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~~C!~I.::~t.:::... 30lution of ~~und_LnLYal~e Ordinal')' Differc!ltial Equat~o~_. A

mp.thoi fOl solving two-point bvunJary value ordinary differential equations

is giV':Il. it requires six ftmction evaluations in each subinterval for ar

O(17) Jon]] err0r, Ivhere h is the sizeof each subinterval. No informatjon

I)utsid~ '~j1Csuhinterval is used. Results of computational experiments are

giveq s}0w~rg that the method compares quite favorably with c12ssical Runge-

Kutta methods.

Uebe:r eine pr1i~~2,j~~~ung Van .Ra.:.ndv:.~!l,-S~~~b.nl,:1.ch~~_pifferenz:!:.al€0-S:~..:~_~I::2gen

Es wird eine M~~~}\Jde zur L1:)sungen vo!"' Z..'rei-Punkt Randwert Gew()hnlicb~_rJ

:::n'>:t'2renzialgleichungen gegeben. S1.e f0:!.'dert s ~ci1s :F\mktional~cwp.rtul1gerJ.

in jedem Sub-Interva.l flir einen Lokalf'~hler VO!l <) (117) ~ .wobei h die

G:CCf;~~ejeites Subnlntervc'.ls ist. Dabe~ wird l\~5!1'~ .fl..uskunft ausse:r'halb des

Sub-Intervals vervrendet. D:Le Resub:-ate del'Rcchnungsexperiemnte werden

an!:,:cge'ben unj ~;;0igen, (Jass dies€' r.;'o~tr,ode Vortei Ie gegen{Jber del' klassischen

Runge-Kutta M,,':.hoden "bietet..

+ ---~~------

'Please send ~ll co~~cspondcnc~ to Prof. Dr. R. p~ Tew8rson, Applied Math.
Dept., natl! TO\\'CT) ,~11:\\: :It S~ony 2:"..)0].;" N,Y'. 11794.
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1. Introduction

We consider the numerical solution of the system of differential equations

y'(x) - f(x,y(x)) = 0, (1.1)

with the two-point boundary conditions

g(y(O),y(I)) = 0, (1.2)

where y,f and g are functions with values in Rm, and 0 ~ x ; 1.

Let us subdivide the x range [0,1] into n equal parts, s~ch that h = l/n

and x. = ih, i = O,l,...,n.1 If we integrate the p-th equation of the SystCffi

(1.1) in the interval [x. l,x.] and denote the resulting quantity by <p .(y)
1- 1 p1

then we have

f

x.

<Ppi(Y) = ypi - yp,i-l - 1. fp(x,y(x))dx = 0,
x. I1-

(1.3)

where y . = y (x.) and p = 1,2,...,m; i = 1,2,...,n. The integral in (1.3)
p1 P 1

can be evaluated by the various numerical schemes. For example, the well

known trapezoidal rule leads to

<Ppi (y) = ypi - yp,i-l -~ (fpi+fp,i-lJ + 0(h3) = 0,
(1.4)

where f . = f (x.,y(x.)), y is now a vector with the components y ..
p1 P 1 ] p1

other hand, the use of Simpson's rule [1] yields

On the

h

(

'\ 5
<P .(y) = y . -y . 1

--
6 f .+4f . l+f . 1 \ + O(h).

p1 p1 p,l- p1 p,l-~ p,l- )
(1. 5)

In oruer to compute f . 1 we require the y . 1 values.
p,l-~ p,l-~

It is casy to show
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J'yTaylor I ~ th0crei;1 that

y .+y . 1 h ( '\ 4
:: pl p,l- -- Iy'. -y' .

J
+ O(h).Y

p l'_k 2 8 I p,l-l p,l, 2 ,

In viewof (1.]) and the above equation we g~t

Y
p i+Yp i-I + h

(
. 1 + 0 (h4 )Y ::.: -- 7 t . -f - 1 I 'p,i-~ 2 0 pl p,l- )

(1. 6)

and it follows from (1.5) that the eyreI' will remain 0 (hS) when (1.6) is

used to evaluate f . 1 .
p,J-,,:!

We have shown in [2] how the cubic spline on spline and the quintic splines

can b8 used to get 0(h6) and 00/) formulas (See equations (2.21) and (2.28)

in [2 j ) .

Let us denote by ~ and g the vectors with the components ~ . and g respec-
pl p

tively. Then (1.4), (1.5) or equations (2.21) and (2.28) in [2] can be

written as

~(y) :: 0, (1.7)

and (1. 2) as

g(y) :: O. (1. 8)

mn m(n+l) m
Cl early, ~ E:R , Y E:R , and g E:R . It is worth noting that in (1.7), m

components of y can be elind nated directIy by expressing them as d near func-

tions of the rest of the cOlllp')ncnts by using (1.8), provided that g(y) is a

linear function of y.- \\Ie wi 11 assume that g (y) is I i near and tl1e necessary

elimination of y components has been done so that we only have to solve (1.7).

Newton's method is used to solve (1. 7) as follO\\l5: Given y (0), for k = 0,1,2,...

the fa I 1c.\ing steps ",TO done 'JJltil \I <P ( y (IJ ) iI is 1~ss than a given
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quantTtity. The system of linear equations

J(~)oy(k) = ~(yk) (1.9)

is solved for o)k), where y(k) is the k-th approximation to a root of (1.7)

and J(~) denotes the Jacobian of ~ with respect to y evaluated at y(k). Then

the next approximation to the root is given by

(k+l) - (k) .r (k)
y - Y - uy . (1. 10)

The Jacobian matrices corresponding to the trapezoidal and Simpson rules

are sparse but the cubic spline on spline or quintic spline methods lead to

significantly less sparse Jacobians. Therefore, a modified Newton method,

which does not have the quadratic convergence of the usual Newton method,

must be used to handle this situation [2]. Also, the cubic spline on spline

and the quintic spline methods require, respectively, the solution of tri-

diagonal and penta-diagonal system of linear equations in addition to the

solution of the linear system (1.9).

In the next section, we give a method which has an 0(h7) local error. This

method is, in a sense, an extension of our implementation of Simpson's rule

[1]. As in the case of the Trapezoidal and Simpson rules, the Jacobian of

the present method is sparse since no information outside the interval

[x. l ,x.] is used.1- 1 In the last section of this paper, we give some results

of our computational experimcnts shO\ving that the present method is si.gni-

ficantly better than other methods in terms of accuracy and overall computa-

tional cost.



2. ~Iain Resu1 ts--.

For the sake of clarity of presentation, let us drop the subscript p on y

and f in this sec:ion.

THEOREM:
If fE:C6 iT' [xi-1,xi], Yi and Yi-1 are given, and

=
61£1fS4Y. 1+10y.+h(9f.> 1 -3£.)l..L 1- 1 1- 1 J

== }4-Goy. 1+S4y.+h(3f. 1 -9£.)
J

,
v L 1- 1 1- 1

1

[
1 1 - - 1

= Z(Yi-l+Yi)+h ~4(fi-1-fi)+ 6(fi-3/4-fi-1/4)J'

= -
2-~,J90Y' 1+22y.+144y. 1/2

+h(9f. 1
-3f.-36f. 1 1 2)1.

~b L 1- .L 1- 1- 1 1- I J

"-' 2~6 r2Y i-I +90y i + 144y i-1/2+h(3f i-I -9fi +36£ i-1/2)J '

)

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

h

[

A '" A

]

"7

<P(y) = Yi - Y1-1 - 90 7(f1-1+f1)+32(f1-3/4+fi-1/4)+12£i-1I2 +O(h') '"'0, (2:6)

where

PROOF:-.--

- A. , 3 . 1
f. = f (x. , Y.), f. = f (x

)
' , Y

).), ) ==1 - 4" ' 1 - 4" .) ) J )

Using Taylor's theorem to expand all the quantitieson the right-

hand sides or (2.1) and (2.2) about the node i-} and using (1,1) \\'E' have

and

where

y. ' /
== Y

-
Ch

4
0(1

5
1-3 4 i-3/4 -, + 1),

y. /
== Y

~ 1
4

O
'
h

S
)

. 1-1 4 1-1/2 - u \ + l ,

C = - 3 (4)
251UrYi-l/2

,--.-.........-...--

-

Yi-3/4

-

Yi-1/4

'"

Yi-1/2

9i-3/4

A

Yi-1/4

then
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(y~s)
J denotes the s-th derivative of y at x.).

J

Now,

f(Xi-1/4'Yi-1/4) = f(Xi-1/4'Yi-1/4+Ch4+0(hS))

= fi-l/2

h

(

4

)+ 4 fx + Yi-l/4+Ch -Yi-l/2 fy

1

(

h)2
(

h
)(

4
)+ 2" 4 J fxx + 4 Yi-l/4+Ch -Yi-l/2 fxy

1
(

.4
)

2 5
+ 2" Yi-l/4+Ch -Yi-1/2 fyy + O(h )

= fi-1/4 + Ch4(f/0(Yi-1/4-Yi-l/2)) + 0(h5)

= fi-1/4 + Ch4(fy+0(h)) + 0(h5),

since Yi-1/4 - Yi-1/2 = O(h),

or

£i-1/4 = £i-l/4 + Ch4£y + 0(h5).
(2.7)

Similarily,

£i-3/4 = £i-3/4 + Ch4fy + 0(h5).
(2.8)

Therefore from (2.7) and (2.8), we have

fi-3/2 - £i-1/4 = fi-3/4 £i-1/2 + 0(h5),
(2.9)

and from (2.3) it fo11 ows that

Yi-1/2 = i(Yi-l-tYi) + h[214(fi-1-fi) + ~(fi-3/2-fi-1/2)J + 0(h6).

If the quantities on the right-hand side of the above equation are expanded

by Taylor's theorem about xi-1/2' then we have

A

Y. = \' 0 6
1-1/2 'iul...'+ (h).I -
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because we have to compute

- A

fi-l' fi-3/4' fi-I/4' fi-I/2' ~i-3/4 and fi-I/2 .

This is in contrast with a sixth-order Runge-Kutta method (local error 0(h7))

that must be used for multiple shooting and requires seven f'..lnctionevalua-

tions [4]. Multiple shooting from both ends of the interval [x. l,x.] would1- 1

require even more function evaluations for 0(h7) local truncation error.

Note that we only require that fSC6 inside the interval [x. l,x.], and1- 1

therefore jump discontinuities in f at the node points create no problems.

The cubic spline and spline and quintic spline [2] as well as other methods,

e.g. those using numerical derivatives (deferred corrections [5]) may

require a very fine mesh in order that numerical derivatives of sufficient

accuracy be computed in case of jump discontinuities.

3. Computational Results

The results of our computational experiments comparing the present method

with various other methods are given in Table 1. We have exhibited under

each method the absolute value of the maximum error between the exact solution

and the computed solution for two problems (these were labelled as problems 2

and 3 in [2]). The methods used were TR (Trapezoidal rule), SR (Simpson Is

1'u]e), RKS and RK6 (Runge-Kutta methods with local errors 0(h6) and 0(h7)

respectively [3], p. 424 and [4], p. 193), CSS (cubic spline on spline),

and QS (quintic spline). Mesh sizes 10, 20, 40 and 80 were used. The CSS and

QS results are from [2J and therefore n = 80 errors are not available.

mentioned in [2], the first problem in Table I has large values for the higher

As we

."~'-"'--'-"_.
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derivatives of f 2 ;. FlJr fxan,ple, f~.have the factor 100n° '" 3.9 x 105. It is
~ kl

painted out in [5] that for this problem the usual tTapczpidalrule (0([.3)

..6
local error) required 1024 mesh points for 10 accuracy, and the deferred

correction method needed 65 mesh points with 7 c0rrcctions.

The present method emd RKS both require six function ev~ Iuations. It is

evident from Tatle l:.:hat jn a11 cases the present method gives significantly

more accurate results than RK5. It even beats RK6 which requires seve~ func-

tion evaluations. As ~he mesh size increases,the RKS is still three orders

of magnitude worse than the present method, even RK6 is two orders WOrse for

P £0 iJ lOIn I!

Another interesting fact that emerges from table 1 is that for even small

values of the grid size n, the present method yields u<;able results fen'

problem 1 which is not the case for RK5 or eveD RK6.
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Table 1. Maximum errors in the solutions

SR RK5 CSS QS RK6 - I
METHOD TR

Present I

[1] [3] [2] [2] [4] Method

PROBLEM---

, '--_1<?a1 error
0(h3) 0 (h5) 0 (h6) 0 (h6) 0 (h 7 ) 0 (h7) 00/)Mesh size -,--'"

10 .276(+1) .150(+0) .140(+1) .42(-2) .28(-2) ..158(+1) .399(-2)

20 .703(+0) .109(-1) .248(-1) .40(-3) .20(-3) .127(-1) .757(-4)

1

40 .161(+0) .650(-3) .509(-3)

.18(-4) ,.56(-5)

.122(-3) .115(-5) I

80 .393(-1) .402(-4) .129(-4) - -
.149(-5) .21 7 (- 7)

- - - -

10 .336(-3) .552(-7) .642(-8) .11(-8) .70(-9) .166(-9) .247(-10)

20 .839(-4) .345(-8) .197(-9) .25(-10) .12(-10) .295(-11) .387(-12) I

2
40 .210(-4) .216(-9) .615(-11) .48(-12) .20(-12) .408(-13)

.616(-14)1
.863(-15T c-:-'-S( 1)80 .524(-5) .135(-10) .192(-12)

. .<. .-....=> I


