.1)

The timing diagram, Fig. 2, shows that at t = 0, the processors are all idle and the

control processor has completed receiving the measurement data and starts to communi-

cate with the first processor in the system.

The equations that govern the relations among various variables and parameters in

the system are

(2.2)

(2.3)

(2.4)

T4 = (0:'1 + 0:'2 + 0:'3 + 0:'4)ZTcm+ 0:'4wTcp (2.5)
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T1 - 0:'1ZTcm + 0:'1wTcp

T2 -
(0:'1 + 0:'2)ZTcm + 0:'2wTcp

T3 -
(0:'1 + 0:'2+ 0:'3)ZTcm + 0:'3wTcp



Tn = (a1 + a2 +... + an)ZTcm+ anwTcp (2.6)

The fractions of the total measurement load should sum to one

a1 + a2 + a3 + . . . + an = 1 (2.7)

The important point of interest is the minimum finish time, Tj which occurs when all

processors stop at the same time [3]. Intuitively this can be proved by contradiction; if

the processors do not all stop at the same time some will be idle while others are busy

and the finish time can be improved by transfering load to the idle processors. Based on

this we can write the following set of equations:

an-1 = an1' (2.8)

(2.9)an-2 = an-11'

a2 = a31' (2.10)

(2.11)a1 = a21'

where l' = (wTcp+ZTcm)
wTcp

Here ai is solved for by equating Ti to Ti+1' Using the above set of equations, we can

now write a's as a function of only an and r.

n-t
ai = an1' (2.12)

5



where i = 1,2,3, . . . ,n - 1

Using (2.7) and (2.12), one can write

an(rn-l + rn-2 + rn-3 + . . . + r + 1) = 1
n

an(~ rn-i) = 1
i=l
rn -1

an ( 1) = 1

(2.13)

(2.14)

(2.15)

This implies that:
r -1

an = rn - 1 (2.16)

Knowing the value of an, the control processor can simply compute the amount of data

that has to be assigned to each processor in the network by using equation (2.12).

The minimum finish time is given by (from (2.2)(2.12)(2.16)):

rn - rn-l

Tfl = (ZTcm + wTcp)( r.n - 1 ) (2.17)

and the maximum throughput is:
1

I = Tfl
(2.18)

As mentioned earlier, with these closed form solutions one can do some mathematical

operations to find some parameters of interest. For instance, we know that as n approaches

00, Tfl t ZTcm [3, 4]. In the following, we will prove this result analytically:

As n t 00
(rnr~~l-l) t r-lr

Substituting the definition of r in the above and substituting the result back in Tfl result

In

Tfl = ZTcm
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2.2 Architecture 2: No Control Processor, Processors with-

out Front- End Processors

The network architecture that is discussed in this section is similar to that discussed in the

previous one except for the fact that there is no control processor. Each of n homogeneous

processors in the network also contains no front-end processor for communicating off-

loading. That is, each processor may either communicate or compute but not do both

at the same time. The load may originate at anyone of these processors. The processor

that originates the load broadcasts to each processor in the network its share of the load

before its starts to compute its own share. Each processor begins to compute its share

of the load at the moment that it finishes receiving its data. Bus propagation delay is

neglected. The timing diagram of the system is plotted in Fig. 3. Between t = 0 and

a2ZTern, none of the processors performs computation, the first processor communicates

data to the second processorand processors3,4,5,. . . , n are all idle. In general, in the

periodbetweent = 0 and t = (a2 + a3+... + ai)ZTcm, only (i - 2) processorsperform

computation, (n - i) processorsare idle, i = 2,3,..., n, and two are communicating.

This facts serves to increase the minimum finish time.

In the following we will use the same definitions for ai, Wi, Z,Ti, Tep, and Tf as in

previous section. Tern is defined slightly differently as following:

Tern: The time that it takes the processor that distributes the load

to transmit all the measurement data when Z = 1.

With these definitions, the equations that relate the various variables and parameters

together are stated below:
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Tn = (1 - al)ZTcm + anwTcp (2.23)

The fractions of the total measurement load should sum to one

al + a2 + . . . + an = 1 (2.24)

As mentioned earlier, that the minimum finish time is achieved when all processors

stop at the same time [3], that is when:

T1 = T2 = T3 = . . . = Tn

The originatingprocessorshould calculate the optimal values of a's. To find these

values, one should first write the following set of equations:

an-l = anr (2.25)
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T1 - (1 - al)ZTcm + alwTcp (2.19)

T2 = a2ZTcm + a2wTcp (2.20)

T3 = (a2 + (3)ZTcm + a3wTcp (2.21)

T4 = (a2 + a3 + (4)ZTcm + a4wTcp (2.22)



a3 = a4r (2.26)

(2.27)a2 = a3r

al = an (2.28)

where r = wTcp+ZTcm
wTcp

Here ai is solved for by setting

Ti = Ti+l, for i = 2,3, . . . ,n - 1

Ti = Tn' o.w

From the above equations the optimal values of a's can be written in terms of an and r

as follows:

{

n-j .f ' - 2 3 1anr , I J - , ,..., n -
aj =

an, if j = 1.

It is apparent from the above equation that if the optimal value of an can be found, the

(2.29)

optimal values of other a's can be readily computed using equation (2.29). Using (2.24)

and (2.29), one can find the optimal value of an in terms of r as follows:

an(1 + rn-2 + rn-3 + . . . + r + 1) = 1
n

an(Ern-i + 1 - rn-l) = 1
i=l

(2.30)

(2.31)

r-1
an = C_~_l' C\) (2.32)

From (2.19) the minimum finish time function, Th' for this network architecture, is given

by:

r-1
Th = ZTcm+ (l ...)(wTcp - ZTcm)rn- + r - (2.33)
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and the maximum throughputh') is:

1
1= T12

(2.34)

2.3 Architecture 3: No Control Processor, Processors with

Front-End Processors.

The network architecture that is discussed in this section is similar to that discussed in the

previous one except for the fact that each of n homogeneous processors in the network

contains a front-end processor for communicating off-loading. That is, with the inclusion

of front-end processors, each processor may communicate and compute at the same time.

The load may originate at any of these processors. The processor that originates the

load is now performing both computation and communication simultaneously. Thus, it

immediately begins computation on its share of the load while broadcasting the remaining

load over the bus to the other processors. Each processor begins to compute its share

at the moment that it it finishes receiving its data. The timing diagram of the system

is plotted in Fig. 4. Between t = 0 and t = a2ZTem the first processor computes its

share of the load and communicates with the second processor. All other processors,

processors 3,4,5. . . , n, are idle. In general, in the period of between t = 0 and t =

(a2 + a3 + ... ai)ZTem, (n - i) processors would be idle, (i - 1) processors perform

computation; i = 2,3,4, . . . , n, and one is communicating. In the followingwe will use

the same definitions for ai, Wi, Tep, Z, Tem , Ti and TJ as in the previous section.

With these definitions, the equations that relate the various variables and parameters

together are stated below:

T1 = a1 wTep (2.35)
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Tn = (Ci2+ Ci3+ . . . + Cin)ZTcm+ CinwTcp (2.39)

The fractions of the total measurement load should sum to one:

Ci1 + Ci2 + . . . + Cin= 1 (2.40)

The objective in analyzing the above equations is to compute the minimum finish

time and compare it with the results that was obtained in the previous sections. The

minimum finish time would be achieved when all processors stop at the same time, that

is when:

T1 = T2 = T3 = . . . = Tn

[4] .

The optimal values of Ci'S that the originating processor should calculate in order to

achieve the minimum finish time can be computed by finding first the the following set

of equations:

Cin-1 = Cinr (2.41)

11

T2 = Ci2ZTcm+ Ci2WTcp (2.36)

T3 - (Ci2+ Ci3)ZTcm + Ci3WTcp (2.37)

T4 - (Ci2+ Ci3+ Ci4)ZTcm + Ci4WTcp (2.38)



a3 = a4r (2.42)

(2.43)a2 = a3r

al = a2r (2.44)

(2.45)

where r = wTw!;,ZTcm Here ai is solved for by equating Ti to Ti+1. From the abovew cp

equations the optimal values of a's can be obtained in terms of an and r as shown in the

following equation:

n-t
ai = anr (2.46)

where i = 1,2, 3, . . . , n - 1.

Again, as before, using (2.40) and (2.46), one can find an in terms of r. The steps

to do that are presented in the following equations:

an(rn-l+rn-2+rn-3+...+r+1) = 1
n

an(L: rn-i) = 1
i=l
rn - 1

an ( ) = 1
r-"

(2.47)

(2.48)

(2.49)

r-1
(2.50)an = rn - 1

Knowing the optimal value of an, the originating processor can now simply compute all

other optimal values of a's by using equation (2.46). The minimum finish time function,

Tf3, can be calculated from (2.35):

Tf3 = wT rn-l(r - 1
)

cp rn - 1 (2.51)

and the maximum throughputb) is

1
/=- T13

(2.52)
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3 Tree Network

3.1 Introduction

Consider a tree network of communicating processors as depicted in Fig. 5. In the tree

we have three types of nodes (processors): root, intermediate and terminal nodes. Each

tree has one root node that originates the load. An intermediate node can be viewed as

a parent of lower level nodes with which it has a direct connection. Also it is a child of

an upper level node with which it has a direct connection. The terminal nodes can only

be children nodes. The kind and the number of levels in a particular tree determine its'

size, that is the total number of nodes in that tree. The kind of a tree is determined by

the number of nodes that a parent node has. A parent in a "binary" tree would have two

children. The root is assumed to be level 0 and its children would be in level 1 and so

on. The lowest level is N - 1. Every processor can only communicate with it's children

processors and parent processor.

In this section, we willdiscuss two types of trees. One is where processorsare equipped

with front-end processors. Therefore, communication and computation can take place in

each processor at the same time. In the second type of tree, processors do not have

front-end processors. That is, processors can either communicate or compute but not do

both at the same time.

In [2]a finite tree, where processors have different speeds, for the above two cases was

discussed. However closed form solution for the minimum finish time were not presented.

In this paper, the processors in the tree are assumed to have the same computational

speed, ~. The communication speed between a parent processor and each of its children

is also assumed to have the same value, -}. This assumption enables us to collapse the

tree into one equivalent node that preserves the same characteristics as the original tree.
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This allows an easy examination of large tree networks. In addition, it becomes possible

to find a closed form solution for the optimal amount of data that is to be assigned to

each processor in order to achieve the minimum finish time and also to find a numerical

solution to the minimum finish time..

In the following we will use the same definitions for Tcp, Tcm, w, and w~ as in the

previous section; however, Z is defined as follows:

Z: A constant that is inversely proportional to the channel speed

between a parent processor and it's child. The entire load can

be transmitted over the channel in time ZTcm

3.2 The Tree Network With No Front-End Processors

To collapse the whole tree in Fig. 5 into one equivalent node we start from the terminal

nodes(the last level in the tree, level N - 1) and move up to the root processor(the first

level in the tree, level 0). On our way up, every parent processor and its children will be

replaced by one equivalent processor. The process will continue until the root processor

and its children are replaced by one equivalent processor. In this aggregation process, only

two cases are possible: the first case occurs at the last two levels level where all of the

processors have the same speed as shown in Fig. 6; the second case occurs for the children

at level k and their parents at level k - 1, k = 0, 1,2, . . . ,N - 2, where all processors,

exceptthe parent, havethe samespeedas depictedin Fig. 7. In the following, we will

discuss analytically the two cases.

The timing diagram of the first case is the same as the bus network timing diagram

discussed in subsection (2.2) and depicted in Fig. 3 and so we can use the results obtained

there to get an expression for Weqtwhich is stated below. Here Weqt is a constant that

is inversely proportional to the speed of an equivalent processor that replaces all the
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processors in Fig. 6 and preservesthe same characteristics of the original system.

1 rt - 1
Weqt= -T (ZTcm + ( n-1 ,J(wTcp - ZTcm))

cp rt + rt -
(3.1)

where

wTcp + ZTcm
rt =

wTcp

This equation is obtained by equating (2.33) and weqtTcp. Note that in order for load

sharing to produce a net savingsthe right most parenthesisin (3.1) must be positive.

The timing diagram of the second case, shown in Fig. 8, shows that this is the same

as the bus network discussed in subsection (2.2) where all processors except the first have

the same speed. The time that takes each processor to process its share is computed by

the following set of equations:

T1 = (1 - a1)ZTcm + a1wTcp (3.2)

(3.3)T2 = a2ZTcm + a2weqTcp

T3 = (a2 + a3)ZTcm + a3weqTcp (3.4)

(3.5)T4 = (a2 + a3+ a4)ZTcm+ a4weqTcp

Tn = (1 - aI)ZTcm + anweqTcp (3.6)

The fractions of the total measurement load should sum to one

a1 + a2 + . . . + an = 1 (3.7)

The optimal values of a's that has to be assigned to each processor in order to achieve

the minimum finish time, based on all processors stopping at the same time, is given by
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the following set of equations:

an-2 = an-l ri

(3.8)

(3.9)

an-l = anri

a2 = a3ri

(3.10)

(3.11)

a3 = a4ri

al = anc (3.12)

where ri = WeqTcp+ZTcmWeqTcp

and c = ~
W

It should be noted that, to achieve the minimum finish time, ai is solved for by

equating Ti to Ti+l. and al is solved for by equating TI to Tn [3, 4]. The equations can

be written in terms of of an, ri, and c as follows:

{

n-j .f . - 2 3 1

aj = anr ': J.- , ,..., n -
anc, If J = 1.

(3.13)

Using (3.7) and (3.13) an can be found as a function of ri and c.

ri - 1
an =

c(ri - 1)+ ri-l - 1
(3.14)

Now all other optimal values of a's can be computed using (3.13) Since al = anc, al

can be expressed in terms of ri and c as follows:

rj - 1

al = (ri - 1) + ~(ri-l - 1)
(3.15)
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We now equate (3.2) to weqiTcp in order to find Weqi, a constant that is inversely propor-

tional to the speed of an "equivalent" processor that will replace all processors in Fig. 7

and preserves the same characteristics as the original system. Note again that for load

sharing to produce a net savings the parenthesis term in (3.16) must be positive.

Weqi = Zp + Q1(W - Zp) (3.16)

Where p = T=Tcp

Substituting the value obtained for Q1 in the above equation, we find that:

ri - 1
Weqi= Z P+ / . 1 \ , 1/ un-1 1 \ (w - Z p) (3.17)

Starting at level N -1, one can use equation (3.1) to reduce the tree in Fig. 5 byone

level and then move up one level. Starting from the subtrees whose children are at level

N - 2 and up to the root processor one uses equation (3.17) to find Weqtotal.Here Weqtotal

is a constant that is inversely proportional to the speed of an "equivalent" processor that

will replace the whole tree in Fig. 5 while preserving the same characteristics as the

original system. Computing Weqtotal'the minimum finish time Tftnf can be written as

follows

Tftnf = TcpWeqtotal (3.18)

and the maximum throughput is
1

I = Tftnf
(3.19)

3.3 The Tree Network With Front-End Processors

This subsection is similar to the previous one except for the fact that now all the processors

in the tree possess front-end processors. That is, each processor can communicate and
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compute at the same time. This fact will help to reduce the finish time. We will proceed

as in the previous subsection and collapse the whole tree in Fig. 5 into one equivalent

node. We start from the terminal nodes(the last level in the tree, level N - 1) and move

up to the root processor(the first level in the tree, level 0). Similarly we will encounter

two cases in our aggregation process: the first case occurs at the last two levels where all

processors have the same speed as shown in Fig. 6; the second case occurs for the children

at level k and their parents at level k - 1, k = 0,1,2,..., N - 1, where all processors,

except the parent, have the same speed as depicted in Fig. 7. In the following, we will

discuss analytically the two cases.

The timing diagram of case one is the same as the bus network timing diagram

discussed in subsection 2.3 and depicted in Fig. 4. The results there can be used to

obtain an expression for Weqt which is stated below. Here Weqt is a constant that is inversely

proportional to the speed of an equivalent processor that replaces all the processorsin

Fig. 6 and preservesthe characteristics of the original system.

rn-l(
Weqt=W t rt-l)

rr - 1
(3.20)

where

wTcp + ZTcmrt =
wTcp

This equation is obtained by equating (2.51) and weqtTcp.

The timing diagram of the second case, shown in Fig. 9, shows that this is the same

as the bus network discussed in subsection (2.3) where all processors except the the first

have the same speed. The time that takes each processor to process its share is computed

by the following set of equations:

Tl = <:¥lwTcp (3.21)

(3.22)T2 = <:¥2ZTcm+ <:¥2weqTcp
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T3 = (a2 + (3)ZTcm + a3weqTcp (3.23)

(3.24)T4 = (a2 + a3 + (4)ZTcm + a4weqTcp

Tn = (1 - (1)ZTcm + anweqTcp (3.25)

The fractions of the total measurement load should sum to one

a1 + a2 + . . . + an = 1 (3.26)

The optimal values of a's that has to be assignedto each processorin order to achieve

the minimum finish time is given by the following set of equations:

where ri = WeqTcp+ZTcm
WeqTcp

and c = WeqTcp+ZTcm
wTcp

an-1 = anri (3.27)

(3.28)an-2 = an-1 ri

a3 = a4ri (3.29)

(3.30)a2 = a3ri

a1 = a2C (3.31)
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It should be noted that, to achieve the minimum finish time, ai is solved for by

equating Ti to Ti+1 [3, 4], The equations. can be written in terms of of an, ri, and c as

follows:

{

n- J ' f ' - 2 3 1an r , I J - , ,..., n -
aj =

n-Z .f
'

1anri c, I J = .
(3.32)

Using (3.26) and (3.32) an can be found as a function of ri and c.

ri -1
a -n -

( + 1)
n-l n-Z 1c ri - cri -

(3.33)

Now all other optimal values of a's can be computed using (3.32) Since al = anri-zc,

al can be expressed in terms of ri and c as follows:

ri - 1 n-Z
al = (r. C)

(
n-l n- Z

) + n-l I t

c ri - ri ri-
n-l n-Z

- ri - ri
- n-l n-Z + l

(
n-l

1)r. - r. - r. -
t t C t

(3.34)

In order to find Weqi, we equate (3.21) to weqiTcp. Here Weqi is a constant that

is inversely proportional to the speed of an "equivalent" processor that will replace all

processors in Fig. 7 and preserves the characteristics as the original system.

Weqi= wal (3.35)

Substituting the value obtained for al in the above equation, we find that:

n-l n-Z
r. - r.

)
t t

Weqi = w( n-l - ~-Z + .! (rn 1 - 1)ri rt c t
(3.36)

Starting at level N - 1, one can use equation (3.20) to reduce the tree in Fig. 5 by

one level and then move up to level N - 2. Starting from the subtrees where children

are at level N - 2 and up to the root processor one uses equation (3.36) to find Weqtota!'

Here Weqtotal is a constant that is inversely proportional to the speed of an "equivalent"
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processor that will replace the whole tree in Fig. 5 while preserving the same characteristics

as the original system. Computing Weqtotal' the minimum finish time Tftnf can be written

as follows:

Tftnf = TcpWeqtotal (3.37)

and the maximum throughput is
1

, = Tftnf
(3.38)
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4 PerformanceEvaluation of Large Symmetric

Trees

The minimum finish time expressions obtained in the previous sections and subsections

will be used to study the effect of the speed of the processors and the channel speed on the

minimum finish time for large symmetric trees. To do so, two sets of plots were obtained.

In the first the ultimate minimum finish time is plotted against Z and in the second, which

consists of only one plot, the ultimate minimum finish time is plotted against w. In both

sets Tem = 1 and Tep = 1. In the first set w = 1 while in the second Z = 1.

. In Fig. 10 and 11, the finish time is plotted against Z for various types of trees

which all have 11 levels. The tree network that is used to obtain Fig. 10 has all its'

processors equipped with front-end processor while the processors used to obtain

Fig. 11 do not have no front-end processors. The horizontal performance line in

Fig. 11 is due to the lack of a time saving in distributing the load when link speed

is slow. The plot shows that a better finish time is obtained as the size of the

trees gets larger. This is expected as more processors would have been involved in

computation. It also shows that there is slight difference in the performance curves

among trees where the parents have more than three children, especially when the

links are slow. This is because the majority of the load will be delivered to the first

few processors. The rest of the processors' share of the load tends to be small and

so they will not contribute a significant improvement in performance.

. In Fig. 12 , the finish time is plotted against Z for a trinary tree with only three

levels (13 nodes). Fig. 12, shows a difference in performance between the network

with front-end processors and the one with no front-end processors.
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. Fig. 13, shows the effect of enlarging the size of a trinary tree with front-end

processors by incrementing the number of levels ( adding more processors). The

plot shows that the performance is not significantly improved as the size of the tree

increases. Again, this is because most of the load is distributed to the upper level

processors.The levels listed in the figure are equal to N - 1.

. Fig. 14 and fig. 15 are meant to study the effect of the trade-off between the number

of processors and the number of the levels in the tree network. The minimum finish

time is plotted against Z and w in Fig. 14 and Fig. 15 respectively. Two types

of trees were studied: a binary tree with 15 processors(4 levels with N = 4) and

a trinary tree with 13 processors(3 levels with N = 3). Although the number of

processors in the trinary tree is four less than that in the binary tree, it gives a

slightly better performance results in Fig. 14. The gap in Fig. 15 between the

performance curves increases as the processor speed decreases. This is because,

as mentioned above, a large amount of the load will be allocated to the first few

processors to overcome the overhead of communicating large fragments of data over

the links.

5 Conclusion

In this paper closed form solution for minimum finish time are obtained for several types of

bus architectures and tree network architectures. The performance of these architectures

are examined and the effect of the link speed is studied. Processing time for a tree

networks is only slightly improved as the number of children per node increases, especially

if the link speed is slow.
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Figure Captions for Closed Form Solutions for Bus and Tree Networks of Processors
Load Sharing a Divisible Job

Fig. 1: Bus Network with Controller.

Fig. 2: Timing Diagram for Bus Network with Controller.

Fig. 3: Timing Diagram for Homogeneous Bus Network without Front-End Processors.

Fig. 4: Timing Diagram for Homogeneous Bus Network with Front-End Processors.

Fig. 5: Tree Network.

Fig. 6: A Subtree where the Children are all Terminal Nodes in the Original Tree.

Fig. 7: A Reduced Case where the Children are Parents in the Original Tree.
Fig. 8: Timing Diagram for Second Case Subtree of Tree Network with No Front-End
Processors.

Fig. 9: Timing Diagram for Second Case Subtree of Tree Network with Front-End Pro-
cessors.

Fig. 10: Finish Time versus Z for 11 Level Symmetric Trees with Varying Numbers of
Children and with Front-End Processors. Here w=Tcm=Tcp=l.O.

Fig. 11: Finish Time versus Z for 11 Level Symmetric Trees with Varying Numbers of
Children and without Front-End Processors. Here w=Tcm=Tcp=l.O.
Fig. 12: Finish Time versus Z for Trinary Symmetric Tree with Three Levels and with
and without Front-End Processors. Here w=Tcm=Tcp=l.O.

Fig. 13: Finish Time versus Z for Trinary Symmetric Tree with Varying number of Lev-
els with Front-End Processors. Here w=Tcm=Tcp=l.O.The levels listed are equal to N-l.

Fig. 14: Finish Time versus Z for Binary (15 processor) and Trinary (13 processors)
Symmetric Trees with and without Front-End Processors. Here w=Tcm=Tcp=l.O.
Fig. 15: Finish Time versus w for Binary (15 processors) and Trinary (13 processors)
Symmetric Trees with and without Front-End Processors. Here Z=Tcm=Tcp=l.O.
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