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SUMMARY

A mnumerical method for solving twc-point boundazy
value problems associated with systems of first-order
nonlinear ordinary differesntial equations is described.
It necds three function evaluaticns for each sub-
interval and is of order mhxj,whcre h is the snace chop.
Results of computational experiments commaring this
meth-d with other known nethods are given.

INTRODUCTTION

Accurate and fast numerical solution of two-point
bsundary value problems is necessary in many important
application areas, e.y. boundary layer theory, the study
af seelliar inteviors. control and  optinization theery,
and flow retworXks in biology.

In this paper a now method for the soluticn of two-
point boundary wvalue problems for nonlirnesr first-order
differential equations is introduced. This method ieads
tv a higher order accuracy than the'presently known nethods,
without a corresponding increase in computation time. The
‘method was tested numerically on the set ot eight problems
that were used in Reference 1, and .in all cases led to

significantly better results.



We consider the numerical solution of the system of

differential equations

v (x)-£(x,y(x)) =0, . (1)
with the two-point boundary conditions

g(y(0),y(1)) = 0, (2)
where y, f and g are functions with values in R™, and 0< X< 1,

Let us subdivide the x range [0,1] into n equal parts,

such that h = 1/n and Xg = ih, i = 0, 1,...,n. If we integrate
the pth equation of the system (1) in the interval
Ixi_l,xi} and denote the resulting quantity by ¢pi[z) then

we have

X.

451 (Y} = ypi-yp,i_1~f : £,(x,y(x))dx = 0, (3)
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where ypi=yp(xi) and p = 1,2,...,m; i= 1,2,...,n. The
integral in (3) can be evaluated by the various numerical

schemes. Let fpi = fp(xi ’X(Xi)) and

fp 3 o ™ fp(xi—% 3 X(Xi-%)); y is now a vector with the

components ypi and the superscipts on f will denote its

derivatives. In this paper we describe an 0(h7) scheme

that requires fp,i—l’ fp,i-%’ fpi and only the first

derivaties f% i-1 and f;i to approximate the integral in
»

(3). This is in contrast to the scheme described earlier

by us in Reference 1, (viz. equation(l.4)), which needs

_ -1
not only fp,i—l’ Loy &

1 |
pi® Tp,ie1 and fp ; but also the second

derivatives fz -1 and £2 to achieve O(h7) accuracy.
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THE O(h’) METHOD

Theorem: 1+

4 i-3 (yp,i-l * Yp,i)/: i (Sh/SZ)(fp,i-l-fpi] &

(h?/64) (£, s g+ E55) + R (4)

and

X.
1 f r — 314
f7 gy dx = (/30)IT(E, ;o + £ ;) + 16 £

*i-1 i e
NG £ wE (5)
where
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and y_ , fp and all elements of the vector are bounded

p
then E is O(h’).

Sy

Proof: We make use of Taylor's expansion to express all

the quantities on tne right hand side of (4) about the

point i - % . then after routine algebraic manipulations

it follows that R is O(hﬁ), since yg and fg arc bounded.
of

Since all the elements of the vector ——E
Sy

are bounded, from (4) and (6) it follow that S is also
O(hb). Consequently, the use of (6) in (5) will contribute

at most an crror of order 0(h’).



We have to show now that integration formula (5) itself
has an error O(h?). If we determine the quintic polynomial
which wuses the six points
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and then integrate it between X5 1 and x;, then we get (5).
Since a symmetric fifth degree polynomial was integrated the

error is 0(h7) . =

Now,in view of the above theorem,we write (3) as

¢pi(z):ypi -Yp’i_l-f?h/SO) (fp,i-1+fpi)_(8}}/15)%3,1‘;5 =

(h2/60)(f;’i_l-f;i) + 0(h7) (7)

where (4) and (6) with R and S repnlaced by zeros are used

. s il s :
to compute fp,i-%. The derivatives {p,i—l and {pi“ which

are needed in (4) and (7),are computed as follows.

Since
fl = __a_fE + a fp . __6}'1"__
) 9X ay 8x
and using (1) we have
fl ) afp X afp £
P 9X oy

From now on let us denote by ¢ and g the vectors with
the components ¢pl and gp respectively. Then neglectiag
the 0Of h?) term equation (7) can be written as

¢ (y) 0 (8)

i

and (2) as
(9)
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Cleatly,; & = Rmn’ ¥ e Rm(n+1) and g e R™. It 1s worth noting
that in (8), m components of y can be eliminated directly
by expressing them as linear functions of the rest of the
components by using (9), provided that g(y) is a 1linear
function of y. We will assume that g(y) is linear and the
necessary elimination of y components has been done so that

v& only have tc solve (8).

COMPUTATIONAL RESULTS

Mewton's method and a sparse linear equation solver were
used to solve (8) for the set of problems used by us in
Reference 1. All computations were done in double precision on
UNIVAC 1100. The coﬁputational results are given in Table 1,
where we have listed under each method the absolute value of
the maximum error between the exact solution and the computed
solution for each problem for the relevant values of n.
Problem 2 leads to poor results becausc the higher derivatives
of fZi have large values. For example, fgi have the factor
400ﬁ6:3.9 x 105. It is pointed out in [3] that for this
problem an O[hz) finite difference method required 21O mesh
points for 10-6 accuracy, and the deferred correction method
needed 65 mesh points with 7 corrections. Problems 6 and ?
have discontinuities in f, and therefore, one sided
derivatives are used. The starting solution used for all
problems was a vector of all ones and convergence was obtained
in at most seven itcrations (the average number was 3.5).

It is c¢vident from Table 1 that the present method
vields excellent résults,
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Table 1.

Maximum errors in the solutions.

Methecd wused
Problem n 0(h7) in Rer.l. Present Method
10 3.0(-6) 1.3(-8)
1 20 3.0(-8) 2.1(-10)
40 3.8(-10) 3.3(-12)
10 2.8(-1) 4.0(-3)
2 20 2.0(-2) 7.6(-5)
40 5.6(-4) 1.2(-6)
10 7.0(-8) 5.1(=11)
3 20 1.2(-9) S-T1{=13])
40 2.0(-11) 4.0(-14)
10 3.0(-6) a.40-9y
4 20 3.2(-8) 7.0(-11)
40 3.6(-10) LAt -
fb 9.7(-6) 1.8(-7)
5 20 8.3(-7) 3.7(-9)
49  ----- 5.6(-11)
10 ---- 8.8(-11)
6 20 0 2.2(-11)
40  ----- 5, 5(-12)
B ¢ et 9.5(-10)
7 20 4.8(-8) 1.6(-11)
40 7.9(-10) 3.3(-12)
10 L 77} 5. 2(-10)
8 20 2.1(-9) 4.9(-12)
40 3.0(-11) 7.7(-14)

(6)



