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Abstract

An iterative method is devised for determining the DC behavior of the resistive
grids commonly found in vision chips and more generally the voltage-current regime
of an n-dimensional nonlinear nonuniform grounded grid, which may be either finite
or infinite. The grid may be triangular (also called hexagonal), rectangular, or more
generally automorphic under every shift mapping of the nodes, but it is locally finite.
The analysis is accomplished under conditions restricting the nonlinearity and nonuni-
formity sufficiently to allow the operator arising from a nodal analysis to be decomposed
into the sum of a Laurent operator and a nonlinear operator, which in turn can be re-
arranged into a contraction mapping. A similar analysis, wherein the Laurent operator

is replaced by a circulant matrix, works for a finite grid.

1 Introduction

A structure appearing in early vision chips is a triangular (also called hexagonal) grid

of resistors whose nodes are excited by current sources due to an image falling upon an

*This work was supported by the National Science Foundation under Grant MIP-9423732.



array of photosensitive devices (see [2] and the references therein). The grid is perforce
finite, and the resistors are in general nonlinear and nonidentical, that is, the grid’s graph is
uniform (i.e., automorphic under all shift mappings of the nodes); but its electrical elements
have nonlinear characteristics which vary in general from place to place. An outstanding
problem is the determination of the voltage-current regime for a given set of excitations.
Since early-vision grids are large, standard nonlinear solution techniques are onerous and
time-consuming for this purpose. Another approach is to replace the grid by an infinite
linear uniform one, in which case the solution is easily obtained by using Laurent operators
[6, Sections 7.1 to 7.3] or alternatively the z-transform. The use of an infinite grid is usually
acceptable if the behavior at more central points of the grid is of primary interest. The
assumptions of linear and uniform element characteristics are less acceptable.

In this paper we present a new iterative method for solving an infinite grid whose
nonlinearities and nonuniformities are not overly severe. This allows a nodal analysis to be
solved by means of a Laurent operator and a contraction mapping by first approximating the
structure by a linear uniform grid and then taking the nonlinear and nonuniform deviations
from the appproximation into account through the contractive mapping. The result will
be a method of solution that is much more efficient than would be a standard technique
for solving a large nonlinear network. Moreover, the technique can be modified to make it
suitable for a nonlinear nonuniform finite grid, where now the Laurent operator is replaced
by a finite matrix and the nonlinearities and nonuniformities are again encompassed within
a contraction mapping. Another result of this work is that we establish herein a class of
networks with possibly nonmonotone characteristics having unique operating points.

In the following, Z™ denotes the set of n-dimensional vectors whose entries are integers;
thus, 7 € Z™ if and oﬁly if j = (41,...,Jn) Where each ji is an integer. Also 0 will denote

the origin (0,...,0) of Z™ whatever the choice of n may be.

2 The General n-dimensional Grid

We will use an indexing system that works for both finite and infinite grids. Consider a grid

of n dimensions containing nodes that are indexed by j = (j1,J2,...,Jn) € B C Z" plus an
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additional ground node. For simplicity, we will assume that the k-th dimension of B is
a sequence of My consecutive integers. Let P be a finite subset of Z™ that satisfies the

following three conditions:

a. 0¢P.

b. If p = (p1,p2,.-.,Pn) € P, then —p = (=py, ~p2,...,—pn) € P.
¢. |pk] < Mk, where pi is the k-th component of an element of P.

Also, let ¢y be a binary operator. The algebraic structure (B, P, &) satisfies the following

condition:
bdp=pdbeB (1)

forallb € B and p € P, where & denotes componentwise addition that is either conventional
addition or modulus- M} addition. More specifically, M € Z™ is an n-tuple, each entry M
of which is either oo or a positive natural number, indicating the cardinality of the set B in
each of its n dimensions.

The set P is simply the set of neighbors to which each node in the grid may be connected.
Condition (a) disallows self-connected elements. Condition (b) allows for automorphisms
under any shifting of the nodes. Condition (c) merely simplifies our modulus- M, additions.
The ¢ operator allows for indexing of neighboring nodes relative to a particular one.

Each indexed node is connected to ground through a nonlinear conductance described
by 1 = f;o)(v) and to a node j @ p by a nonlinear conductance described by i = f](p)(v). Of
course, the conductance connected from j to j @ p is the same as the conductance connected
from j & p to j. However, since we are dealing with nonuniform grids, these conductances

may vary as j and p vary. We also assume that, for each j € B, there is a current source h;

connected from ground to each node j such that the A;’s comprise a vector h = {h; : j € B}.

Example 1 . The infinite triangular grid shown in Figure 1 is a particular case of this
structure with n =2, B = Z*,P = {(1,0),(0,1),(1,1),(-1,0),(0,-1),(-1,-1)},&

the componentwise n-dimensional integer addition.

Example 2 . The infinite hexagonal grid shown in Figure 2 can be described by the same

parameters as in Example 1. However, three of the six f}p ) functions will be zero-
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valued, for each j. Alternatively, the grid can be mapped into the one shown in Figure
3, which corresponds to a rectangular grid. Now only one of the four f](p) functions

will be zero-valued.

Example 3 . The finite ladder network in Figure 4 is a 1-dimensional grid (n=1), with
B = {0,1,2,3,4},P = {1,-1}, and & is the modulus-5 sum. This forces the border

nodes to be neighbors, a fact that will be useful later on.

Example 4 . The grid in Figure 5 is finite in the j; index (having 3 nodes in this direction)

and infinite in the j; index. Then j & k = (5, + k1(mod3), j; + k3).

3 The Conductance Operator

We note that Kirchhoff’s current law must be satisfied at each node j,

£+ 3 1P (0; = vigp) = h; (2)
peP

for all j. (Here, f}p) = f]%;’)).
We now express each f}p) (+) and f_,o( -} as the sum of a linear component and a nonlinear

one:

1)) = mov; + £ (v)) 3)
and
1705 = vigp) = my(v; = viep) + FP(v; = vian), (4)
for all p € P, where the constants m, and mq are conductance coefficients and are chosen
arbitrarily but are independent of j € B. The m,’s may differ for different p, except that
mp = M_p.
The linear part represents a uniform linear grid, and the nonlinear part represents in
general a nonuniform nonlinear grid. Equation (2) can now be rewritten as

: 2(0
3 [mp(v; — vigp) + £7)(v; — viep)] + mov; + £ (v;) = hj. (5)
peP



for all j € B. Rearranging this, we obtain
(mo+ 3 mp)v; — > myvigp+ f1 0 (v5) + 3 FP(vj — vigp) = hy. (6)
peP peP peP
The first two terms of this equation are linear and combine into a matrix whose components
are indexed by elements of the set B x B. We shall refer to such a matrix as a (finite or
infinite) 2n-dimensional matrix. Let y; be that matrix. It will be chosen so that it is
invertible. The last two terms of (6) combine into a nonlinear operator yn. Now, we can

write the set of equations for all j’s as a single vector equation:
yLv +yn(v) =h. (7)

Here v and h are vectors of node voltages and current sources respectively. They can
be treated as members of a Banach space A whose norm we will adjust as needed. Let us
denote a vector x € A as x = [z;];,j € B, the z,’s being the components of x. In our
case, the elements of A must satisfy ||[z;g,];|| = l|[z;];|| for every p € P. The nonlinear and
possibly nonuniform operator yn : A — A is defined by

yn(v) = [.f,(o)("j) + 21; FP (vj = vigp)];- (8)
pE

Equation (7) can now be rewritten as

v+y'yn(v) = yi'h (9)

Therefore, we have
v=y;'h-yr'yn(v) = da(v). (10)
If yzlyN is a contraction on A then so too is d, and we can find a solution using the fixed
point theorem and the usual iteration for a contraction mapping on a Banach space [3, page
27).
Now consider yn. Let w,x € A. Then

lyw(w) = yn Ol =) + 3 FP(w; ~ wiep)l; - F () + 3 £P(2; - ziap)ill-
peP peP (1)



Applying the triangle inequality, we have

lyw(w) =y NN < WD) = F0 (5 11+ 3 1P (w—wjgn) - FP (25-250p )]5]1- (12)
peP

We assume a Lipschitz condition on f}o)and f;(p)uniformly for all 7. In particular, we assume

for all a;,3; € R and for all j € B that

179(a;) - 798, < vola; - 851 (13)
and
1£P(a;) = £ 8| < le; ~ By, (14)

for all p € P. The v,’s and g are positive real constants. We now can write

lyn(w) —ynx)ll < vellw = xll+ Y wlll(w; ~ 25) = (wjep — Ziap)l;ll
’ peP

yollw — x|l +2 ) 7llw — x|| (15)
peP

[FAN

where we make use of the triangular inequality repeatedly and also the fact that ||[w;g, —

zjiep);ll = llwj — z5)5ll = |w — x|}

Using this relation we note that yzlyN satisfies a Lipschitz condition:

lyz'yn(w) = y2lyn(x) < lyz ivo + 2 D 1p)liw — x|l (16)
peP
If
k=yz'll(re+2 %) (17)
peP

is less than 1, then bcih yzlyN and dj, are contractions. This allows an iterative solution
for the grid in the standard way.
4 Selecting the Linear Operator

The choice of the space A and its corresponding norm depends on the grid that we are

dealing with. It will also determine the choice of the linear operator.



4.1 Infinite grids

If the grid is to be infinite in all dimensions, the space A is chosen to be (3, the real Hilbert
coordinate space with coordinates indexed by Z™ [6, pages 217 and 220]. This is done so
that we only allow finite power regimes on the grids under consideration. The linear grid
can be selected so that it is uniform, and thus y; will be a 2n-dimensional Laurent matrix,
defined by:
mo+ Y ep™mp ifqg=0,
Yijtg = —-mg=-m_, ifg€P, (18)
0 otherwise.

where j,q € Z".

Let [—m, r]" denote the Cartesian product of n replicates of the real interval [-r, 7] and
let 8 € [—m, 7|". Also, let multiplication by Y7 (8) be the image of the operator y; under the
n-dimensional Fourier transformation of node-voltage vectors (See [6, Section 7.1]). Thus,

YL (6) = (mo + Z mp) ~ Z mycos(p - 9), (19)

peP PEP
where (p - 0) denotes the dot product. Let us now choose the linear grid such that
L peP Mp(l — cos(p - 8)) may take only nonnegative or nonpositive values for all §. A
sufficient condition for this to occur is that all m,’s have the same sign. By choosing mg
to be of the same sign as the m,’s, we guarantee that Y,(8) is nonzero for all 8 € [-7, 7)™

It then follows that y! exists and that

lyz Il = infg Y1.(8) ~ |mo|’

(20)

Note however that the case of passive conductances occcurs when mg > 0.

We have hereby established the following theorem:

Theorem 1 Given an infinite n-dimensional grid characterized by the indez sets B = Z%

and P and a set of floating and grounding conductances, assume the following:

1. The linear-nonlinear decomposition of these parameters is such that mg and the m,’s all
have the same sign; that is, the grid corresponding to the linear part of the decompo-

sition is either passive everywhere or active everywhere.



2. The Lipschitz conditions given by (13) and (14) hold uniformly for all j.
3. The k given by (17) and (20) is less than 1.

Then, for any input h € I3, the grid has a unique set of node voltages. That set can be

found by the standard iterative procedure for a contraction mapping on I3,.

Our next objective is to minimize the value of

Y0+ 23 ,eP Yp

k
|mo)

(21)

by selecting appropiate linear parts. Let ag and a, be the infima of the slopes of all the
chords of all the f}o) and all the f}p) respectively. These are finite by our assumption of
uniform Lipschitz conditions. Similarly, let bg and b, be the corresponding suprema, also
finite.

We will first minimize each v, (p € P) by selecting a suitable m,. A little reflection
will show that we need only search for our m, in the range [a,, b,] to find the minimal v,.

Inside this range, we have that, for any given m, € [a,, b,],
Tp = max(b, — mp, mp — ay). (22)

We are still free to adjust m, to make v, as small as possible. A graph of v, as a function
of m, will consist of the upper portion of the union of two straight lines, with slopes of +1
(See Figure 6). The intersection of these lines will yield the value of m, for which 7, takes

its minimum value. This occurs when the two terms in the right hand side of (22) are equal;

i.e., when

m, = %(a,, +5,). (23)
In this case,

7 = 5(bp— @) (24)

By choosing 7, in accordance with (24), we minimize the summation in (21). We can
still manipulate yo and mg in order to minimize k still further. Let s = 23" .py,. Note

that s > 0. Equation (21) can be rewritten as

k = |mo|™}(max(bp — mg,mg — ag) + 3) (25)



Again, we use the fact that the max(...) term is the union of two segments of straight lines
with slopes of different signs as in Figure 2, but with m, replaced by mg. We then can
write:
£ < |mo|~"(bo — mo +s) if ag < mg < 3(ao + bo) (26)
|mo|='(s + mg — ag) if $(ag +bo) < mp < bg
From now on, m.i. and m.d. will denote a monotically increasing and a monotonically

decreasing function of mg respectively. We will also denote the two items in equation (26)

by k1 and k; respectively. Consider k as a function of mg. There are four possible cases:

e ag < bg < 0. In this case, k; = 1 + |mg|~!(bg + s) and k; = —1 + |mg|~ (s — ag). k;
is m.i. in [ag, bg]. If s + bg > 0, then k; is m.i., and, since k is a continuous function
of mg, then k > 1 for all mg. We therefore need s + bg < 0 (i.e., s < —bg) to have a
contraction. In this case, k; is m.d. and bounded above by }1. By solving k5 < 1 for

mg we get mg < £(ag — s). The minimal k will correspond to mg = (ag + bo).

e ag < 0,59 > 0. In this case, ky = |mg| !(bg + s) — sgn(mg) and kz = |mg|~ (s —
ag) + sgn(mg). We note that ky > 1 for mg > 0 and k; > 1 for mg < 0. We know

that k; and k; must intersect; the value of k will never be less than 1 for this case.

e 0 < ag < bg. In this case, k; = —1 + |mg|~!(bg + ) and k3 = 1 + |mg|~ (s — ap).
Now ky is m.i. If s — ag > 0 then k; > 1 for all mg. We therefore need s —ag < 0
(i.e., s < ag) to have a contraction. In this case, k3 is m.d. and bounded above by
+1. By solving k; < 1 we get mg < 3(s + bg). Again the minimal k& will correspond

to mg = %(ao + bg).
We have established the following:

Corollary 1 Given a grid with conditions established in Theorem 1, let ag and bg be lower
and upper bounds on the slopes of the i-v characteristic curves of the grounding elements.
Also, let s = 2zpeP ¥p, where the v,’s are the Lipschitz constants for the floating ele-
ments. A necessary condition for the ezistence of a unique current voltage regime is that
the grounding elements are either totally active or totally passive. Moreover, if the elements
are totally active, we must have s < —bg, and, if the elements are totally passive, we must

have s < ayg.



4.2 Finite Grids

Physical systems on the one hand and numerical computations on the other require that
the number of nodes be finite. The infinite-grid analysis above presented can be modified
slightly to encompass this case. The binary operator ¢ implies some kind of wrap-around
condition in the finite grid. In example 2 above, this wrap-around happens at the boundary
of the 1-dimensional grid. Also, we will have a choice on the norm of our vector space,
which will induce a particular norm on the linear operator.

The space A will consist of n-dimensional finite vectors of real components. There are
various norms that can be used in this space. We will consider the || - || norm.

If the grid under consideration is finite, the y; operator will be a finite 2n-dimensional
matrix. Since the linear parts are chosen uniformly, they form a circulant matrix [5].
This means that our linear grid wraps around its boundaries. This fact will be useful for
numerical computations. Also, if yy, is circulant, then y;! is also circulant.

Of course, real grids usually do not have this wrap-around characteristic. In fact, if
we go back to Example 2, the f}(-) function must be zero throughout its domain in order
to remove the wrap-around conductance. This is not a problem in our scheme since the
nonlinear part can be made to be the negative of the linear part, thus giving us the necessary
"open-circuit” connection. In the example, this means that }1)(1)) = fé_l)(v) = —myv.

We can now find the norm of the inverse of the linear operator.

Lemma 1 Let y; be the circulant matriz corresponding to the finite linear grid. Assume
that mg # 0 and that it has the same sign as all of the m,’s. We then have

1

-1y _ _ 1

PROOF: For simplicit)", we will assume a 1-dimensional grid. Therefore yz is 2-dimensional.
Let ¢ be the cardinality of B. Let the rows and columns of y; be indexed from 0 to ¢ — 1
and let a;; be an element of the matrix. The eigenvalues of y; are A; = fc;}) ao,kw,",
1=0,1,...,e -1, where w; = e*™V=1/¢ is a root of unity [5]. Since mg # 0, no eigenvalues
are zero. Therefore yzl exists.

According to [5] we have that this matrix is diagonizable, that is y;' = §D7!1S7! =

%S D~1S* where S is a Vandermonde matrix whose elements are roots of unity, S* is its
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complex conjugate transpose, and D is the matrix with diagonal entries corresponding to
the eigenvalues. Since none of the eigenvalues are zero, D! is a diagonal matrix whose
elements are the inverses of D. Let us denote a matrix A by [a;s]i x Where the a; 4 are the
elements indexed by i and j. Then § = [w!];;, §* = [w{],-,j, and D! = [d;é; ;)i j, where
d; = /\i‘l and 6, ; is the Kronecker delta.

We have that:

1
?/El ZSD—IS:-
c—1

1 .

= [ widkbe )i S
ck=0
1o,

= Zlwidili; @)

= ‘[Zwkdk“-’k]ta

k=0

and therefore,

(yg') = —[Z deThwili j

k=0

where the eigenvalues are all real given the symmetric nature of y;,. Consider T = (y;!)*y;':

c-1
T = 2[2 dl“"'l o w[z AW Wi Ji g
=0
c=1 c-1
= cz[z(z dlwl wl Z dmw wm)]hJ
k=0 [=0 m=0

The fact that yy is symmetric makes all the entries in the derived matrices to be real.
The fact that the m; and m,’s all have the same sign means that the entries of T are all
positive. This also means that the largest eigenvalue of T, as defined in [5] will be Aq, i.e.

the sum over any row or column. Then, [[y;'|| = (max {eigenvalues of T})}/? = /Xo{T

[4].

c-1 1 c~1 ¢~1

S 2SS i S dnchi)

3=0 k=0 I=0 m=0
1 ¢c=1c¢=-1¢c-1 c-1

= 2 Z Z z Z didmwfwk ol

3=0 k=0 =0 m=0

Ao{T'}
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c—=1c-1 c=1c-1c=1 c=-1

= ST Y dodohhTy+ 5 2 S didmesfubi,

3=0 k=0 71=0 k=0 =1 m=1

c—1c¢-1 . 1 c=1 c-1 c—1 .
= 2ZZd + 52 D didn Zw m D

7=0 k=0 =1 m=1 k=0

The first term simply sums to df. The last sum in the last term is always zero, so Ao{T} = d2.
Therefore ||y ]| = /%o{T} = Ido| = 1/|Ao{yL}| = 1/|mo|. Q.E.D.
By virtue of Lemma 1 and an adaptation of our prior arguments, we can establish a

theorem analogous to Theorem 1.

Theorem 2 Given a finite n-dimensional grid characterized by the indezr sets B and P and

and a set of floating and grounding conductances, assume that:

1. The grid is decomposed into a uniform circulant linear grid plus a nonuniform nonlinear
one. The linear circulant grid is such that it is either passive everywhere or active

everywhere.
2. The Lipschitz conditions given by (13) and (14) hold uniformly for all j € B.
3. The k given by (17) and (27) is less than 1.

Then, for any input current distribution h the grid has a unique set of node voltages. This

set can be found by the standard iteration.

Corollary 1 needs no change in the wording for it to be applicable to finite grids.

By choosing our linear operator to be a 2n-dimensional circulant matrix, we can work
instead with the n-dimensional FFT of it. This reduces storage requirements significantly.
Also, the FFT of yzl can be computed directly from the FFT of y; so that no matrix
inversion is necessary at all. The FFT of yZl will simply be the inverse (element-wise) of
the FFT corresponding to the y; circulant matrix, which is generated by the values of mg

and the m,’s only, and needs to be calculated only once. The iteration will be:

v=F Y (F(yp )YF(h-yn(v)) (28)

where F, F~! represent the FFT and inverse FFT respectively. The only value that need

updating after each iteration is ynx(v), which takes as argument the previous value. The
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sufficiency conditions guarantee that this iterative procedure can get arbitrarily close to the

actual operating point due to the input sources.

Example 5 . Consider a 64x64 2-dimensional rectangular grid. We have that P =
{(1,0),(-1,0),(0,1),(0,—1)}. The grid is indexed along rows and columns from 1
to 64. The grounding conductance function is linear, and has a value of 1. The
floating conductances are uniform inside the boundaries of the grid and will be char-
acterized by f](p)(v) = tanh(v). Since the grid is finite, there will be nonuniformity on
the boundary node connections to their neighbors. We will select mg = 1 and m, = 1
for all p. Suppose an input such as the one shown in Figure 7 is applied. Figure 8
shows the first iteration (corresponding to an entirely linear grid, with wrap-around).

Figure 9 shows the fourth iteration, very close to the actual operating point.

Example 6 . Take the same grid as in Example 5. Now let the original input be corrupted
by random noise, as shown in Figure 10. The first iteration is shown in Figure 11.

The fourth iteration is shown in Figure 12.
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Figure 2. Portion of a graph corresponding to the infinite hexagonal grid. Not
shown are the grounding conductances and current sources connecting each node
to ground.



Figure 3. Portion of another graph corresponding to the infinite hexagonal
grid. As was done before, the edges corresponding to conductances and current
sources connecting each node to ground are not shown.
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Figure 4. Graph of a finite 1-dimensional grid. Each horizontal edge represents
a floating conductance. Each vertical edge represents the parallel combination
of a current source and a grounding conductance, both connected to ground.
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Figure 5. Section of a graph of a 2-dimensional grid. The grid is finite in the
j1 direction and infinite in the j; direction. Once again, the connections from

each node to ground are not shown, for simplicity.
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Figure 6. Plot of v, as a function of m,.
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Figure Captions

Figure 1 .
Figure 2 .

Figure 3

Figure 4 .

Figure 5

Figure 6 .
Figure 7 .
Figure 8 .
Figure 9 .
Figure 10 .
Figure 11 .
Figure 12 .

Portion of a graph of the hexagonal grid.

. Portion of another graph of the hexagonal grid.

Graph of a finite 1-dimensional grid.

. Section of a graph of a 2-dimensional grid.

Plot of v, as a function of m,.



