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I. INTRODUCTION:

A. BACKGROUND: Orthogonal tree codes in conjunction with the Viterbi
algorithm for maximum likelihood decoding are a feasible alternative to
block codes for communication over low signal to noise ratio, power
limited channels. Convolutional codes have been treated in detail by
Viterbi[l] and the performance of orthogonal tree codes on cohereht channels
in the presence of white gaussian noise has been considered[s]. In this
paper, we consider tree codes using (a) orthogonal signals, and (b) quasi-
orthogonal signals. Incoherent and coherent schemes are treated as well
as alternative receiver structures using hard quantizing and ''greatestof"
detection. Upper bounds on error probability are derived and are used as
a basis for system comparison. An example application of quasi-orthogonal

tree codes in & multiple access envirconment is discussed.

B. ENCODER & DECODER: Figure 1 shows a convolutional encoder for
tree codes. The 2K signals (Sk(t), k=0,1... 2K—l) are mutually
orthogonal or quasi-orthogonal for orthogonal and quasi-orthogonal tree
codes respectively. Each signal has energy ES; K is the constraint length
of the code. With reference to ;?'.:?‘2, when dhe -mﬁnaés are {:’ft'?;@?o-ﬂaﬂ,li can be ob-
served that any two paths whose generating sequences are not identical
over more than K-1 bits at a time, are orthogonal over their entire length.
Thi% forms the basis of the decoding algorithm presented by Viterbi[3].

The subsequent analysis assumes an encoder structure as described above

and a Viterbi decoder as specified by the algorithm in [3].

C. UPPER BOUND ON ERROR PROBABILITY: An upper bound On the block error
probability of a sequence of L bits followed by K-1 synchronizing zeros

has been derived in [3], and is obtained by union bounding the probabilities



of error in any comparison which the algorithm makes between two paths.

For continuous coherent orthogonal signalling the bound has been shown in

[2,3] to be
L-1
SK S
PeslP) G * L WK Py [ g (Kek) ] (1)
0 =1 2 0
where
P 15 = Dok B wma
i NOR = Pr [z0 max (zl,zz....zj)]
and Zgs Zys eeenn zj are independent unit variance gaussian random variables,

zg has mean /§§E7§ER and the rest have zero means.

To generalize the above mentioned results to fit any detection scheme,
we recognize that zs is a modified path 'metric' of the ith path under con-
sideration. The term path 'metric' normally means the sum of the optimum
branch metrics for all branches on that path. For the continuous coherent
case, the optimum branch metric is the inner product of the received signal
and the signal corresponding to the branch considered. In general, the opti-
mum branch metric will depend on the actual detection scheme used.

In comparing a correct path with an incorrect adversary, an error
will be made when the path metric of the incorrect path exceeds that of
the correct one. If the two paths have some branches in common, then the
common branch metrics are not relevant to ;he comparison since they can be
cancelled from both péth metrics. Cancellation of common terms yields a
new metric which can be thought of as the path's 'reduced metric' for that
comparison. Because of the nature of the algorithm and bounding argument
in [3], each 25 (i#0) encountered in (1) is the reduced metric of path i
(i#0) where path 1 (all i#0) differs from the correct path over 'n'

branches, and z_, is the reduced metric of the correct path.

0



We can now generalize the error probability bound by defining

Pm,n = prob [zo < max (zl, Z, ...zm}] (2)
m terms
where 245 Zy...2 are the. reduced metrics of 'm' potential adversaries to

‘the correct path, each of which differs from the correct path over the
same 'n' branches, and 29 is the reduced metric of the correct path. Thus,
pm,n is the probability that an error will be made in any of 'm!' potential
comparisons of the correct path to incorrect potential adversaries, each of
which differs from the correct path over the same 'n' branches.

The bound can then be expressed as

L-1
P,< LP, ., +) (L-k) P (3)
B = LK by 21 ek

Evaluation of the error probability for tree codes using a given detection

scheme therefore requires ccmputation of Pm 0
: 3

II. EVALUATION OF ERROR PROBABILITY BOUND FOR VARIOUS DETECTION SCHEMES:
(IN GAUSSIAN NOISE)

A. INCOHERENT ORTHOGONAL SCHEMES:

1. CONTINUOUS: The receiver structure is shown in Fig. 3. The
ORTHOGONAL
optimum receiver for low signal to noise ratio, employs a quadratic de-

tecfor as shown, the output of which is used as the branch metric.

Hence, the reduced path metric z_ of the correct path is the sum of

0

squares of 'n' independent Rician variates. If A is defined as the signal

amplitude at the input to the quadratic detector, 2y can be written as

2 ¢ 2
1{Acosﬁi+xi) + izl {Asinei+yi) (4)

B~
i
I ~13

i



. ; s 3 2
Xy and y; are zero mean gaussian random variables with variance ¢°.

The reduced metric for a potential incorrect path is the sum of squares
of 'n' statistically independent Rayleigh variates

2, (i#0) =
j

I~
7
(N
+
I~
>

. (5)

Hence,
Pm,n = prob [ZO < max(zl,zz...zm)]
© @ (6)
=[ J fzmax(qZJ dq, sz (q;) dq,
0 qll
)
where zmai(é" max(zysZye . -2)

The reduced metric of the correct path 2, is statistically independent
to the incorrect reduced path metrics z; (i#0) because they are mutually
orthogonal over the 'n' branches. The zs (1#0) are indentically distri-

buted ~ and statistically independent. J{ence

Z

£, (@=mf, (@ [F,_ (@]™ (8)
max 1 i |

. . .. s 12 2
Since zy 1s the sum of 'n' squared Ricians, it is non-central X

distributed with 2n degrees of freedom and non-centrality parameter NA? [4]. The

; SIR B - O
Tundom vartablez ;. is ‘)(2 distributed with 2n degrees of freedom since it is the

(4]

sum of squares of 'n' independent Rayleigh variates



Hence, we have,

Po,n = J da, J dq; £, (9] £, (qy) (q)
0 0 0 max
where,
1 o n-1 nA2+a (anAz)l/z
£, (@) = — (—) 2 (- I =LLi (100)
Z0 262 nAz) o 262 ) n-1 [ o2 :
_ 1 n-1 L B s
le (8) = l:U2)112m‘1,"(n“‘) B exp[ 202] (ob)
Letting & = /Ei}o and Y = /nA/o
9 Va,/o _
f o B0 105
J fZO(a) da = | ¢ @ exp (- zE+Y)) I, (VE) de (1)
0 0

The above integral can be identified as the complementary generalized

Q-function, which is defined in the literature[5] asi

t M-1
Q (o,8) 4 Ja S exp [ 2 XD 1, () & (12)
B
This yields:
¥ Va.
vyna 792 =
pm,n - L dq, fzmax(qz) {1-q,( T ”Eﬂﬂ} 124)
% Va.
m-1 vnA q2
=mJ dq2 le (qz] {le{qz)} {I-Qn('aﬂg T)} (138)
0

The:X? distribution function with k degrees of freedom is defined 35[4]

Gk(S) = J —-*E—/‘“'a-,—"*-'- o ) exp (—%) da ('14)



1
79}

Therefore, le(qz) =65, (;f (15)

o

9
Pm,n =??[ dq2 fz (QZ) {G2n ( 23}
0 1 o

m_

1 Va,
it (O, =2 (160

-Letting y = q /02, we obtain

2
P .-_»fm[ d L il (- 4 {6 (y)}““1 {1-Q (@ Yy)}
m,n A Y 2" () Y e 2 2n i - ° (4¢hb)

Substituting y = 2Xx

Pm,n = J dx exp (-x) h(x)
0
n-1
where h(x) = 1’}—@ {62n(2x)}m'1 {1-Q,(/nS, YZX)}.m (47

CALCULATION PROCEDURE:

The above integral for Pm -

can be evaluated using the Gaussian La?uerre
3 5
[7,9]

quadrature formula A 10-point integral was used in actual calculation.
The above calculation requires h(x) to be supplied as a function.

This necessitates routines for (i) cumulative )5 distribution function

(ii) generalized complementary Q functioni The;(? distribution function is

available as a subroutine in most computing facilities. The complementary

Q function has been variously computedilo’ll’s], but a simple and accurate

way 1is to use a Chernoff bounding technique{5] The formula used is

~J



(1—27\)"M exp (-182) exp (Aa2/(1—2h}>
2 2

QM(G:B) ; BT >a” +2M (12)
1-Qy(> 8) 82 <a?+ oM
The optimum value of A is given by
wi] .
Ao= 27t 1-oue?) - ows®y 1+ ¢H*VH 9

We use the bound ()2) on l—QM(a,B} where applicable and elsewhere bound l—QM
(@,8) by 1. Thus the evaluated error probability is always an upper bound.

In this manner Pm,n is found and PE is computed from (3). It may be
pointed out here that for a data block length of 100 or more Zk_l in the
equation can become very large, and make direct evaluation difficult. How-
ever since P, | is given by (17) where n=2*"! in (3), and G, (y) is a prob-
ability distribution which is less than or equal to one, for large k, pm,ﬁ+0‘
Moreover the (L-k) multiplying factor in (3) reduces the weight on higher k
terms. Physically this would imply that comparison of a very long correct
path with an incorrect one produces a very low error probability. In fact,
computer results indicate that the LP;, ~ term in (3) predominates and that
the sum giving Pg is determined, usually by the first 5-10 terms.

Example results are shown in Fig.8{a) for a block length L=200 and K
from 3-7, and in Fig. 8(b) for K=5 and varying L. These will be discussed

in detail subsequently.
2. HARD QUANTIZING
(ORTHOGONAL)
Nest we consider an incoherent receiver (Fig. 4) with a hard quantized

output which serves as the branch metric for the decoding algorithm.In

Particular, the decoder now receives zero and one instead of a continuum



of values. The analysis of this case becomes simpler since the reduced path
metrics are now binomially distributed.
As before:

Pm,n = prob(zo < max(zl,zz...zm)) for paths differing over n branches
wnere

% reduced metric of correct path
zi(i#O}: reduced metrics of potential incorrect adversaries.
Since zd is the sum of 'n' branch metrics which are either 0 or 1, with prob-

abilities g and (1-q) respectively,

n
Z, =ri£1 X3 xi=0_w1th probability q
: . ‘g 20
x;=1 with probability (-q) 20
Also | y
zi(i%O) = z Y y;=0 with probability (1-p) .
1i=1 (21)

Y:= 1 with probability p
The probability p can be identified as (fig. 5) the probability of
deciding for a 1 in the case of envelope detection in the presence of noise
alone. q is the probability of deciding for a 0 when signal and noise are

present. Taking a threshold level b and signal amplitude A, noise variance

2
o b
R 2
q = fvexp -5 6% O 1y Es)y gy @29
0 . '
where S 4 A/c (signal to noise)
b/o
_ o 1 a2 -2 .
. f B exp (-3 (57457)) 1 (58) de (229
0

[5]

This can be identified as the complementary Marcum . Q- function 3



b
Q=1-Q6, 7 =1-Q(s,T9) (23)
where Q; (¢,8) =>Marcum Q functionyT é%@unmmlized threshold)
p is the simple integral of a Rayleigh density:
2 2.2
-b"/2N -S°T7/2
p=e /N _ o / : (24)
Now, since z

0 is the sum of n independent xi's, it is a number between

0 and n and is binomially distributed

prob (zo = a) = b(a,n, 1-q)

(252
An - : y
where b(e,n, 1-q) 2 "¢ (-9)¥ q" (258)
is the binomial probability function.

Similarly zs (i#0) are numbers between 0 and n and are binomially
distributed.

prob (z, = B)

i

= b(B, n, P.}
140 . 4
o = re e ap™? (20)
Hence pm,n‘: prob [zo < max (ZI’ZZ"'Zm)]
= z prob(z0= a) prob [at least one of z; > a]i¥0 (272)
= E prob(z0 = a) [l-prob(all of s X a)]i#o (27b)
Since the z, are statistically independent.
o m
= - - - 2
B Y b (a,n, 1-a){1-[B(a-1, n, p)]"} (22)
a=0
where B is the cumulative binomial distribution, clefened by
S
Bls,n,P) = > b(k,m,p)
-0

i:

10
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CALCULATION PROCEDURE:

First p and q are computed for a given signal to noise ratio and
threshold. Calculation of q involves Marcum's Q function which is easily
bounded using (12) and (19). Pm L can then be computed using the binomial

3

probability and distribution functions. These Pm - terms are summed as in

3

.(3). Here again LP was found to be dominant and only a few terms in the

1+ K
sum are actually required even for large L. Results for L=200 and optimum
_threshold are shown in Fig. 8c. The curves for optimum threshold were

obtained by using a minimization routine on P_ for T in the interval (0.0,

E

1.0). The threshold independence allows easy comparison with other schemes.

3. 'GREATEST-OF' (ORTHOGONAL)

.In this detection scheme, shown in Fig. 6, the receiver selects the
largest of the envelope detector outputs and assigns it a 1, the rest
being taken as zero. The correct and incorrect branch metrics cannot
‘simultaneously be 1, as in the case of hard quantizing. Intuitively, one
would expect that for very short constraint lengths (weak coding), this
scheme would be superior to hard quantizing since the former is closer to
the optimum scheme for the uncoded receiver in the same situation. On the
other hand, for longer constraint lengths, the ‘greatest-of' receiver
discards more information pertinent to the decision and behaves less like
the optimum continuous receiver than does the hard quantized receiver.

The latter should therefore be superior for large K.

The error probability, & ,on a single tentative decision 1is the prob-
ability of assigning a 1 to an incorrect branch metric. This can be
identified as thesymbolerror probability of an MFSK system, with ™ }Yegtiefﬂgea,

Thus L[e] 2
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e = f X exp [-x2 - Aé2/02)/2] IO{xAc/q)-
0

(29)
[l—Q—exp(—xzfzggq]dx

e can be computed from the above or read from available curves.
Since € is the probability of assigning a 1 to a wrong branch metric

(1-e) is the probability that the correct branch's metric is 1. Hence

prob (zo = a)=b(a, n, 1-€) (30)

and since all the signals are selected in a mutually exclusive way, the

probability of any given one of the 2K—l wrong signals being selected is

(3
p= — (31)
Hence
prob (z. = 8) = b(8, n, —) (32)
i K
2 -1
i#0

The rest is similar to the hard quantizing case previously described,
and the calculation can be completed using (4¢) and (32) along with (22)

and (3), to find Pm and PE.

T
CALCULATION PROCEDURE:
Since € is fairly difficult to compute directly, PE was found as a
function of e, using the binomial probability and distribution functions.
Then, curves for signal to noise ratio vs. 5[6], were used to plot PE as

a function of signal to noise ratio. Results are shown in Fig. 8&d.
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QUASI-ORTHOGONAL TREE CODES:

A logical extension to orthogonal tree codes that would permit smaller
bandwidth expansion is a tree code that uses quasi-orthogonal signals. In
particular, the signal set {SO, Sl...SZK_l}.would consist of PN sequences,
Gold codes, etc.. The choice would depend on the allowable correlation
properties of the signal set.

As for the orthogonal case, we shall investigate the performance of both

incoherent detection.and coherent detectiomn .

B. INCOHERENT QUASI-ORTHOGONAL SCHEMES:
1. Continuocus (Quasi-orthogonal):

The receiver structure is the same as that shown in Fig. 3. For the
continuous case the branch metrics can take on a continuum of values.

.We now assume that Ac is the auto-correlation of any signals Si(t),
and that K is the cross-correlation (or its upper bound) of any pair of
signals {Si{t), Sj(t); j#i}. 1If the upper bound is used, we obtain an
overestimate of the error probability.

From the receiver structure it can be seen that the reduced metric of

a correct path is

Y 2 B 2
zy = Zl (A cost. +x.) + 121 (A sind +y,) (33)

3 e : ; 2
where X;, y; are zero mean Gaussian random variables with variance o
The reduced metric zi(i#ﬂ) for an incorrect path i$s
n

2
K cosf.+x. +
(Kcosyex;)” + |

; 2
(K _sin8.+y.) (34)
1 j=1 ¢ 17
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where xj, ¥} are zero mean G.R.V.$ with variance 02.

This can be used to find Pm " using (4§ ), where:

fz (¢) is the non central }? density with noncentral parameter nAcz
0
and 2n degrees of freedom
: I (a) (1#0) the noncentral?x? density with noncentral parameter

i
an2 and 2n degrees of freedom.
It caj be noted here that this differs from the orthogonal case in that z;
. 2 . . 2 . ; (i#0)
is now noncentral X~ instead of just X  distributed. One would ex-
pect this to result in some degradation in performance, depending on the

value of Kc.

Substituting the above fz (.) and fz (.) in (9 ), we obtain:

0 i
1 o, 4
L j dq, £ (a;) {1-Q (= ==k (359
2 0 max
b 8 . m-1 /ﬁAc /a;
=m J day £, @) (el Q055 5 (359
0

Fz (q2) can be expressed in terms of the complementary Q function mentioned
1

earlier, which reduces the above to:

2 /K, /a, =l
Pm,n=n{ dq2 lech) [1_Qn( g 3_01 c
0 (55¢)
vnA_ Yq,
1 By w2
[“QTI( T’ G )}
Substituting
£, (@) = (= ')3%1 ( nKCZ*u)I & -"‘EJW} (26)
o - i exp (- — : BT 3¢
3 202 1k ? 202 el g2

C
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vnK
Cc

and letting n = S xR

e
Q
[¢]

Pm,n = J dx p(x) exp(-x)

0

-1
where (x) = 2_)(_}%_ T'lz I ( /7%
- P =3 ° exp (-3 I @V,
(30
m-1
{1-Q (m,"2x)} {1-Q_ (/ms, 2x)} . m
s /ﬁxc i /"nAc K, Vas e
" % = %A "y =
c
A Ac
where p = Kw-auto correlation to cross correlation ratio
c

It can be expected that as u becomes larger, the quasi orthogonal tree
code reduces to an orthogonal one, and that error probability obtained
from the above for large p should be nearly equal, but a little greater

‘than that obtained from (17).

CALCULATION PROCEDURE:
The integral (37) was evaluated numerically using a 10 point Gauss-
Lagyerre quadrature integration formula. The Q function was computed using

the bound mentioned earlier. Results for this case are shown in Fig. 8f.

2. HARD QUANTIZING (QUASI-ORTHOGONAL)

The ervor probability is easily evaluated in this case using the
Binomial distribution. With reference to the analysis for hard quantizing
discussed earlier, it can be seen that p and q (p is the probability of
assigning a 1 to an incorrect branch metric and q is the probability of

assigning a 0 to the correct branch metric) are both obtained from Rician
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densities. Referring to Fig. 7, we observe that

a=1-9 (5, T5) (32)
as before
and -
P = J y exp (- %—(S' + Q? )2) Iocg S') dY (349
b
K
where gr g 8
o
= Q(S', b/5) (33
A
irudf,p-qé (40)
c

Once p and q are obtained from the above, the rest of the analysis and
calculation procedure is analogous to the hard quantizing case discussed

earlier, and the calculation can be completed using (22) and (3).

COHERENT SCHEMES:

In order to compare the incoherent schemes with coherent ones, these

were also analyzed in a manner similar to the above.

C. COHERENT ORTHOGONAL SCHEMES:
1. CONTINUCUS ORTHOGONAL
Even though an exponential bound has been obtained for this case in

[3], we compute PE by summing Pn a terms so that a more direct comparison

3

to the other schemes considered is obtained.
o qz
p = d d £ f
m,n J 92 f | zo(ql) Bz (q2)

oo -0



; ; ; : : A
where Z., is unit variance Gaussian with mean vnS and z » =
max

0 max(zl,zz...zm),

zi(i#O) being independent Gaussian random variables with zero mean and
unit variance.

This reduces to

m 2, .m-1
e s f exp (-£7) H = (Y28) G (/28) d& @19

-0

where G(x) is the unit variance Gaussian cumulative distribution function
with mean vnS and H(x) is the unit variance Gaussian ¢.d.f. with mean O.

In terms of error functions:

Hix) = .5+ exf (D)2 if x>0
V2
= .5 ifx=0
Wiy .
= .5 -erf (-—)fz ifx<0
/'éa‘
G(x) = .5 +erf E&/2 ifx> a “iB
Y2
= .5 ifx=a
= .5-erf &8/ ifx<a
V2
g 2
where erf (&) %_Z_ I P dy
/;_ 0

The above integral was numerically evaluated using a 10 point Gaussian

Hermite formula. Results are shown in Fig. 8a.

2. HARD QUANTIZING (ORTHOGONAL) :
In this case, p and q (where they have the same meaning as before) are

found from.

17



p =1 - H(TS)

(42)

q = G(TS)

where H and G are defined as in (4i4)

The remaining calculation can be completed with (22) and (3). Results

are shown in Fig. 8b.

3. GREATESFOF (ORTHOGONAL)
The coherent case is identical to the incoherent one in terms of ¢,
the error probability of an MFSK system. The only difference now is

that the curves of PE vs. SNR must be obtained using the € vs. SNR curves

for coherent MFSK [6].

D. COHERENT QUASI-ORTHOGONAL :
1. CONTINUOUS (QUASI-ORTHOGONAL):

This case is easily handled in a manner similar to coherent continuous
(orthogonal) by recognizing that Pm,n = prob [ZO < max (zl,zz...zm)] where
zq and zs (i#0) are unit variance Gaussian random variables with mean vnS
and vnS' respectively (S = AC/O. st 8 KC/o). Results are shown in Fig. 8f.

1

2., HARD QUANTIZING (QUASI-CRTHOGONAL)

This scheme can be analysed in a manner identical to coherent hard
quantizing (orthogonal) by recognizing that the correct and incorrect branch
metrics are now centered about Ac and Kc instead of A and 0. Thus p and

q can be found from (42) with A replaced by AC-KC or S replaced by S(1-u).

U
-1

This corresponds to a shift of 20 log dB on the signal to noise ratio

18
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scale. As expected, for u >> 1, the performance is identical to the ortho-

"gonal one since Wu-1) + 1.

ITI. COMPARISON OF PERFORMANCE:

The results of the error probability calculation for the various
cases described are shown in Fig. 8. In this section we mention a few note-
worthy points about the obtained curves.
(1) Fig. 8(a) shows that incoherent detection results in a 2-3 dB degrada-
tion, and that the asymptotic performance of the coherent and incoherent
systems is equivalent, since the curves are essentially parallel for large
SNR.
(2) Error probability PE decreases as constraint length K is increased
From the even separation between the curves for K=3,4,5,6,7 it may be

inferred that P_ decreases in an exponential way. The decrease in P is

E E

greater for increased SNR, a property which has been pointed out in [2].

(3) From Fig. 8(b) it can be seen that PE increases with block length L.

In the expression for PE (3), the term LPl,K predominates, and a linear
increase in PE can be expected. This is borne out by the even separation of
the curves for exponentially increasing L in Fig. (6). It can be noted

that Pg is insensitive to L and having shown this, we consider curves only
for L=200.

(4) Fig. 8(c) shows that the degradation caused by incoherent detection

is 2-3 dB for hard quantizing also. The general nature of the curves is

the same as for the continuous case, and the previous observations still

apply.

(5) Fig. 8(d) shows Pp curves for 'greatest-of' detection. The improvement



with K is found to decrease with increasing K, since the curves tend to
bunch closer.

(6) Fig. 8(e) shows how the three incoherent schemes compare. AS
expected, the continuous case yields the lowest PE for a given SNR. The
degradation due to hard quantizing is seen to be about 2-3 dB over most

of the range. Except for this shift in SNR, the continuous scheme is
essentially equivalent to the hard quantizing one; the curves have the same
general nature and are parallel. The 'greatest-of' scheme is better than
hard quantizing for small K, but the advantage decreases as K increases.

K = 3 is about 2 dB better, but K = 7 is typically less than 1 dB better.
The choice between these two schemes could then be dictated by the con-
straint length of the code.

(7) Fig. 8(f) shows the quasi-orthogonal continuous case as compared
with the orthogonal one. It is found that even for a low ratio of auto
correlation to cross correlation such as 8, the degradation is typically
only.2- .4 dB. For large AC/KC such as 25b, the quasi-orthogonal system
should be essentially equivalent to the orthogonal ones; this is borne

out by the results which show the curves for AC/KC =250 just above the
orthogonal curves. These results show that for a slight SNR degradation
a significant bandwidth saying is possible by using %uasi—orthogonal codes
instead of strictly orthogonal ones.

(8) Fig. 8(g) shows the same set of curves as (f) for hard quantized
quasi—orthogonal. The degradatipn is somewhat greater in this case, but
this is an overestimate because of an additional bound used (evaluation of

p from (4¢) using {:SIDin computing Py for the hard cuasi-orthogonal case.



IV. QUASI-ORTHOGONAL TREE CODES FOR MULTIPLE ACCESS:

We consider briefly an example application of quasi-orthogonal tree
codes to multiple access. The possibility of using orthogonal convolutional
codes for multiple access has been discussed in [12], in which several
_low duty cycle users emplﬁying on-off signalling are considered. Here we
analyze the performance of a multiple access scheme which uses incoherent
detection and a quasi-orthogonal tree code. It is assumed that other
user interference is the dominant source of noise. )

A simple way to achieve multiple access is to allow all users to transmit
simultaneously, using the same signal set. The encoder for each user adds a K bit
portion of a unique pseudo noise sequence to the contents of the K bit shift
register in Fig. 1, and uses the sum to select a signal Sj(t} {j=0,1..2K-1). [12]
This makes other user interference appear like random noise and may be thought to
have the effect of providing each user with a different code. The use of ortho-
gonal signals for the tree code is, of course, desirable, but for a code of con-
straint length K, a bandwidth expansion of 2K is required. On the other hand,
suitable choice of a family of mutually quasi;orthogonal signals (such as Gold
codes) can provide 2K signals with a bandwidth expansion substantially less than
2K, though with some degradation in performance. This motivates the use of a
quasi-orthogonal tree code for multiple access.

The receiver for any user is identicai to that in Fig. 3; however, the branch
metric corresponding to channel i is now interpreted as the branch metric for
channel (i- <pn>)mod 2K where <pn> is the value of the K bit portion of the sequence
added at the encoder. Thus the receiver must have a synchronous copy of the PN
sequence being generated at the encoder. The expanded version of one channel of the
receiver is shown in Fig. 9. We assume that M users are transmitting simultaneously

and that in a signalling interval user j sends Si (t)cos{w0t+ej). Si.(t] is the

J J
signal on the code tree sent out by user j, and is assumed to be any of the signals
K

{Sis i=0,1...2 -1} with eq ! probability. Sj

is a random phase associated with



user j's carrier, and is assumed to be uniformly distributed. The composite

received signal (y(t) at any receiver is given by

v(t) = Sil(t)cos(met +61) + Si (t)cos(mot + 82) e -

: 43)

+-Si (t)cos(mot + BM}

M

Consider now receiver 1 where Si. = SO‘ The output of the matched

filter on the channel corresponding to S0 is vo{t), where the superscript
refers to channel 0. This can be expressed as a desired signal part and
a "noise" part due to other user interference. The matched filter output

peaks at t=t,.

M :
0
v (Bj-ACcos{w0t0+81] + iZz xicos(woto + Bi) “44)

A, with probability 172%

n

X.
where i

K_ with probability 1—1/2K
c

This is because the peak output of the matched filter due to the

“interfering signals Si (j#1) is the cross correlation of S0 and Si A
j j
Now < So{t) . Sij(t} > = AC if Si.= S0 and is equal to Kc 515 Si. # SO'
Using the assumption that Si is any of 2K signals on the tree with equal
3
probability we obtain (44)

Hence the two components y . and Y on channel 0 can be expressed as

M

B _ o es & .
yc = ACCOJSI + igz xicosﬁi = Acc¢581 + n,
(45)
0 M
ys = AC51nel + izz x151n8i = Ac51n81 + ns

The quantities n and n  are random terms representing the noise due
G

to other user interference. The variance of this noise is



Q
"
Q
I

M 2
T=9, i E ( 122 xicosei) (4ec)

M-l 2 K 2
" K (A" + (2°-1) K.} @h

using the fact that x; and Gi are independent and that 8. is uniformly
"distributed.

Similarly, the matched filter output on an incorrect channel, say

channel 1,is vl(t) and is given by,

M
vl(to) = chos(mot + 81} + z xicos(moto + Bi) “47)
i=2
The y. and yg components are therefore:
1 i £
¥~ = K eosh. ¥ Y x.cosB. - K cos®, +n
c c 1 2 1 i c 1 c
o (42)
1. K sinb, + % x.sind 8 Kk sino, + n
Ys = ¢ 1,1 T - 1 s

If now, we assume that the random variables n, and n_ are Gaussian,
which is reasonable if M, the number of users, is large, the above can be

used to compute Py for a given number of users, M by using (37) where,

A K+1 1/2
A ¢ 2
S = g = [ K 2 ] (4Q)
n (1+(2 --1)jp ) (M-1)
and
K
A ¢ S
S' = —— = —
A n P
(u é EEJ ratio of auto correlation to cross correlation).

(¢}
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PERFORMANCE USING GOLD CODES:

We now obtain performance curves for the multiple access scheme analyzed
above for a specific family of quasi-orthogonal signals. Since Gold codes
are widely used for multiple access schemes and have the property of provid-
ing large families of sequences with relatively low mutual cross-correlation,
we use these for this example. A measure of the multiple access capability
of a system is the bandwidth expansion per user (£), needed to maintain a
~ given error probability, PE. Such curves of PE vs. £ are obtained in a
manner described below.

In [14] it is shown that 241 distinct Gold sequences, each of length

2“-1 can be generated with a 2 register Gold code generator of length n.

Also, the cross-correlation function K. is upper bounded by

2{n+l)/2 + 1 for n odd _
X | (50)
£ 2(n+2)/2 + 1 for n even

n # mod4
Hence the ratio of auco correlation to cross-correlation (u) can be lower

bounded for a given n, since auto-correlation AC s 3% (length of the

sequence).

To construct a tree of constraint length K using the above Gold code
families, 2K signals are needed. If timing information is available at the
receivers, a total of (2n+1) (Zn-l) usable signals result, since there
are 2"-1 cyclic shifts of each of 241 sequences. Hence n must satisfy

the inequality,

"1 @ -1 = 2% 3 > 2K : 51
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which yields n > K/2; n is at least the smallest integer greater than K/2.
The corresponding bandwidth expansion is equal to the length of the sequences
and is - 2n—1. We obtain curves of PE 5 {E={2n-l)/M) using the above and
(49) for given K and various n > K/2. It may be observed that for n odd,

the cross-correlation bound is lower in (5¢). Performance is found to im-
prove as the constraint length, K, increases, keepiﬁg n as close to K/2

as possible seems advantageous, since for a given K, lower n gives better
performance. Typically a K=10, n=7 system can support about 10 users at

an error probability of 10_5. Note that this is the block error probability

for L = 200, and is always much greater than bit error probability.

V. CONCLUSION:

Performance curves for orthogonal tree codes using various detection

schemes, both coherent and incoherent, have been obtained. In addition, the
effect of using a quasi-orthogonal signal set in place of an orthogonal

one has been considered. The results indicate that a substantial saving

in bandwidth in exchange for a moderate increase in power becomes possible
An example application of quasi-orthogonal tree codes to multiple access

has been presented. Other schemes for multiple access using quasi-ortho-

gonal tree codes are being investigated and will be considered in a separate

paper.
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