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Abstrac. — Zusammenfassung

or. Accurate Solution of Boundary Value Ordinary Differential Equations. A

methoi for solving two-point boundary valuc ordinary differential equations
is given. ft requires six funccion evaluations in each subinterval for ar
0(\7) local errocr, where h is the size of each subinterval. No informaticn
outsidz vhe subinterval is used. Results of computational experiments are
given showinrg that the method compares quite favorably with classical Runge-
Kutta methods,

'

Ueber eine priuzise L8sung ven Randwert GewShnlichen Differenzialgleichungen,

2

Es wird eine Meihode zur L8sungen von Zwei-Punkt Randwert Gewdhnlichen
Diffarenzialgleichungen gegeben, Sle fordert s:cns Funktlonalbewertungen

. (o] Fais . = -—( p - 1. A
in jedem Sub-Interval fUr einen Lokali~hler wvon O (h'), wobei h die
Grésae jedes SuboIntervels ist., Dabei wird ke2ioe Auskunft ausserhall des
Sub-Intervals verwendet., Die Resuliate der Rechnungsespsrlemnte werden
anpegeben und weoigen, dacs dlese Methode Vorteile gegenllber der klassischen

Runge-Kutta Methoden bietet.
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1. Introduction

We consider the numerical solution of the system of differential equations
y'(x) - f£(x,y(x)) = 0, (1.1)
with the two-point boundary conditions
g(y(0),y(1)) = o0, (1.2)

where y,f and g are functions with values in Rm, and 0 <
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Let us subdivide the x range [0,1] into n equal parts, such that h = 1/n

and Ky = ih, i = 0,1,...,n. If we integrate the p-th equation of the system
(1.1) in the interval [xi_l,xi] and denote the resulting quantity by ¢pi(y]
then we have
G |
IR RS P J £ 06,y (0))dx = 0, (1.3)

ot &
where ypi = yp(xi) and p = 1,2,...,m; i = 1,2,...,n. The integral in (1.3)
can be evaluated by the various numerical schemes. For example, the well

known trapezoidal rule leads to

h _ .
010 = V<Y -7 [fpjffp,i_]] +om) = o, (1.4)

where f 3 & fp(xi,y(xj)), y is now a vector with the components ypi. On the

other hand, the use of Simpson's rule [1] yields

h 1 5
= -y - = B X O(h"). 1.5
$pi() = Ypi~Yp,i17 % [fpl”fp,l—‘/;f | VD e
In order to compute f)"_g we require the yp,i—% values. It is easy to show



oy Taylor's thecreir that
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In view of (1.1) and the above equation we get

CTpiparan 'y om? 1.6
ik ™" o By pl ] T (1.6)

and it follows from (1.5) that the errcr will remain O(hSJ when (1.6) is

used to evaluate £ . .
p,1-73

We have shown in [2] how the cubic spline on spline and the quintic splines
7
can be used to get 0{h6) ard O(h ) formulas (See equations (2,21) and (2.28)

in f2]).

Let us denote by ¢ and g the vectors with the components ¢pi and gp respec-
tively. Then (1.4), (1.5) or cquations (2.21) and (2.28) in [2] can be

written as

]
o

$(y) : (1.7}

and (1.2) as

1
o

g(y) (1.8)

Clearly, ¢E:Rmn, yE:Rm(n+1), and g&:Rm. It is worth noting that in (1.7), m
componeints of y can be eliminated directly by expressing them as iinear func-
tions of the rest of the components by using (1.8), provided that g(v) is a
linear function of y. We will assume that g(y) is linear and the ﬁecessnry
elimination of y components has been done so that we only have to solve (1.7).
Newton's mecthod is used to solve (1.7) as follows: Given y(o}

5 % - - 1 L) [N} a .
the foilowing steps arc done until || ¢ (y( )il is less than a given

g for k = 071,24



quantitity. The system of linear equations

J(¢)5y(k) = @(yk) : (1.9)
(k)

is solved for &y

(k)

, where y is the k-th approximation to a root of (1.7)
and J(¢) denotes the Jacobian of ¢ with respect to y evaluated at y(k). Then

the next approximation to the root is given by

The Jacobian matrices corresponding to the trapezoidal and Simpson rules

are sparse but the cubic spline on spline or quintic spline methods lead to
significantly less sparse Jacobians. Therefore, a modified Newton method,
which does not have the quadratic convergence of the usual Newton method,
must be used to handle this situation [2]. Also, the cubic spline on spline
and the quintic spline methods require, respectively, the solution of tri-
diagonal and penta-diagonal system of linear equations in addition to the

solution of the linear system (1.9).

In the next section, we give a method which has an O(h7) local error. This
method is, in a sense, an extension of our implementation of Simpson's rule
[1]. As in the case of the Trapezoidal and Simpson rules, the Jacobian of
the present method is sparse since no information outside the interval
[xj_l,xi] is used. In the last section of this paper, we give some results
of our computational experiments showing that the present method is signi-
ficantly better than other methods in terms of accuracy and overall computa-

tional cost.



2. Main Results

For the sake of clarity of presentation, let us drop the subscrint p on y

and f in this sec<tion,

)

THEOREM: If feC” ir [xi—l’xi}’ y; and y, , are given, and
= e 1 r + U -iah(ﬂf =3f. )] r2 l)
Yi_s/a = ez PPi-1t1Y5 Shet O
v ] f‘. - o
yl—l/4 = 66 []0\ o .‘14)’1-!-]1(3{-. of . )] (7.5
y = ';I:-(y + )"h —1——(£ % )'P il gt % ) (2 -;)
AT 5 Rl A £ TR G L o T e st el 3
N — 1 - ‘__' LA ‘—l ')
)'i_3/4 = 5Eg 1}'0}’ 1+22y1+144yi-1/2+h(911~1"fi*%fi-l;z)_}' 2.4)
N s 1 P‘ : - z
T el L 6If‘?)i—l+90yi+144yi—1/2+h(‘5f Qf +36f ”l/‘)):I (2.5)
then
e0) =YY, ‘E?‘[ (F;_+€)+32(F; 5085y 001 1,2]+0(h‘}::0, (2.6)
where

s

- - ~ R . : 1
£, m £l 5.0t = flx g 0= 1 = i i
(xJ >J) ! ( j yJJ j 7
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PROOF: Using Taylor's theorem to expand all the quantities on the right-

hand sides of (2.1) and (2.2) about the node i - %—and using (1.1) we have

p 4 5
¥smis T Vi gl = W8 000,

and

il g
Yi-1/4 = ¥i.it3 T Ch Oh )

where
I T
g 70548 Yi-1/2



(y§s) denotes the s-th derivative of y at xj).

Now,

z - 4 .5
f[xi~1/4’yi-1/4] i f[xi-l/a’yi_1/4+Ch +0(h )J

h 4 ]
e i L [Yi_1/4+Ch Yio1/2)%y

h )2 h)( 4
[E] fex * {Zf}lyi-1/4+Ch _yi-l/z]fxy

= f

i1
2

2
1 .4 5
* 5 [yi_l/4+ch _yi_l/z] £, + O(h)

- 4 : 5
= _qyq tGB [fy*°(>i-1/4'yi_1/23] HOM)

4 5
= £, 14 * Ch [fy+0(h)] + 0(h),
since yi_1/4 = yi—1/2 = 0(h),
or
£ = f + e+ o™ (2.7
i-1/4 i-1/4 y s .
Similarily,
F - £ + chts + om) (2.8)
i-3/4 i-3/4 y ; .
Therefore from (2.7) and (2.8), we have
- y 5
= f = f < £ + 0(h7), (2.9)

g
TR 374 i-3/4 F=1/2

and from (2.3) it follows that

; " 1 {. o A 6
yi—IXZ = §{yi-l+yi] + h[?z[fi_l—fiJ + E{fi-3/2-fi—l/2]] + 0(h7).

If the quantities on the right-hand side of the above equation are expanded

by Taylor's theorem about xi-l/2’ then we have

2 LW s B
Yoo ™ ¥y pa ¥ DN,



because we have to compute

- ~ ~

fi10 Bigpar Biypae a2 Figps ™A £ g0

This is in contrast with a sixth-order Runge-Kutta method (local error 0(h7))
that must be used for multiple shooting and requires seven function evalua-

tions [4]. Multiple shooting from both ends of the interval [xi 1,xi] would

: ; : 7 :
require even more function evaluations for O(h’) local truncation error.

z 6
Note that we only require that feC inside the interval [x.

1_l,xi], and

therefore jump discontinuities in f at the node points create no problems.
The cubic spline and spline and quintic spline [2] as well as other methods,
e.g. those using numerical derivatives (deferred corrections [5]) may
require a very fine mesh in order that numerical derivatives of sufficient

accuracy be computed in case of jump discontinuities.

3. Computational Results

The results of our computational experiments comparing the present method

with various other methods are given in Table 1. We have exhibited under

each method the absolute value of the maximum error between the exact solution
and the computed solution for two problems (these were labelled as problems 2
and 3 in [2]). The methods used were TR (Trapezoidal rule), SR (Simpson's

rule), RKS and RKG (Runge-Kutta methods with local errors 0(h®) and 0(h’)

respectively [3], p. 424 and [4], p. 193), CSS (cubic spline on spline),
and QS (quintic spline). Mesh sizes 10, 20, 40 and 80 were used. The CSS and
QS results are from [2] and therefore n = 80 errors are not available. As we

mentioned in [2], the first problem in Table 1 has large values for the higher



; g 6 -6 - :
derivatives of f2" For exanple, f,ihavc the factor 1001 = 3.9)(105. It is
pointed out in [5] that for this problem the usual trapezpidal rule (O{hs)
local error) required 1024 mesh peints for 10"6 accuracy, and the defarved

correction method needed 65 mesh points with 7 corrections,

The present method and RK5 both require t£ix function evaluations. 1t 1is
evident from Table 1 chat in all cases the present method gives significantly
more accurate results than RK5., It even beats RKo which requires seven func-
tion evaluations. As the mesh size increases, the RK5 is s5till three orders
of magnitude worse than the present method, even RK6 is two orders worse for

problem 1!

Ancother interesting fact that emerges from Table 1 is that for even small
values of the grid size n, the present method yields usable results for

problem 1 which is not the case for RK5 or even RK6.
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Table 1. Maximum errors in the solutions

SR RKS CSS Qs RK6 Present
. R
METED 1 [1] [3] [2] [2] [4] Method
e Local error
foe 3 5 6 6 7 7
Mesh size - eany Oh"J O(h") O(h™) | O(h") 0(h’) O(h7)
10 .276(+1) | .150(+0) |.140(+1) |.42(-2) |.28(-2) |.158(+1) |.399(-2)
20 FO3CE0Y | <200 (1Y | 2amrE) |.a00-3) |.o0e-5y |.por-1) LAy
1
40 .161(+0) | .650(-3) |.509(-3) |.18(-4) !.56(-5) |.122(-3) |.115(-5)
80 .393(-1) | .402(-4) |.129(-4) = 2 149(=5) |.217(-7)
10 .336(-3) | .552(-7) |.642(-8) |.11(-8) |.70(-9) |.166(-9) |.247(-10)
20 .839(-4) | .345(-8) |.197(-9) |.25(-10)].12(-10)|.295(-11)|.387(-12)
k 40 .210(-4) | .216(-9) |.615(-11)|.48(-12)[.20(-12)|.408(-13)|.616(-14)
80 524(=5] | «135(~10)].192(-12) : = .865(-15)| . 25B(-15) ]




