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Abstract

The perforreance of orthogonal and quasiorthogonal tree codes i$ con-

sidered for incoherent and coherent systems. In addition several alterna-

tive receiver structures using hard quantizing and "greatest-of" detection

are treated. Upper bounds on error probability are derived and are used as

a basis for system comparison. An application of quasiorthogonal tree codes

to a multiple access environment is presented as an example and discussed.

Such codes potentially permit reduced bandwidth expansion.

The research reported in this paper was supported in part by the National
Science Foundation under grant No. ENG 76-09001.

-



""-1

2

1. INTRODUCTION:

A. BACKGROUND: Orthogonal tree codes in conjunction with the Viterbi

algorithm for maximum likelihood decoding are a feasible alternative to

block codes for communication over 10 I.AJsignal to noise ratio ~ power

limited channels. Convolutional codes have been treated in detail by

Viterbi[l] and the performance of orthogonal tree codes on coherent channels

in the presence of white gaussian noise has been considered[3]. In this

paper, we consider tree codes using (a) orthogonal signals, and (b) quasi-

orthogonal signals. Incoherent and coherent schemes are treated as well

as alternative receiver structures using hard quantizing and "greatest-of"

detection. Upper bounds on error probability are derived and are used as

a basis for system comparison. An example application of quasi-orthogonal

tree codes in a multiple access environment is discussed.

B. ENCODER & DECODER: Figure 1 shows a convolutional encoder for

tree codes. The 2K signals (Sk(t), k=O,l... 2K_l) are mutually

orthogonal or quasi-orthogonal for orthogonal and quasi-orthogonal tree

codes respectively. Each signal has energy ES; K is the constraint length

of the code.
Wi th reference to 1/'~'2,ttihen tt-e -s~na.e6 a-re -o'(t#'Io~oYtae,i.1 can be ob-

served that any two paths whose generating sequences are not identical

over more than K-l bits at a time, are orthogonal over their entire length.

This forms the basis of the decoding algorithm presented by Viterbi[3].

The subsequent analysis assumes an encoder structure as described above

and a Viterbi decoder as specified by the algorithm in [3].

C. UPPER BOUNDON ERROR PROBABILITY: An upper bound On the block error

probabili ty of a sequence of L bits followed by K-l synchronizing zeros

has been derived in (3], and is obtained by union bounding the probabilities
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of error in any comparison which the algorithm makes between two paths.

For ~ontinuous coherent orthogonal signalling the bound has been shown in

[2,3] to be

SK L-l S
PE ~ LPI (N R) + I (L-k) P k-l [ N R (K+k) ]

0 k=l 2 0
(1)

where

SJ
P. (N R) = Prob [zO < max (zl,z2""z.)]J 0 J

and zo' zl' . Zj are independent unit variance gaussian random variables,

Zo has mean 12SJ/NOR and the rest have zero means.

To generalize the above mentioned results to fit any detection scheme,

we recognize that z. is a modified path 'metric' of the ith path under con-1.

sideration. The term path 'metric' normally means the sum of the optimum

branch metrics for all branches on that path. For the continuous coherent

case, the optimum branch metric is the inner product of the received signal

and the signal corresponding to the branch considered. In general, the opti-

mum branch metric will depend on the actual detection scheme used.

In comparing a correct path with an incorrect adversary, an error

will be made when the path metric of the incorrect path exceeds that of

the correct one. If the two paths have some branches in common, then the

common branch metrics are not relevant to the comparison since they can be

cancelled from both path metrics. Cancellation of common terms yields a

new metric which can be thought of as the path's 'reduced metric' for that

comparison. Because of the nature of the algorithm and bounding argument

in [3], each z. (ita) encountered in (1) is the reduced metric of path iJ.

(i~a) where path i (all ilO) differs from the correct path over 'n'

branches, and za is the reduced metric of the correct path.
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We can now generalize the error probability bound by defining

6
P = prob [zO < max (zl' Z2 ...z )]m,n m

m terms

where zl' z2...zm are the.reduced metrics of 'm' potential adversariesto

(2)

the correct path, each of which differs from the correct path over the

same 'n' branches, and Zo is the reduced metric of the correct path. Thus,

P is the probability that an error will be made in any of 'm' potentialm,n

comparisons of the correct path to incorrect potential adversaries, each of

which differs from the correct path over the same 'n' branches.

The bound can then be expressed as

L-l

P < LP + I (L-k) P k-l
. E - 1,K k=l 2, K+k

(3)

Evaluation of the error probability for tree codes using a given detection

scheme therefore requires computation of P .m,n

II. EVALUATION OF ERROR PROBABILITY BOUND FOR VARIOUS DETECTION SCHEMES:

(IN GAUSSIfu~ NOISE)

A. INCOHERENT ORTHOGONAL SCHE~ffiS:

1. cOt\1'fUmolls: The receiver structure is shown in Fig. 3. The
ORTHOGONAL

optimum receiver for low signal to noise ratio, employs a quadratic de-

tector as shown, the output of which is used as the branch metric.

Hence. the reduced path metric Zo of the correct path is the sum of

squares of 'n' independent Rician variates. If A is defined as the signal

amplitude at the input to the quadratic detector. Zo can be written as

n 2 n 2Zo = I (Acos8.+x.) + I (Asin8.+y.).
1

J. 3. .
1 J. 1

J.= 1=
(4 )
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x. and y. are zero mean gaussian random variables with variance a2,1 1

The reduced metric for a potential incorrect path is the sum of squares

of In' statistically independent Rayleigh variates

n 2
z.(ita) = L YJ

'

1 j=l

. n
+ \' 2L x.
j=l J

(5)

where x. and y. are zero mean Gaussian random variables with variance a2,J J

Hence,

P =prob [zo < max(zl,z2"'z )]m,n m
00 00

(6)

= J I fz (q2) dq2 fz (ql) dql
0 max a

ql

where z ~- max(z l'Z2' . ,z )
- maA m

(7)

The reduced metric of the correct path Zo is statistically independent'

to the incorrect reduced path metrics zi (itO) because they are mutually

orthogonal over the In' branches. The z. (itO) are indentically distri-1

buted - and statistically independent, j(ence

m-l
f (a)::mf (a) [F (a)]Z Z

l
Z
lmax

Since Zo is the sum of In' squared Ricians, it is non-central )(2

(8)

distributed with 2n degrees of freedom and non-centrality parameter 1lA2 [4].',he

I1lndom lIariAt&zl is X2 distributedwithI2n! degrees of freedom since it is the

sum of squares of In' independent Rayleigh variates[4] .
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Hence, we have,

00 00

Pm,n = f dq2 I dq1 fzo
(q1) fz (q2)

0 0 max
(q)

where,

1 n-1 2
fz (a) = ~ (~)---zexp (- nA +a) I (anA2)1/20 2a nA2 2 2 n-1 [ -Z ]a a

(tea)

f (S) =
zl

1 n-1 S

(a2)n2nf(n) S exp[ - 2a2]

uob)

Letting ~ = ~Ja and y = inAja

q2 lCl;/a

J

r ~ n-1 1 2 2
fz (a) da = J ~ (y) exp (- 2(~ +Y )) In-1(yo d~

0 0 0

( t1)

The above integral can be identified as the complementary generalized

Q-function, which is defined in the 1iterature[S] as:

00

t.

J

t; M-1 1 2 2
QM (a,S)= ~ (a-) exp [- 2" (~ +a )] IM-1 (a~) d~

S

(12)

This yields:

00

Pm,n = J dq2 fz (q) {l-O (1nA (q2
0 max 2 'n a' q)}

((pOa)

00

=mJ dq2 fz (q2) {Fz (q2)}m-1 {I-O (1nA 1q2
)}

0 1 1 'na'a

(13t»

The)( distribution function with k degrees of freedom is defined as[4]

S

Gk (5) = I kAft<- .k/2-1 exp (-'0) d.0 2 Z(\ti2) 2

(14 )
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Therefore,
- qz

FZI (qZ) = GZn (crZ) (15)

00

P - f
qz m-I 10.-

m,n - m dqz fz (qz) {GZn (2")} {I-O (InA qz)}
0 I cr 'n cr'cr

(J60.)

-Letting y = q /crz, we obtain
"2.
00

Pm,n =mJ dy 2~ yn-I exp (- ~) {Gz
n (y)}m-I {l-Q (lilA, Iy)}

0 (n) n cr
Ci£,b)

Substituting y = Zx

00

J dx exp (-x) hex)
0

n-I
x m-I f ~

where h (x) = r (n) {G2n (2x) } { l-Qn (vnS, vZx) }. m

P =
m,n

(17)

CALCULATION PROCEDURE:

The above integral for P can be evaluated using the Gaussian LaO~rrem,n S
[7,9] A 10

..
1 d

.
quadrature formula . -po~nt lntegra was use ln actual calculation.

The above calculation requires hex) to be supplied as a function.

This necessitates routines for (i) cumulative>C distribution function

(ii) generalized complBmentary Q function. The)( distribution function is

available as a subroutine in most computing facilities. The ~omplementary

Q functJ~n has been variously computed[lO,ll,S], but a simple and accurate

way is to use a Chernoff bounding technique[S~ The formula used is
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-M 2 2 )(1-21.) exp (-;\~ ) exp (;\a / (1-2;\)

[
QM(a ,13) ; 132 > a 2 + 2M

)
> 2 2

l-QM(a 13) ; f3 < a + 2M

(j~n

The optimum value of A is given by

1 '

Ao= 2- O-(M/S2) - (M/S2) [1+ (as)2 ] 1/2}M Oq)

We use the bound (Ig) on l-QM(a,S) where applicable and elsewhere bound l-QM

(a,S) by 1. Thus the evaluated error probability is always an upper bound.

In this manner P is found and PE is computed from (3). It may be
m,n

pointed out here that for a data block length of 100 or more 2k-l in the

equation can become very large, and make direct evaluation difficult. How-

ever sincePm,n is given by (17) where m=2k-l in (3), and G2n(y) is a prob-

ability distribution which is less than or equal to one, for large k, P +0.m,n

Moreover the (L-k) multiplying factor in (3) reduces the weight on higher k

terms. Physically this would imply that comparison of a very long correct

path with an incorrect one produces a very low error probability. In fact,

computer results indicate that the LPl'K term in (3) predominates and that

the sum giving PE is determined, usually by the first 5-10 terms.

Example results are shown in Fig.8{~ for a block length L=200 and K

from 3-7, and in Fig. 8(b) for K=5 and varying L. These will be discussed

in detail subsequently.

2. HARD QUANTIZING
(ORTHOGONAL)

Nest we consider an incoherent receiver (Fig. 4) with a hard quantized

output which serves as the branch metric for the decoding algorith1n.ln

particular, the decoder now receives zero and one instead of a continuum
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of values.
The analysis of this case becomes simpler since the reduced path

metrics are now binomially distributed.

As before:

Pm,n = prob(zO < max(zl,z2" ,zm))_for paths differing over n branches

where

Zo: reduced metric of correct path

z. (ita): reduced metrics of potential incorrect adversaries.~

Since za is the sum of 'n' branch metrics which are either a or 1, with prob-

abilities q and (l-q) respectively,

n

Zo =.l xi; xi=O with probability q
. . 'I 1=1

xj.=l with probabilit), (I-C{.)
(20)

Also
n

z.(irO) = I y.; y.=O with probability (l-p)1 . 1 ~ ~
~=

y:.= 1 with probability p

(21)

The probability p can be identified as (fig. 5) the probability of

deciding for a 1 in the case of envelope detection in the presence of noise

alone. q is the probability of deciding for a 0 when signal and noise are

present.

2
0'

Taking a t~res~old level b and signal amplitude A, noise variance

b

q = J y
0

S ~ AIcr

1 2 Y 2 Y
exp (- ? (S + (-) ) 10 (- S) dy- cr cr (2Za)

where (signal to noise)

b/cr

= J ',-~ exp (-~ (S2+~2)) 1O(SO d~
0

(22ij

This can be identified as the complementary r.1arcum.Q- function [5] ,
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q = 1 - Ql(SJ ~) = 1 - Ql(SJTS)

whereQl (a ,(3) =>Marcum Q function; T ~~0ormalized

p is the simple integral of a Rayleigh density:

th~eshold)

b Z/ z z
p = e- 2N = e-S T /2

10

(23)

(24)

Now, since Zo is the sum of n independent xi's, it is a number between

0 and n and is binomially distributed

prob (zO = a) = b(a,n, l-q)
~ n a n-a

where b(a,n, l-q):: ~ (l-q) q

is the binomial probability function.

Similarly z. (if 0) are numbers between 0 and n and are binomially1

distributed.

prob (z. = (3)~

if 0

= b(S, n, p)

:: n fa Cp)S (l-P )n-s

Hence Pm,n = prob [zO < max (zl,zZ...zm)]

= L prob(zO= a) prob [at least one of zi ~ a]ifOa

= l prob(zO = a) [1-prob(a11 of zi ~ a)]ifO
a

Since the z. are statistically independent.1

n m
P = L b (a, n , 1- q){ 1- [ B(a -1, n, P)] }

m,n a=O

where B is the cumulative binomial distribution, dep':-ned by
S

B(s,'Y1,p) := L b(R,'ft,p)
R;o

(2~)

(25b)

(20

(27a)

(21b)

(22)

~-
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CALCULATIONPROCEDURE:

First p andq are computed for a given signal to noise ratio and

threshold. Calculation of q involves Marcum's Q function which is easily

bounded using (IB) and (lq). P can then be computed using the binomial
m,n

probability and distribution functions. These P terms are summed as in
m,n

(3). Here again LPl K was found to be dominant and only a few terms in the,

sum are actually required even for large L. Results for L=200 and optimum

threshold are shown in Fig. 8c. The curves for optimum threshold were

obtained by using a minimization routine on PE for T in the interval (O~O,

1.0) . The threshold independence allows easy comparison with other schemes.

3. 'GREATEST-OF' (ORTHOGONAL)

. In this detection scheme, shown in Fig. 6, the receiver selects the

largest of the envelope detector outputs and assigns it a 1, the rest

being taken as zero. The correct and incorrect branch metrics cannot

simultaneously be 1, as in the case of hard quantizing. Intuitively, one

would expect that for very short constraint lengths (weak coding), this

scheme would be superior to hard quantizing since the former is closer to

the optimum scheme for the uncoded receiver in the same situation.
On the

other hand, for longer constraint lengths, the 'greatest-of' receiver

discards more information pertinent to the decision and behaves less like

the optimum continuous receiver than does the hard quantized receiver.

The latter should therefore be superior for large K.

The error probability, £ ?on a single tentative decision is the prob-

ability of assigning a 1 to an incorrect branch metric. This can be

identified as the5~wterror probability of an MFSK system, witk. m pre~ue~cie5.

TI1us LGJ ""
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ex>

J
2 2 2

)
£ = X exp [-x + At /a )/2J IO(xAc/a .

0 2 Iffi-I,-,
[l-Q-exp(-x /2)) px

(24)

£ can be computed from the above or read from available curves.

Since £ is the probability of assigning a 1 to a wrong branch metric

(1-£) is the probability that the correct branch's metric is 1. Hence

prob (zO = a):b(a, n, 1-£) c~())

and since all the signals are selected in a mutually exclusive way, the

probability of any given one of the 2K_l wrong signals being selected is

(;
- KP - 2 1

(31)

Hence

£
prob (z. = 8) = b(8, n, K )

1 2 -1
if 0

t?2)

The rest is similar to the hard quantizing case previously described,

and the calculation can be completed using C~O) and (32) along with C-22)

and (3), to find P and PE'
m,n

CALCULATION PROCEDURE:

Since £ is fairly difficult to compute directly, PE was found as a

function of £, using the binomial probability and distribution functions.

Then, curves for signal to noise ratio vs. £[6], were used to plot PE as

a function of signal to noise ratio. Results are shown in Fig. 8d.
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QUASI~ORTHOGONALTREECODES~

A logical extension to orthogonal tree codes that would permit smaller

bandwidth expansion is a tree code that uses quasi-orthogonal signals. In

particular, the signal set {SO' Sl...S K-1}.would consist of PN sequences,2

Gold codes, etc.. The choice would depend on the allowable correlation

properties of the signal set.

As for the orthogonal case, we shall investigate the performance of both

incoherent detection-tt-nd cohe -rent de-tectio'tl .

B. INCOHERENT QUASI-ORTHOGONALSCHEMES:

1. Continuous (Quasi-orthogonal):

The receiver structure is the same as that shown in Fig. 3. For the

continuous case the branch metrics can take on a continuum of values.

We now assume that A is the auto-correlation of any signals S. (t),c ~

and that K is the cross-correlation (or its upper bound) of any pair ofc

signals {S. (t), S. (t); jIi}.

~ J If the upper bound is used, we obtain an

overestimate of the error probability.

From the receiver structure it can be seen that the reduced metric of

a correct path 15

n 2 n 2Z
o = I (A cos8.+x.) + I (A sin8:+y.).

1 c ~ ~ .-
1

ell
~= 1*

(33)

where x., y. are zero mean Gaussian random variables with variance cr2.~ 1

The reduced metric z. (it-O) for an incorrect path is1

n 2 n . 2
z. = L (K cose. +x. ) + I (K s~ne. +y . )

1 '- 1 c J J '- 1
c J J

'-l J- J-lrO

(34)

-
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where x., y. are zero mean G.R.V.S with variance a2.
J J

This can be used to find P using (q), where:m,n

the non central ~ density with non central parameter nA 2cf (a) is
Zo

and 2n degrees of freedom

f (a) (tFO) the non central ~ density with noncentral parameterz.

2 1
nK and 2n degrees of freedom.c

It CaITbe noted here that this differs from the orthogonal case in that z.1

is now noncentral)(2 instead of just )(2distributed. One would ex- (iFO)

pect this
to result in some degradation in performance, depending on the

value of Kc.

Substituting the above f (.) and f (.) in (q ), we obtain:
Zo zl

00

p -
f
d v'iiA ~

m,n- q2 fz (qz) {l-O (~ q2
)}

0 max ~ a ' a

(3jj)

00

=;. f dq2 fZl (q2)
0

m-l 1llA;q;
rF "".(q )1 {l-O (

~ - )}~ Z 2 - . ~ a' a1 .
(55b).

F (q2) can be expressed in terms of the complementary Q function mentioned
zl

earlier, which reduces the above to:

00

P =171

{
d v'iiK ICJ": m-l

m,n q2 fz (q ) [l-O
( ~ q2

0
1 2 ~ a' -)]

a .

(55C)

IiiA ;q;
[1-~ (-;-, a)]

Substituting

n~l 2 "

f (a) =~ (
a.

)
2 nK +a (cC:" 2)1/2

Z 2 - exp (
c"

1 2a nK 2 -" 2 ) I " {---~
}

c 2a n-l 2
a

(36)

_.~
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~K 11 A A K
d 1

. c ex
S = C S ' £.1 Can ettlng ~ = ---, x = ---2 ' --, = -

0 20 0 0

co

(37)
m-l

{l-~ ('1,I2X)} {l-~ (Ins, 12X)} .. m

inK InAc Kc - Ins = Ins'6 ~ = A - II1'\= cr 0 c

A

where II ~ KC auto correlation to cross correlation ratio
c

It can be expected that as II becomes larger, the 1Uasi orthogonal tree

code reduces to an orthogonal one, and that error probability obtained

from the above for large II should be nearly equal, but a little greater

than that obtained from (//).

CALCULATION PROCEDURE:

The integral (37) was evaluated numerically using a 10 point Gauss-

Laguerre quadrature integration formula. The Q function was computed using

the bound mentioned earlier. Results for this case are shown in Fig. 8f.

2. HARDQUANTIZING (QUASI-ORTHOGONAL)

The error probability is easily evaluated in this case using the

Binomial distribution. With reference to the analysis for hard quantizing

discussed earlier, it can be seen that p and q (p is the probability of

assigning a 1 to an incorrect branch metric and q is the probability of

assigning a 0 to the correct branch metric) are both obtained from Rician

p = I dx p(x) exp(-x)m,n
0 n-l 2where 2x 2

exp (-}) In-I(112"X ) .p(x) = )
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densities. Referring to Fig. 7, we observe that

q = 1 - Q1 (S, TS) (3£)

as before

and
00

p =J
y exp (- _21 (S' + (1..)2) I (L S') dYcr Ocr

b
(3qa)

where
K

S' ~ ~
cr

= Ql (S " b/c)

6 Ac S
If p = K ' P = Ql (-, TS)c 11

(39 b)

(40)

Once p and q are obtained from the above, the rest of the analysis and

calculation procedure is analogous to the hard quantizing case discussed

earlier, and the calculation can be completed using (28) and (3).

COHERENT SCHEMES:

In order to compare the incoherent schemes with coherent ones, these

were also analyzed in a manner similar to the above.

C. COHERE~l ORTHOGONAL SCHE~ffiS:

1. CONTINUOUS ORTHOGONAL

Even though an exponential bound has been obtained for this case in

[3], we compute PE by sUIT~ingP terms so that a more direct comparison
, m,n

to the other schemes

00 q2

Pm,n = J dq2 f

considered is obtained.

_00 _00

dql fz (ql) fz (q2)0 max
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whereZo is unit variance Gaussian with mean Ins and z ~ max(z l,z2..'z ),max m

z.(iFO) being independent Gaussian random variables with zero mean and1

unit variance.

This reduces to

00

p ='ffl
f

exp (_t;2) Ifl-l (12t;) G (120 dt;
m,n r'Tf

(4/a)

_00

where G(x) is the unit variance Gaussian cumulative distribution function

with mean Ins and H(x) is the unit variance Gaussian c.d.f. with mean O.

In terms of error functions:

(~I~

a-x
= .5 - erf (---)/2

12
t; 2

whef'e erf (0 ~-2 f e-Y
/,T 0

if x < a

dy

The above integral was numerically evaluated using a 10 point Gaussian

Hermite formula. Results are shown in Fig. Sa.

2. HARD QUANTIZING (ORTHOGONAL):

In this case, p and q (where they have the same meaning as before) are

found from.

Hex) = .5 + erf ()/2 if x > 0
12

= .5 if x = 0

x.
if x < 0

= .5 - erf ( -/2)/2

x-a
if x > aG(x) = .5 + erf (---)/2

l2

= .5 if x = a
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p = 1 - H(TS)

q = G(TS)
(42)

where Hand G are defined as in (-Hb)

The remaining calculation can be completed with (28) and (3). Results

are shown in Fig. 8b.

3. GREATESFOF (ORTHOGONAL)

The coherent case is identical to the incoherent one in terms of £,

the error probability of an MFSKsystem. The only difference now is

that the curves of PE vs. SNR must be obtained using the £ vs. SNR curves

for coherent MFSK [6].

D. COHERENT QUASI-ORTHOGONAL:

1. CONTINUOUS (QUASI-ORTHOGONAL):

This case is easily handled in a manner similar to coherent continuous

(orthogonal) by recognizing that P = prob [z O < max (z l ,z 2 ' ..z )] wherem,n m

Zo and zi (if 0) are unit variance Gaussian random variables with mean Ins

and Ins' respectively (S ~ A /0. S' ~ K fa).c c Results are shown in Fig. 8f.

2. HARD QUANTIZING (QUASI-ORTHOGONAL)

This scheme can be analysed in a manner identical to coherent hard

quantizing (orthogonal) by reco&mizing that the correct and incorrect branch

metrics are now centered about A and K instead of A and O.c c Thus p and

q can be found from (42) with A re p laced by A -K or S replaced by S(l-~).c c

This corresponds to a shift of 20 log ~ l dB on the signal to noise ratio11-
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scale. As expected, for ~ » 1, the performance is identical to the ortho-

. gonal one since o/(~-l) + 1.

III. COMPARISON OF PERFO~~CE:

The results of the error probability calculation for the various

cases described are shown in Fig. 8. In this section we mention a few note-

worthy points about the obtained curves.

(1) Fig. 8(a) shows that incoherent detection results in a 2-3 dB degrada-

tion, and that the asymptotic performance of the coherent and incoherent

systems is equivalent, since the curves are essentially parallel for large

SNR.

(2) Error probability PE decreases as constraint length K is increased

From the even separation between the curves for K=3,4,5,6,7 it may be

inferred that PE decreases in an exponential way. The decrease in PE is

greater for increased SNR, a property which has been pointed out in [2].

(3) From Fig. 8(b) it can be seen that PE increases with block length L.

In the expression for PE (3), the term LPl K predominates, and a linear,

increase in PE can be expected. This is borne out by the even separation of

the curves for exponentially increasing L in Fig. (6). It can be noted

that PE is insensitive to L and having shown this, we consider curves only

for L=200.

(4) Fig. 8(c) shows that the degradation caused by incoherent detection

is 2-3 dB for hard quantizing also. The general nature of the curves is

the same as for the continuous case, and the previous observations still

apply.

(5) Fig. 8(d) shows PE curves for 'greatest-of' detection. The improvement

..--
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with K is found to decrease with increasing K, since the curves ~end to

bunch closer.

(6) Fig. 8(e) shows how the three incoherent schemes compare. AS

expected, the continuous case yields the lowest PE for a given SNR.
The

degradation due to hard quantizing is seen to be about 2-3 dB over most

of the range. Except for this shift in SNR, the continuous scheme is

essentially equivalent to the hard quantizing one; the curves have the same

general nature and are parallel. The 'greatest-of' scheme is better than

hard quantizing for small K, but the advantage decreases as K increases.

K = 3 is about 2 dB better, but K = 7 is typically less than I dB better.

The choice between these two schemes could then be dictated by the con~

straint length of the code.

(7) Fig. 8(f) shows the quasi-orthogonal continuous case as compared

with the orthogonal one. It is found that even for a low ratio of auto

correlation to cross correlation such as 8, the degradation is typically

only.2- .4 dB. For large A /K such as 256, the quasi-orthogonal systemc c

should be essentially equivalent to the orthogonal ones; this is borne

out by the results which show the curves for A /K =256 just above thec c

orthogonal curves. These results show that for a slight SNR degradation

a significant bandwidth saving is possible by using ~uasi-orthogonal codes

instead of strictly orthogonal ones.

(8) Fig. 8(g) shows the same set of curves as (f) for hard quantized

quasi-orthogonal. The degradation is somewhat greater in this case, but

this is an overestimate because of an additional bound used (evaluation of

p from (40) using (18))in computing PE for the hard ~uasi-orthogonal case.
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IV. QUASI-ORTHOGONALTREE CODES FOR ~IDLTIPLE ACCESS:

We consider briefly an example application of quasi-orthogonal tree

codes to multiple access. The possibility of using orthogonal convolutional

codes for multiple access has been discussed in [12], in which several

low duty cycle users employing on-off signalling are considered. Here we

analyze the performance of a multiple access scheme which uses incoherent

detection and a quasi~orthogonal tree code. It is assumed that other

user interference is the dominant source of noise.

A simple way to achieve multiple access is to allow all users to transmit

simultaneously, using the same signal set. The encoder for each user adds a K bit

portion of a unique pseudo noise sequence to the contents of the K bit shift

registerin Fig. 1, and usesthe sum to selecta signalS.(t) (j=O,1..2K_I). [12]J

This makes other user interference appear like random noise and may be thought to

have the effect of providing each user with a different code. The use of ortho-

gonal signals for the tree code is, of course, desirable, but for a code of con-

straint length K, a bandwidth expansion of 2K is required.

suitable choice of a family of mutually quasi-orthogonal signals (such as Gold

codes) can provide 2K signals with a bandwidth expansion substantially less than

2K, though with some degradation in performance. This motivates the use of a

On the other hand,

quasi-orthogonal tree code for multiple access.

The receiver for any user is identical to thctt in Fig. 3; however, the branch

metric corresponding to channel i is now interpreted as the branch metric for

channel (i- <pn»mod 2K where <pn> is the value of the K bit portion of the sequence

added at the encoder. Thus the receiver must have a synchronous copy of the PN

sequence being generated at the encoder. The expanded version of one channel of the

receiver is shown in Fig. 9. We assume that M users are transmitting simultaneously

and that in a signalling interval user j sends Si. (t)cos(wOt+6j)' Si. (t) is the
J J

signal on the code tree sent out by user j, and is assumed to be any of the signals

{So ;-0 1 ~K-l1 ..rith DQ Probabilit )r. 6. is a random phase associated with
l' , ... '- ;" . ~ '1. J
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user j t s carrier, and is assumed to be uniform:ly distributed. The composite

received signal (y(t) at any receiver is given by

yet) = S. (t)cos(w~t +e l ) + S. (t)cos(w ot + e2) -to . . .
~l v ~2

(~3)

+ SiM(t)coS(wot + 8M)

Consider now receiver 1 where S. = SO' The output of the matched
~l

filter on the channel corresponding to So is vO(t), where the superscript

refers to channel O. This can be expressed as a desired signal ~rt and

a "noise" part due to other user interference. The matched filter output

peaks at t=tO'

0 M
v (t):ACcos(w o tO+el) + L x.cos(wot o + e.)

0 i~2 ~ ~
(44)

where x. = A with probability 1/2K~ c

= K with probability 1-1/2Kc

This is because the peak output of the matched filter due to the

interfering signals S. (j1l) is the~ .
J

Now < SO(t) . S. (t) > = A -if S. = SO
and

~. c ~.
J J

Using the assumption that S. is any of 2K~ .
J

cross correlation of SO
and S. .1.

J
is equal to K if S. 1 S O

'
C 1.

J
signals on the tree with equal

probability we obtain (~4)

Hence the two components y and y on channel 0 can be expressed asc s

(4 fi)

The quantities nc and ns are random terms representing the noise due

to other user interference. The variance of this noise is

0 M 6 .
y = A cosSl+ L x.cose. = A cosSl + nc c i=2 1 c c

M

Y 0 = A sine1 + L x.sine. A sine1 + ns c i=2 1 1 c S
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1. 22M 2
cr ;: (J = (J = E ( Lx. cose.)

1'1 ns nc i=2 1 1
(46<:<)

M-l 2 K 2= -
K 1 {A + (2 -1) K } (46b)

2 + c c

using the fact that xi and 8i are independent and that 8i is uniformly

.distributed.

Similarly, the matched filter output on an incorrect channel, say

channel l,is Vl(t) and is given by,

1 M

V (to) = Kccos(wot + 81) + i~2 xicos(woto + 8i)

The Y and y components are therefore:c s

(47)

If now, we assume that the random variables nand n are Gaussian,c s

which is reasonable if M, the number of users, is large, the above can be

used to compute PE for a given number of users, M by using (37) where,

A
S ~ ~

(J =
n

2K+l 1/2
[ K ,/ 2 ]

(1+ (2 . -1-1 V ) (M-l)

(4q)

and
K

S' ~ ~ - S
(J --

~ A n V
( 11 = ~.K .

c
ratio of auto correlation to cross correlation).

1
M 11

Yc = K cos8l + L x.cos8. = K cos8l + nc i=2 1 1 c c
(48)

M

Y 1 = K sin8l + L x.sin8. K sin8l + n
S c i=2 1 1 c S
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PERPORMANCEUSING GOLDCODES:

We now obtain performance curves for the multiple access scheme analyzed

above for a specific family of quasi-orthogonal signals. Since Gold codes

are ~idely used for multiple access schemes and have the property of provid-

ing large families of sequences with relatively low mutual cross-correlation,

we use these for this example. A measure of the multiple access capability

of a system is the bandwidth expansion per user GE), needed to maintain a

given error probability, PE'

manner described below.

Such curves of PE vs. S are obtained in a

In [14] it is shown that 2n+l distinct Gold sequences, each of length

2n-l can be generated with a 2 register Gold code generator of length n.

Also, the cross-correlation function K is upper bounded byc

I Kcl
< f 2 (n+l)/2

l2 (n+2)/2

+ 1 forn
odd t

evenJ

(50)

+ 1 for n

n f. mod4

Hence the rat10 of aULO correlation to cross-correlation (~) can be lower

bounded for a given n, since auto-correlation A = 2n-l (length of thec

sequence) .

To construct a tree of constraint length K using the above Gold code

f .. K. 1 dam1l1es, 2 s1gna s are nee ed. If timing information is available at the

receivers, a total of (2n+l) (2n-l) usable signals result, since there

are 2n-l cyclic shifts of each of 2n+l sequences. Hence n must satisfy

the inequality,

(2n+l) (2n-1) = 22n-l > ZK (51)
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whichy:elds n > K/2; n is at least the smallest integer greater than K/2.

The corresponding bandwidth expansion is equal to the length of the sequences

d
. . n 1an 1.S . 2 - .

We obtain curves of PE vs. 6 (~=(2n-l)/M) using the above and

(49) for given K and various n > K/2. It may be observed that for n odd,

the cross-correlation bound is lower in (50). Performance is found to im-

prove as the constraint length, K, increases, keeping n as close to K/2

as possible seems advantageous, since for a given K, lower n gives better

performance. Typically a K=lO, n=7 system can support about 10 users at

an error probability of 10-5. Note that this is the block error probability

for L = 200, and is always much greater than bit error probability.

v. CONCLUSION:

Performance curves for orthogonal tree codes using various detection

schemes, both coherent and incoherent, have been obtained. In addition, the

effect of using a quasi-orthogonal signal set in place of an orthogonal

one has been considered. The results indicate that a substantial saving

in bandwidth in exchange for a moderate increase in power becomes possible

An example application of quasi-orthogonal tree codes to multiple access

has been presented. Other schemes for multiple access using quasi-ortho-

gonal tree codes are being investigated and will be considered in a separate

paper.

_.-
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