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1. Introduction

This work is a development in gradual stages of several con-

cepts that may become of some value in the anal;ysis and perhaps eventu-

ally in the synthesis of physical syst.ems. A typical concept is the

idea of an n-port where n = roo This idea arises not only as a natural

mathematical extension of the n-port but, more importantl:! for the en-

gineer, as a representation of certain physical systeJns. For example,

consider a modal ar~lysis [1; pp. 21-27J of a micro~ave transmission

system. Each mode can be taken to be the excitation at a port of a

black box ..".i{,ha separate port for each mode, and therefore the black

box has in general an infini ty of ports. In netHork "theory it is

COnlll10n,indeed almost the rule, to assume that all but a finite nUn1-

bel' of modes can be neglected (see, for example, [2; p. 3J) so that it

is sufficient to represent the system by an no-port.

But is it? To do so in every situation makes as much sense as

.vould the replacement of every Fouri€r series occurring in netHork

theory by a finite sum. Network theorists do not resort to the latter

simplification since Fourier series are ."Jellunderstood and quite use-

.able. The situaUon is very different for t.hesystems considered here.

The subject is in its infancy and possesses from the engineering (1.e.,

synthesis) point of vimv-, very few results. Horeover, from the analysis

viewpoint, a variety of mathematical difficulties ariso. Indeed, the

systems considered herein possess input and output signals ,-,hichtake

their instantaneous values in Banach spaces, whereas for an n-port these

Vahh'i occur in n-dimensional euclidean space E. It hao pens discon--
r - n .

certingly often that a readily established fact concerning operators on
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E -valued functions is very difficult. if not impossible to extend to
n . .

operators on Banach-space-valHed fu:r..ction.

Nevertheless) we propose to explore t.his subject. For the mathe-

matician no justification for doi:r..g50 is needed. (The mountain is

there; let's climb it.) The engineer asks, and indeed should ask,

"Is it worth it?" \ve offer no rc'ply to this question other than the

hope that perhaps someday it may be. The fact that the electromagne-

tic waves within microwave s;{steIT:s) solid-state devices, integrated

networks, etc. are better represented by Banach-space-valued functions

rather than by En-valued function,. offers some basis for this hope.

To put all this another way, this paper is motivated by physics,

but its content is mathematics.

2. Some Definitions and a Summary.

'1'hefirst in the order of business is to define the phrases ap-

pearing in the title. Throughou t thi s vlork A and B will denote complex

Banach spaces and H a complex Hilbert space. A Banach-space-va]~ed

function f is a mapp~ng of scme domain, \-Jhichin this work will always

be the real line R, into a Banach space, say, A. Thus, for each fixed

t E R, f(t) is a member of A, and, as t varies in R, f(t) may vary in

A. Such a function is a typical signal in a variety of physical systems,

as for example a microvrave--transmission system. Indeed) we can conceive

of a physical system (more precisely, a model of a physical systenl) vn10se

signals are Banach-space-.valued functions or even Banacil-space-valued

distributions. It seems n3.turalto call such a s;ystSJ1l a "Banach systemTl,

and this vre shall do.

A B~na.ch system !nay h~ve many difforent Banach spaces associated

with it. Thus, at one loca.tioLx in the system the signaJ_ repj:escnting
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a particular physical variable n~y be an A-valued distribution and at

another location y the signal for another physical variable ~zy be a

B-valued distribution. Moreover, the syste-:11.defines an operator that

maps the signal at x into the signal at y. In general, it defines many

different operators depending on the choices of the locations x and y

and of the variables of interest (Le., electric-field intensity, magnetic-

field intansi ty, etc.) We shall ahrays make this distinction beti'leenthe

model. of the physical system and the operators that it generators. The

term IIBanach systemll refers to the model and not to any particular oper-

ator.

By a IIHilbert portll we mean the following. Assume tha.t in a given

Banach system we have singled out two physical variables u and v that

are complementary in the folloi.Jingsense: Both u and v take their values

in a Hilbert space H and the real part of their inner product (u, v) re-

presents the instantaneous power entering the Banach system. Then, the

Banach system vIith the se t..;ovari able s so singled out is called a "Hilbert

portll. WDen discussing a Hilbert port we in general pay no attention to

the other variables within the system. We berome interested exclusively

in the variables u and v and the three operators !R: v --+u, .8: u --+v, and

m: v + u --+v - u. (In microwave transmission systems, it is custow~ry

to choose v as the electric-field intensi ty- on a closed surface contain-

ing the system and c'Utting a.ll the vrave guides to the system on trans-

verse planes. Also, u is taken to be the magnetic-field intensity on

the same closed surface. Then, ~ is called the admittance operator, .8

the impedance opel'ator, and ~ the scattering opera tor. Furthermore

6 . 6
v+ = v + u can be related to the incident electric-field .'laveand v = v - u

to the reflected electric-field wave.)

Hov: about llro-port.s"? Assume that the space H for a given Hilbert
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port is separable; it will be for all practical systems. Choose an or-

thonormal basis for H. The separability of H implies that the basis

will be countable. (Moreover, a modal analysis of v and u suggests a

natural orthonormal basis for H.) Then, v and u can be represented by

their sequences of Fourier coefficients (vn} and (un} respectively.

Thus, for each n, we have a pair vn' un of complex-valued functions

or distributions on R. We can for the sak~ of analysis assume that ea.ch

pair vn' un occurs on a separate port, and thus we are lead to a system

having a countable infiluty of ports. We call such a paper network [3J

corresponding to the given m.lbert..port. an "ro-port". In this case the

operators m, B, and m mentioned above can.be represented by 00 x 00 matrices,

as will be indicated in Sec. 8.

These are the kinds of systems w~th which we vrlll be concerned in

this Hork. Our primary objective is to develop characterizations and

representations for various operators generated by. such systems Hhen

they satisfy various idealized ph;}Tsicalproperties such as linearity,

time-invariance, and passi vi t;y. Our theory depends crucially on the

concept of a Banach-space-valued distribution, and therefore w'epre-

sent an introduction to this concept in the next section. TirrLe-varying

Banach systems are taken up in Sec. 4 and both a kernel representation

and a composition representation for their continuous linear operators

are established. To the authors knovuedge, this theory does not appear

elsewhere in the literature and so we also present proofs. Time-invariant

Banach systems are discussed in Sec. S; in this case the kernel and com-

position representations become convolution representations. The results

of Sees. 4 and S apply to both active and passive systems. Next, we re-

strict our attention to p~ssive Hilbert ports and observe that such sys-

tems have frequency-domain descriptions. The frequer,:G;v-dom::tincharacter-

S



izations of their admittance and scattering formulisms are given in Secs.

6 and 7 respectively. The proofs of the results in Sees. 5, 6, and 7

appear else:vrhere [4J, [5J, and so in these sections ue merely survey

some pert.inent results but omit all proofs. In Sec. 8 and its tail we

return to detailed arguments. There the 00 x 00 ffi3trix representation

for the admittance operatar of a.11oo-port is developed, and the problem

of synthesizing an oo-port is considered but not resolved.

3. Banach-space-valued Distributj.ons.

The natural language for the theor;)'of continuous linear systems

is that provided by distribution theory. It not only simplifies proofs

but permits one to establish a number of theorems that simply could not

be formulated in terms of conventional functions. Moreover, it allows

the consideration of many idealized systems, such as those that differ-

entiate an aruitrarj number of times, ,dthout requiring that the domain

of inputs be excessively restricted. The signals we ,-rillbe concerned

with are Banach-space-valued distributions on the real-time line _00< t < 00,

and so our first objective is to present a brief introductj.on to the the or;>,

of such distributions. This we do in the present section.

Throughout this work we use the follo~~ng symbolism. If U and V are

tvlO topological linear spaces, the symbol [U; VJ denot.es the linear space

of all continuous linear mappings of U into V. Moreover, if @ E U and

f E [U; VJ, then f~, fC~), and <f, ~) all denote that element of V as-

signed by f to~. H will always denote a comple~ Hilbert space, and

C,, .) ,.Tilldenote its inner product. On the other hand, both A and B

'Will alvrays represent complex Banach spaces. F\r.rthermore, Rn is n-dimensional

euclidean space, R ;: R1 is the recllline, 81id C thE: cOi:lplBX plane. C+ de-

notes the open right-halfof C; Le., C+ ~ [C: C E: C, Re" > 0).
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I.

A function cp mapping an open setI c R into A is said to bo strongly

continuous or strongly difierenliiabJ.e at a point t € I if the standard

difference expression that defines continuHy or the derivative at t

converges in the norm topology of A. ~ is said to be smooth on I if

it possesses strong derivatives of a.ll orders at all points of 1. Sinli-

la.rly, if cp maps an open domain J CC into A, cpis said to b6 analytic

on J if, for every point C € J, the standard difference expression that

defines the derivative at C converges in t~e norm of A independently of

the path in which the itlCrenlent 6(; is takeil to zero. Derivatives are

denoted alternatively by

d
dx cp

The support of a continuous function cp TI1£,ppingR into A is the

smallest closed set outside of 1'Thich iJ is the zero function; it is de.-

noted by supp cpo II'IIA or simply 11'11denotes the norm of a Banach space

A. If nothing else is explicitly stated, it ".ill be understood thd.

[A; B] carries the usual operator-norm topology (Le., the uniform topo-

logy) .

If T and X are either members of R, +00, or _00with T < X, then

(T, X) and [T, X] x'epresent open and respectively closed intervals in

R, and similarly for the semi-open and semi-closed intervals (T, X] and

[T, X).

Let K be a compact (1. e., closed bounded) interval in R. 1K(A)

denotes the linear space of all smooth funetions cp on R into A \omose

supports are contained in K. vie assign to JJK(A) the topology generat6d

by the sequence [Yk}~=O of seminor-ms d6fined by

( )-1.)
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Thus, a sequence (~v} v : 1 is convergent in »K(A) if and only if every

~v E .f}K(A)and there exists a ~ E J)K(A) s,lch that, for every k = 0, 1, "'J

Yk(~v - ~) ~ 0 as v ~ w.
m .

For any nonnegat.iveinteger Ill,J)K(A)is defined similarly except

that vTeimpose the conditions on the derivatives Dky for Qnly k = 0, 1, ... ~ m.

and equip fiCA) with the inductive-liIT~t topology [6; vol. 15, pp. 61-

62J. This implies that a sequence [0V} v : 1 converges in .&(A) if and

only if the entire sequence is contained in some fixed ~pace cK (A) andn

converges in that space. It is also a fact that a linear mapping f of

JJ(A) into some locally convex space V (every topological linear space

con.sidered in this paper is locally convex) is continuous if and only

if its restriction to each 17K (A) is sequentially continuous [6; vol.
n

15, p. 62J. The latter means that the convergence of ['.0) to zero in

.&K (A) implies the convergenceof [<f, c{J)} to zero in V. Horeover,n
a set 0 is bounded in .&(A) if and only if there exists an n such that

o c.&K and, for every k, Yk remains bounded on O. vhen A is C, wen
denote .&(C) simply by .&.

.&m(A) is defined as the inductive-limit space Un : 1 g~ (A) and
n

has similar properties.

The linear space of all continuous linear mappings of '&(A) into

B is denoted by [JJ(A);BJ. It is a space of vector-valued distributions.

We assign to it the so-called "topology of bounded convergence". This

is the topology generated by the collection of scminorms [ao}o vThere

o varies through the bounded sets of JJ(A) and

8
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(3-2) f € [.&(A); B].

~vhen A and B are both C, we get the customary space p' = [.&(C); C] of

scalar distributions on th'3 real line, and the topology of .&' is then

the so-called strong topology.

[pm(A); B] and its topology of bounded corNergence is defined in

just the same w~y.

1--1evlill on occasion use a 'feaker topology for {peA); B], namely,

the "topology of pointHise convergence"; this is generated by the col-

lection of seminorms (3-2) where now 0. is restricted to the finite sets
. w

in .&(A). It corresponds to the iv-eak topology of .&'. The symbol [.8(A); B]

Ifill denote the space ['&(A); B] equipped Hi th tW,s "leaker topology.

On just one occasion (vn16n vle discuss a kernel theorem in Sec. 4)

vlS vIill need functions and distributions defined on the t",o-dimensional

euclidean space R2. In this case, the definitions of '&K(A), P(A), a.nd

[peA); B], as Hell a.s pm(A), .&m(A), and [.&m(A); B], are the same as aboveK

except that nO"l-lKn is a compact interval in R2 (Le.', ~ = {z: Z E: R2,

Izi s; n}), k is a nonnegative integer in R2, and Dk is a partial differ-

entiation corresponding to k.
m

In the definition of JJ (A) , k = {k" kz}
K _.

is restricted to those values for which 0 s; k1 + kz s; m. In this two-
. m'

dimensional case, we ~dll always denote peA) by .&t (A) and.& (A) by,x
viill on occasion replace <', .) by <', .)t to

,x
m

JJ . (A); moreover, He
t,x

emphasize that we are dealing with the hio-dimensional case. Henceforth,

the symbols P, J)(A), B.nd J;ffi(A) "Till ahrays signif:y that their members

are defined on R = R1.

~ve return now to the one-dimensional ca8E. Of importance to us

is the space [P; [A; BJ] of continuous JJ.near ms.ppi.ngs' of JJ ,..,.&(C) into
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the space [A; B]. The topology of [n; [A; B]] is that generated by

(ao}o vnth aO defined by

ao(f) ~ sup II (f, cp)1\

[A' B]cpEO ,

where nOH f E [1t;fA; BJ] and 0 t.raverses the bounded sets in .&. A

crucia.l result for our theory is the following [4; theorem 3-1J.

Theorem 3-1: There is a bijection (i.e., a one-to-one onto map-

ping) from ['&(A); B] onto [1t; [A; B]] defined by

(3- 3) (g, cpa) = (f, cp) a

where cp E B, a E A, g E [.8(A); B]p an~ f E [ll; [A; B]].

Because of this theorem, vle can identify the members of [.&(A); B]

uith those of [.&; [A; B]], and in place of (3-3) we will vJTite (f, cpa) =

(f, cp)a.

Here are some examples.

~mple 3-1: Let 1"denote a fixed member of [A; B] and let 0 denote

the customary delta functional. 1"0 is defined on any e E ll(A) by

(3-4)
b

(Fe, e) = 1"8(0) E B

Clearly, 1"0 E [.&(A); B]. On the other hand, we define 1"0 on an;}'cp E II

by

( 3-5)
b

(1"0, cp) = Fcp(O) E [A; B]

and obtain thereby a member of [ll; [A; B]]. ?nat these two definitions

accord vnth (3-3) follows from the fact that, for any a E A, we have

cpa E .!t(A)so that by (3-4) and (3-5)

(Fe, cpa) = Fcp(O)a = (1"0) cp) a
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Thusj Fe is simultaneously a member of [.&(A); B] and [.17; [A; B]].

Example 3-2: Let h be an [A; B]-valued function on R that is con-

tinuous in the norm topology of [A; B}. Define a mapping (also denoted

by h) on any e E .17(A) by

(hj e) = J h(t) e(t) dt E BR.

The integral on the right-hand side is the strong limit in B of the

corresponding Riem.ann sums because h(t) e(t) is strongly continuous

from R into B. That h is a linear mapping follo~re from the fact that

integration is a linear process. The continuity of h from .&(A) into

. B is implied by the estimate:

lI(hj e)IIB ~ SR IIh(t)II[A; B} lIe(t)IIA dt ~ ~~~ lIe(t)IIA Si IIh(t)II[A; B] dt

where K is a compact interval that contains supp <po Thus,) h E [.&(./1.);B].

On the other hand, we can define h as a mapping of B into [A; B] by

(h, <p) = S h(t) <p(t) dt E [./I.; B}R
<p E.17,

and considerations similar to those above show that h E [.17; [A; B]}.

Thus, the originally given [A; B}-valued function h oD.R generates both

a member of [.&(A); BJ and a member of [.17; [A; B]}.

We can generate still other members of [.17(A);B} or [.17; [A; B}}

by differentiating in a generalized sense the distributions of the pre-

ceding examples. Such a differentiation riP of order p is defined on any

f in [.17(A); B} (or in [.17; [A: B}}) by

(3-6) (riP f, <p) = (-l)P < f; TIP<p)

where <p is an arbitrary member of .17(A) (or respectively of .17). Since

TIP is a continuous linear mapping of .17(A) (01'.17) into itself and hence
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maps bounded sets into bounded sets, it follows that (generalized) dif-

ferentiation DP is a continuous linear mapping of [.&(A);BJ (or en; [A; B]])

into itself.

Example 3-3: 1-Jecan nOioTdefine a member of [.8{A.); BJ or of [It; [A; B]]

by applying If to the Fe of example 3-1. Upon applying (3-6), He obtain

( 3-7)

where <pis either i.n It(A) or respectively in .fJ. SinGe <rf6, cp) = (-l)P cp(p)(O),

'fe see that Jf(F6) = F rf6.

Example 3-4: Similarly,by applyingDP to the results of example 3-2,

VIe get the member rPh of [.8{A); B] or of [.&; [A; BJ] defined by

( 3-8)

ifhere again cp E B(A) or respectively CDE lJ.

Let us also state the definitionof the shiftingoperatorcr ; we,.
shall have need of it later on. For any given,. E R, a is defined on'f

any (p E.B(A) by O"Tcp(t) ~ <pet - ,.). cr,. is a continuous linear mapping of

.&(A) into itself. Next, (J is defined on any f E [It(A.) ; B] by,.
6

<a,.f, crl = <f, a_T cp) ,

and consequently a is a continuous lineal~ mapping of [B(A); B] into,.

itself.

There are sevel~a.l other spaces of Banach-apace-valued functions

and mappings on them that we shall need. One of these is e(A), the

space of all smooth A-valued functions on R equipped with the topology

generatedby the collectionof seminorms [y } where K traverses
K,k K,k

the compact setsin R, k traverses the nonnegativeintegers,and

(3-9)
l\ k

Y (cp) = sup II D 'P ( t ) 11

K,k tEK A
cp f- e(A)
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Here again, when A is C, we denote t(e) by sin~ly t. A sequence (~~}

converges in ~(A) if and only if there exists a ~ E teA) such that,

for every K and k, YK k(~~ - ~) -t ° as ~ 4 00. A set in teA) is bounded,

if and onl y if, for every K and k. Y remains bounded on O. A linear
~ , K,k

mapping f of teA) into any topological linear space V is continuous if

and only if the convergence of (~~} to zero in e(A) iJnplies the conver-

gence of (f, ~~)} to zero in V.

Let m be a nonnegative integer. We define tm(A) as was e(A) ex-

k
cept that conditions on D~. are imposed only for k = 0, 1, .", m.

[t(A); B] denotes the linear space of all continuous linear mappings

of teA) into B. The distribution rP(Fo), when extended onto e(A) in ac-

cordance Hith (3-7), is a member of ceCA); B]. So too is rPh, as defined

by C3-8) with ~ E e(A), so long as supp h is a compact set. In fact, it

can be shown that eV8FJ member f of ceCA); B] lias a con~act support (i.e.,

there exists some compact sat K such that (f, ~) = ° for every ~ E e(A)

with supp ~"contained ill the complement of K). We assign to ceCA); B]

the topology of bounded convergence, that is, t.hetopology generated oy

the collection (vO}O of seminorms define:1 on any f E [teA),B] by C3-2)

where now 0 traverses the bounded sets in e(A).

We obtain the definition of the space [ern(A); B] by replacing e(A)

by eTn(A) in the preceding paragraph. [e,m(A); B] is also a space of dis.-

tributions of bounded support.

Here I S another space of importance to us. Let pER be such that

1 ~ p < 00, b (A) is the set of all @nooth functions ~ on R such that,~
for every nonnegative" integer k,

(3-10) (Y.(~) ~ r
('

II k (. )
'
I
P

l
l/p

"k .) R D cp,1, i A dt.J < ro

13



We assign to .&L (A) the topology generated by [ak}~=O' As before, we
p

use the notation .&L (C) = '&L' We can make the same comments COllcern-
. p p

ing convergent sequences, bounded sets, and continuous linear li13.ppings

on.& (A) as those made~
[.& (A); B] is the~ .

mappings of.&r (A) into~

p

for ~(A) except now Y. is replaced by ak.K,k

topological linear space of all continuous linear

B equipped with the topology of bounded conver-

gence.

We now' turn our attention to the spaces .~(o, ro; A) c:nd [£.(0, 00;A) ; BJ.

A detailed discussion of the scalar version of these spaces, where A and B

are both C, is given in [7; chapter 3J. First of all, for any c E Rand

d E R we define £ d(A) as the space of all smooth functions on R intoc .,

A such that~'for every nonnegative integer k,

(J-Il) Y d keep) !; sup IIJt d( t) Dkep( t) II < ex;

c, , tER c, A

where

JtC,d(t) ~

t ~ 0

t < 0

The topology of ~c d(A) is that generated by the collection [y d k}ro, c" k=O

of semi norms on l d(A). Once again, the comments concerning convergentc,

sequences, bounded sets, and continuous linear mappings on £ d(A) are
c,

quite the same as those made for e(A).

Next, let w be either a member of R or _00 and let z be either a

member of R or +~. Also. let [a }ro l and [bn}roo-l be two monotonic se quences, n n= l-

C £ b (A) and the
C)n' m

on it by £.a b (A).
m' m

topology of £a
n'

It follows that, for m > n, ~a ' b (A)
n u

b (A) is stronger than that inducedn

in R su eh tha t a\) -+ W + and b\) -+ Z -.

We .set
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£(-t.r, z; A) = Unco'"'l £., b (A)
""n' n

and assign to t(w, z; A) the inductive-limit topology. This means among

other things that a linear mapping f on ~(w, z; A) into a locally convex

space V is continuous if and only if the restriction of f to each ~a b (A)n' n

is continuous. Here again, we set .~(w.,z; C) = '£(w, z)

[~(w, z; A) ; B] is the linear space oi'all continuous linear map-

pings of l(vr, z; A) into B. We assign to it the following topology.

Let ~n denote the collection of bounded sets in ~R_ b (A) (i.e., 0 E 6n
-on' n

if and only if 0 c rea b (A) and, for each k, the seminorm Ya b k
n' n n' n'

remains bounged on 5n). Let 6 = U~=l 6n. Then, the topology of clew, z; A) ; BJ

is that generated by the collection (O"O}OE6 of seminoms where each aO is

defined by

!::.

aO(f) = sup lI<f,<p)IIB f E ['£(w, z: A) ; BJ
<pEO

If w < z and if y E [.£( w, z; A) BJ, we define the Laplace trans-

form Y = £y of Y by

(3-12 ) w < Re C- < z.

o = r, : w < Re C < z)y

"(See [4; Sec. 5J.) Moreover, the Laplace transfor~~tion D is unique

in the following sense: Ii' Y(C) is the zero member of [A; B] on any

open sub~et of 0y' then y is the ~ero menilierof [~(w, z; A) ; B]. (See

[4; corollary 5-2a].)
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where a is any member of A. The right-hand side of (3-12) has a sense

because e-Ct a E l(w, z; A)for every C such that w < Re C < z. It turns

oVt that Y is an [A; B]-valued analytic function on the strip



A fact that we shall subsequently employ is the following: If

f E [P (A) ; BJ where 1 ~ P < wand if supp f C [T, ~) for some T E R,
L .P

then f E [~(o, ~; A) ; B] (see [4; lemma 7-2J for the ca~e p = 1 and

[5; lemma 2-1J for the case p = 2) so that (Qy)(C) exists on at least

the right-half plane C+ = rC : 0 < Re C < oo} .

We now take note of certain relations between some of the above

spaces. We have

(3-13) PeA) c.&L (A) C e(A)
p

and

(3-14) PeA) c£(w, z; A) ceCA)

In both (3-13) and (3-14), any space therein is a dense subspace

of tIDy space occurring to the right of it, and the topology of the former

space is stronger than t,hetopology induced on it by the latter space.

By virtue of these facts, we have

( 3-15) [e(A.) ; B] c [PL (A)
P

B] c [.&(A) ; B]

and

(3-16) ceCA) B] c [~(w, z; A) ; B] c [peA) BJ

4. Time-varying Banach Systems, a Kernel Theorem, and Composition.

We wish to consider a model of a physical system which determines an

an operator that maps a class of input signals into a class of output

signals. Our purpose is to investigate the relationship between various

analytic properties of the operator and certain (idealized) physical pro-

parties. In this section the only physica.l properties we shall impose

are single-va1uedness, linearity, and co~tinuity. (Throughout this paper,

16



whenever we specify that an operator is linear on some dO!1l9.in0, it vTil1

also be understood that it is single-valued on O. On occasion "\-16will

a110v! multiva1ued operators but these will not be called linear.) Thus,

time-varying systems are allowed at this point. Active syste;ns are also

a1lovTed. The adjective "active" signifies merely that no requirement

of passivity, as defined in Sees. 6 and 7 below, is being imposed but

may nevertheless be satisfied. Thus, we view passive systems as being

special cases of active ones.

'l'he kind of operator we have in mind is one that is generated by

a B~lach system and therefore nmps, say, A-valued distributions into

B-va1ued distrib-'Jt.ions. 'He can obtain an an.':1.1ytic representation for

the operator by extending SchHartz's kernel theorem [8; p. 531J to

Banach-space-va1ued distributions. This extension is given by theorem

4-1 below. (Aproof of theorem 4-1 is provided in a pape~ by Bogdanowicz

[9J. Actually, Bogdanowicz's work restricts the range space B to the

complex plane C, but it is not difficult to extend his argument to the

more general case considered here.)

'1'0 say that 5.Ris a separately continuous bilinear mapping of

g x g(A) into B means the following: ~maps any ordered pair~, v of

a ~ E 17 and a v E J)(A) into a member ~cp, v) of B, and, in addition,

if v (respectively ~) is kept fixed, then ~ is linear and continuous

,.dth respect to ~ (respectively v). .

1heoreffi 4-1: Ifm is a separately continuous bilinear mapping of

g x g(A) into B, then there exists a unique continuous linear n~pping

f = f(t, x) 9f.&t )A) into B such that,

(4-1) ~~, v) ~ (f(t, x), ~(t) v(x»

for ever~ ~ E J) and every' v E D(A).

17.



Next step: We define a composition product f 0 v on any f E (Bt (A)
,x

B]

and any v E »(A) by

(4-2) <f . v, ~) ~ <f(t, x), ~(t) vex»~ epEJi .

We shall refer to the process of forming this product f G V as "composi-

tion 0" to distinguish it from another such process, called "composition 0" ,

which will be defined subsequently. The right-hand side of (4-2) has a

sense and determines a member of B because ~(t) vex) E »t (A). Thus, we
,x

can consider the composition ~ operator f 0 : v H f . v as a mapping of

lKA) into the space of mappings of J}. into B.

f . v. on B is obvious. Its continuity follows from the fact that, if

CPv~ 0 in B, then ~v(t) vex) ~ 0 in Bt,x so that <f 0 v, ~v) ~ 0 in B.

Now consider f e. Its linearity on lKA) is again clear. To show

its continuity, let 0 be any bounded set in B and let Vv ~ 0 in lKA).

Consequently, ~(t) vv(x) ~ 0 in ,&t (A) uniformly for all ~ E O. More-,x

over, there exists a compact set K c R2, a nonnegative integer mER,

and a constant Q > 0 such that supp cp(t) vv(x) c K for all v and all

ep E 0, and, in addition,

ClO(f 0 v) = sup II <f . vv'
cpEO

~)II
B

(4-3)
'" sup II<f(t, x), cp(t) v)x»IIBepEO

k
sup Q max sup liD ep(t) v,;Cx) II

epEO o~ Ik I~m t, x A

15

Theorem 4-2: F'or anL..B..ivenf E [Bt (A) ; BJ, the composition opera-- ,x
tor f 0 is a continuous linear mapping of lKA) into [B; BJ .

Proof: We first observe that f . v E [B; B]. The linearity of



where k = (k1, k:a} is a nonnega ti ve integer in R2 and I k I = k1 + ~

In vie ' of the uniformity of the convergence of cp(t) v,,/x) with respect

. to all cp E 0, "the right-hand side of (4-3) tends to zero as \! -. co. Since

o was arbitrary, we conclude that f e v\! -. 0 in [.&; B].

Theorem 4-2 possesses a converse. In order to obtain it, we will

need
. w

Lemma4-1: Let ~ be a continuous linear mapping of .&(A) into [.&; B] .
Define ~ from 9~ by

(4-4)
6

~ cp, v) = <~v, cp) v E .&(A), cp E b

Then, ~ is a uniquely defined separatel~?ntinuous bilinear mapping

of b x .&(A) into B.

Proof: Since mv E [b; B], the right-hand side of. (4-4) is a mem-

ber of B. Thus, ~ maps b x JJ(A) into B.

Next, fix cpo Let. (i E C, SEe, Vl E JJ(A), and va E b(A). Then,

the linearity of ~ rrlth respect to v is established by

~cp, riV1 + SVa)

To show the continuity of ~ with respect to v, let v\! -. 0 in beA). We have

that m(v\!, cp) = <~v\!' cp), and this tend~ to zero in B because ~ is con-

tinuous from .&(A) into [.&; B]'W.

Similar arguments establish the linearity and continuity of m wi th

respect to cp when v is held fixed.

We may now combine 1emn~ 4-1, theorem 4-1, and the definition (4-2)

to get the aforementioned converse to theorem 4-2.

Theorem 4-3: For ,!very continuous linear m2.pping ~ of .&(A) into

19



[D; BJw, there exists a unique f E [» (A); BJ such that, for all
t,x .

v E »(A), !Rv = f . v in the sense of eoua1i ty in [D; BJ.

Theorem 4-3 provides an explicit analytic representation for a suf-

ficiently well-behaved operator ~ of a time-varying active Banach system,

but it does so for only a very restricted domain for the representation,

namely,B(A). We can construct a composi tlon representation for certain

such ~ with wider domains for the representation by appropriately ex-

tending to Banach-space-va1ued distributions the concept of the composi-

tion of distributions as developed by Cristescu [10J, Cristescu and

Marinescu [11J, Sabac [12J, Wexler [13J, Cioranescu [14J, Ponde1icek [15J,

and Dolezal [16J. But, before doing so, let us present some examples of

composition 0 operators.

Example 4-1: We first present the composition 0 represGntationof
. n

an nth order differential operator hD .with a variable coefficient.

h E eO([A; BJ). That is, h is a strongly continuous [A; BJ-valued func-

tion on R. For this purpose, we define the ope~ator r(t, x) E [»0 (A) ; A]
t,x

by

A
(l(t, x), aCt, x) = J aCt,t) dt E AR

e E DtO (A)
,x

Consider f(t, x) = h(t) (-D )n let, x); it is a menilierof [hn (A) ; BJ C
x t,x

[h (A); BJ, as can be seenfromthe equation:
t,x

V E.lln (A)
t,x

With this choice of f, we have for any v E b(A) and ~ E.ll

(f ~ v, ~) = (f(t, x), ~(t) v(x) = f bet) ~(t) ~ vet) dtR

= <h1fv, ~)

20



It follo';.Ts frorn t.his expression th"d:. Ul6 cOJTI'\';ositior: ~ oosra',.or f c, js. ....

[..&; D].
n

a t the desired rE:proser!.to. t.i on for hU'; Jl.?mel.y, tn the [;ense or equali ty

in [.1l; B],

(4-5)

v E JJ(A),.h E e.0([1~; BJ), f(t, x) Bl..J

Example k.2: Here I s tD8 C'o,npositione :capr8sent.s.t.ion for t.he opore,-~-,_._.

t ' 1-.-T ,'-.. 1 E- nO ( [ I,. B
-
J) "'Q'~;' . C. '" ~n 1d ( .' ~ tl '" "' ,: ,~J; 'r'.~

01 1 V'f y,.o.t::re ..1 r., ", _ ~l,d.~L, 1 -.:It, c._ cr'f Xl _8 1", , I..L'...d6

Op erator defined on c,uy e EJJtO U.) by CT,.(X) e(t. x));' c. I ", '

on any f E [.tt~O-x\ A) ,; BJ b;yv,

I) E.r:.c1

) e(i' ,. ) \
./). j \ 'J, A, I

/I

t.
Th-n h a - h( .;.) 0 It) ,.1"y!n.L " J......

t' -, ...T - \.' ,-'.. V"'-' l~IL...:..:~ v ;:.~

L-.c t. ~(~ :x) = ~ l'~' ~ , } ) .f'ft x
'
)'- I .1 \. V) .1. . u I '>.-' ,...' , .. \ OJ, .-,

It . ' 1- J.B eaf;l_ ~...;se81J.
. . . ~

(
.

-~rlH~ 1. -ll, x) E

P.] C lit (A.J
- t)x' .'

, r,] 6

(f' G v) cp) (h(t) a .(~) r(t, x), m(t) v(x»-I
/'1-( + ...,.': ,,(., \ ,,(.L ) -( ,- ~-) \
\ '. v, .1:"'/" 1.., v J C!.~\ v V \ "... - I I

(!~-6) f ~ v

, E ,,;fA'1. E
',O

(Ij
.

Bl)-..: .'J\._/, 1 . C '->; ._-' , B]
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Example ~-3: "\-J'8nO-I-1"sho\~ that cOJ1"v'olut.:i.on is a special case of

composition. Let y E [.lI(A) ; BJ. Dafine y( t - x) as a member of

(h-7) (y(t - x), V(t., x»+,.,x

A

~ (y(t), J v(t + x, x) dx)R

Let let, x) y( t - x). Then, fo1' a.ll v ~ .E{A) and cp C=.JJ,

(y(t - x) cp(t) vex»~. , t,x (yet), f ~(t + x) vex) dx)R

(y(t), (v(x), 0(t + x») .

The last exp1'e~;s:ton is the Gefini ticn of the convolution product y -~.v

appl:tod to ~).[~; Sec. 4J. Thus,:\n the senSG of equali~y in [.&'; BJ,

lie have

(4-B) y ..~-v f (! v

v E J)(A), y E L8{A) BJ, f(t, x) Y(~. - ...) E L,-,). (p \
\ v A oJ' 'I

t ,X
BJ

Ve nO~f 8.ttack the problem of finding a CCi1-LPOS~ltioll proced'Jre trlC.t

is 0::.01 'i.d tly denned for a pair of B9.1.1ach..sl}~{Cto'.Talu6c} (~:istributjow3

nei ther of },hich are in .B(A). (In fact, tl1GY m~y bot.h be singular d:i.s-

tributioDS.) \'10shall refer to this latt.er procedure as 11<.;omposi Mon OH

to d:i.stinguish it 1'1'0111tll'3 previously disCUSSGd compOs:it.:lon e. p~',,)cGdure.

We first develop some prol)En ties of Banach-space-valu(d distdbutions

that. He 811a11 need.

In the follo.,ling N is 8. CO;11.:.J8.(;tink:. "1} in R. Also, Lp H vTith)

n = 1 or 2 is the C1Jst.o'T1~.ry Bane.ell [ipaCe of cOF;~lc:;.; J".(::UE'sr,'1J.c-mea.surC'.ble

!

,n

funct.ions f on N \r1.t,h i'! Lebosf,ue integrn.blc 01.1}iT. 1110 non;. fcr Ln,N

is II'!!, 1\f
i'There

11)1
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By the Sdna.r~ in'~qu2.1i ty,

"flere c denotes the square root, of the length of IT.
ro

~.:et .the i:]~~~.£nc_~[v j} j=l ,t.end t.<::..z.~~~~ [B; A], ..?n~.

condit:i.ons arc sc:i.,isi'ied.~ ..-

g. on R ::;uch tb;::.t
J -

[ f.<. ~ J"-'l'T' h _ .

g c K ard v .
j -- J

D
p .

t ' ~ 1 . , .g. H) 'ne 8':."138 0: eq')C"L.:J.L.V 1n
J :.1-_

Proof:.--..--

exists D. consb.:lt M > 0 and ail int.eger r >- 0 such th2.t, for all cp E ,r+
'1'1'

(4-9 ) S'c1p 11 (v., (r,)!1 .,:; M nl2.X
j J A ~x":;r

sup
t.ER

k
In co(t)1

1-
Next, for each derivat.ive If (0,

k t
D co = r, ~ -0> . .. st1'..k 1)1'+1_'YJ

min N C'1.ndT

ro.k t 1'+1
~ (T - T) sup Jf /n m(x)!

t En. '1'
d:c

dx
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\113,SEJe fro;n (4-9) th~1.t there exist.s a C(')J.Eta:nt HI > 0 such t.h3.t

(4-10)

Next, cons:tder the folloVling line<::r Sl<'onl)<J.cC
n .L-P 't' T ~
\' J./1\

Let D. be the linear mapping of L\ hltO A defined by
J

(4-11)
/::..

(u ,1/> '" ( V CD\., '!' . , I

J J

This defines Dj uniquely bcc[;.uf.:e, if ~ =.: 0 and cp E .1f1\F then cf.' ~ 8 f)O

that (U . , 0) = (v.. 0) ==O. Moreover , U. is continuous
J' J' J

suppl:i.ed the tOF)logy incl>.lced by L2,N beC2,US8 by (4.-10)

(h-12) 11 (U. , ,:,)111' .,
1

1,('1 . co)','! ~ Hllt!,!,11 :;:; }l'iC! I'!~,!II ' _

J f, A j" A 1 'l.,N -, '2,N

He ext.end U. C:1to the cl08u1'e /). of 6 i~.1 L,) 1'Tby continui ty. The ex..J ~,~

tended map~' '.g, vJhich H8 also deilOto by U. > is cO'ltinuOUB and linE-D.l'
. J

on t. and satisfies

/
'

, (n., u>,'I. 5;1-11cllvl!')"1J"A L,H

for all 1lr E /\ Fu:ct,hel'Trlore, let Cl, be the orthogon2.1 cOni";:Jlcment. of

b. :lll L . and donne (U.. If>
2>N' J~

U 011 "'11 Ol
~

L b " l.; r l~" l '!+" r[1 1U'" F~ 'I-''''''7<.~ ~ l
"
rl '-''' a

''
a .' '" .U"

l
'
q "~l'\T. c;:,. 2 1\J J -~.~. _1..::<;:". ,J.. VJ. .L.~ ~}: ,'-,It.:. .1...r.:\,v";; ct.. \i U .. I.J C;, 1~ _ U r:..':'~,JJ ,1'.

defined continuau2- lh;G2.r' 1r£~'):)pingD., of 1
- J 2)N

o on every ~ E Cb. Fina.lly> define

.. ~lnt,o J~.

i'le nOl" invol.:s a res\.:Jt, [17; p. 259, t.heorcn: 1J '\tThich c'.3se1't~: t,hat

ther " e ""l'''' t '' " 1" A V",l'l Ed
'

j !'O'JC' \.Jre m a,,~.£>!~~'''1 Oy. -I'!'1", Bor ' el S"'k"'c t ,, 0 ". N
- I..:: :...\... U ...J C~}. ..~ :~p~l, " ,.).,;.,'~O t j _,-,J.J.L!';I...( ."J.. \.-'...~ _, __ l,..~:J..:)' 1::1 .L

such that.
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(4-13) drn 4
J

for each. E L2,N'

. '" ~r1 + *2 where th

In addition, ():..13) tCl1di3 to ze,:o as j roo Indeed,

E /:.. End 1¥8 E Ot,. Thus,

dlil
j

(u. . 1li'>
J' .'

(U , VI - e) + (u , e)
j j

fOl' any e E !j. Hence,

Given any e > 0, He ca.n chao se e E II such that

c
2

By t.he hypothesis on v. and (4- 11); I I (u ., e>11 is also loss them e/2 for
J . J A

all ~mfficiently large j, 'Itus, 01.--13) tr,\ly tenets t.o zero -9.8 j -. 0'.

Horeover, we also have th.:d:" for 67ery 1)r E I'2:N"

Next, considfcr the function

K (t)
x f 1 for t :S:x, tEN

l 0 otherwise,

~lhere x is any membe:c of H. As before, HG set 'l' min H cUld define a.n

A-valued function f on R tv
j .'

f, x
f (x) ~ f .1m. _ U._

j T j
J K dm.

IT x J~
xER

Since the rec;triction of K (t) tCI N is a me1'n.ber of 1:2 N' for ea.ch x E R,x ,
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f .(x) -. 0 ~s j -) 00.
J

b ~ (: "''' ~ c, "',-.r ( 11--1 )I )"-- - '1-'-" , '-' l", '\..., -'7

Moreover, [f.1. is a. 3t,r(:1:;.,;1y squiCOf.ltiunol1s set
J J

II f .c x)
.J

... (
" I.L. Y) I

J . . 'A

,
II' r, (K - KJ dm.1I ~ r-~lC!IKx - K II .

"r! x J J A - Y 2,]'.j

==H]c !f;~-=--;T

Finally,

[f j (x) }j tends to 0 in A unifol'lfJly for' all x E f,:.

K8 have from Ch-l1), (ti-13» and an :intsgl'Cltion by parts

Ccnsequentl;-,' ,

that, fm' every (.0 C'&N)

(V., CD).,v

~,.L1

(U . D-'-' CD)
j'

1'+1

IN D CD dmj
-J' f

N j
,.J.'+2 '....
1) CD 0...

l,et g. = (-1') 1'+1Ci f. \-There a E.& is such th8. t Ci :-:: 1 on 8. neighborhoodJ J

of Nand Ci :=.0 ()ut~_;:ide K. Then, for all co E 1j,'\p

(v., co)
J

<
r. ,,""+2

)-'1 ., a.u CD
J

+1 r,c2

«_1)1' D' (r; fj), m)

1'+2
<D- g, CD)

j .

This cOYJ'"G11etesthe proof of theorem 1~-4.

We noL.e. in p8.s~)ing tha.t the foregcdng proof can be modified to

eliminate the integral representation in the rig:bt-handside of (4-13).

One need merely \.mrk 'l-Tith the left-hand side of (l~-l3) and define f"j(X)

as <Uj' Kx>' Bu':' then, th5.s 1-D.l1 requj.re the use of t.he concepts of the

pdmit.i ve of U. a.nd its differentiation.
J

Tl~:r:'€,m4-5:
If thE-s...E:.9uo~~~[v J} j""J ~;~!:.Le~_ ir: [e; .ft.] to z~r~,

th(~n ther~_~i st. f!. comp,:.~!:-.:i.n~~'val N, §'::-lintc:~~r p >- 0, and strong~y-

contiEuo1.1S A-.ya=!::tl:~tfm~!:~'"2~ hie. -'J .2.~ H _~..c:}~_'f:i:)_j.n ~h(~ sr:mSG of ~~_CE~-. ,

i t- . [
J:>

__SL.2E. v; A],
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P k
v = E I) h

." - k iJ k=O . h

l.rhera supp heN. for all k and j and,- k, j '--.' '- -.. ---'

A ur':ifon".l~L.£0r aD. x E R.

for €f.1.chfixed k, h -) 0 in
k, j

J):QQ..f,;, Th8.t tv.J COllVeJ.'ges in [e; it] iml)lies th:}.t there exist.s a,
.J .

comp8.ct interval G c R such that supp vj c G for all j [).8; chapter 1,

pp.62-63J. Let N be a compact intonal in R containing a noiGhbol~hood

of G. Choose}, E j} such that}, ;: 1 on a ncighbo:d100d of G e:n.d t. E: 0

outside N. Then, f01' any cp E e., ,.Je have that ;"(0 E .fj~rand (V~, cp).i\ ,...I

(v., ;"(D). By theorem t,-4 and the fact that COnV€1'gence in [e.; A]
J

implies conv~l'gGncE' in [iT; A],

p

(-lY (gj'

P
l.

k=O

p }-
(E D 'h

k ., (r)

k=O ' J

whe~e

The functions h possess the ))ropel'ties stat.ed in tho theorem.
k . - 1: .,J

Lemma h-2: An;LE].ven v E [e.; A] E.enerates 2.:unique v E [f( [A; B])

(4-15)
6.

(v, J8) == J (v, e) J E [A; BJ, e E f., .

HoreC'ler, the mg,~.ng v -t .~ is a se9.uenti~lly ~.ontirlDous Un ear injecti0!2

of [f; AJ into [C:'([A; 13J) ; BJ.

Proof: Let P cenc't.) the set. of all elGnent3 in C( LA; BJ) of the
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Next, as a consequence of theorem 4-5, He h<3.Y8tho.t V i8 a :nember

of [e; A] if and only if there exists an i:lteger p >- 0, a compact in-
p

terval N, and a finite set [hk} k"'O of st,y'ongly continuous .£\.-v8.lued func-

tions h on R 'Hith supp heN such that
k k

P k
v = L; D h

k~'O k

in the sense of equality in [e; A]. We define a linear m.apping {,iof

e([A; B]) into B by

(h-16)
P k

(v, *) == (L; D h , w)
k=O k

P k I-
I: (--1) r.ll DC~rdtEB

k=O N k _

t!i E e([A; Bj}

(For any J E [A; B] 2.nd a:ny a E fl., lie denote the applicat.ion of J to a
k

by either Ja or a,}. Thus, hk D ~r de;t.otes a B-valued function on R, 'which

alsohappens to be strongly continuous.) v is continuous because

/I (v, ~')II ~ ~ r I'h II I'D\n dt
B k=O ~N I k A' '[A; BJ

P

~ L; IN lih II dtk=O k A
sup
tEN

k
( 'Iii

riD ~r t'!:[A; B]

Thus, v E [e([A; B]) ; BJ

We nOH obs8l"vO that the slJost.i tution of J8 fur ~. in (1+-16) yields

(1-1.-15). '1'h1.13,v coindde5 i-Jit.h g 0:'. F. 1-1oreovCl',P is total inv

e([A; B]); that is, the B~an of P is danae in e([A; B]). Indeed,
b

Q = [JX : J E [A; BJ, X E h} is total in h([A; BJ) according to [4;

lemma.6-1J. Hut, B([A; BJ) is dense in e.([A; BJ) ~nd the topology of
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JJ( [A; BJ) is stronger than that induced on it by e( [A; BJ). Hence}

Q is total in e.([A; BJ). Sinc8 Q C P, so too is P. This implies

that, v is uniquely detccmined by its restriction to P. Thl s restric-

tion is gv' vJhich is un.iquely determi.ned by v, as ..,as noted above.

'fhis proves the fi:cst sentence of the leTit'!18..

Turning to the second sentence, vIe f:irst shoN' that v -~ v is an

inj(,ction (i. e., a om:-to-o!H:J mapping). Assume th2.t VI and V;z are

both members of [e; A] and that (VI} e) d. (V2, e) f(;;' fiOffiGe E e.

There exists at J.e<:wt on"2 ,J E [A; B] such that J(v1, e) f, J(Vn e).

(Indeed, bJT thIS Hahn-Bani?ch theorem [8; p. 1(17, corolh.ry 2J, thSl'8

exist.s a cont.inuous linear functional F on A such that., ]i'(v:;., 0) d.

F(v:z, e). Now, set ,!==bF where b is any member of Bother' t.han the

2;ero memb'3r.) the membGrs of {t( [A; :sJ) ; B]

defined b;y VI and "2 respectively in accordance vritll Ui,-I;;). There.-

fore, (vI' Je) d: (-v.~, J9). So truly, v '. v is an injection.

T' J ". 1 , ..
] 1 ./ l' -

na G V -~ V 18 a 1near m8.pplng 1t} c .ear. ,~s s6qUGn~.J.~LL con-.

tinuity follo1r!s directly from (L-16) and t.heorem h-S. Lermll3.L~-2 is

no>! estabHfJhed.

The cO!lcept of 11C;oJ;1position of! employs the idea of a distribuJ,:.j on

Yx dE:p8nd:'Lngon a parameter x E R. For our purpO::;'2, vie i-Jill imposE: upon

y thex

Condit:"tons G~4__

Gl. For each .;fixed x E R} Yx is a I!.wmber-9! [.&; [A; B]]. Th\l.~.,

f()~._<::.SY_QvGncy E JJ, the equC'.tion:

(4--17)
l:J

~(x) ==(y , co)x
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The next lemT3 is due to D~lezal [16J.

Assume tha~ Yx sa.t.lsfiescondi t~9_nE2.G. Then} the

~ing cpH V of JJ into e( [A, BJ) is lineC}:r 8.!1dcontinuous.

1-Te now define the compod tion 0 pl~oduct v 0 Yx of any v E [e.; AJ

with Y byx

(4-18) (v 0 Yx' ~) ~ (v, V) ~ (v(x), (yx(t), cp(t))
coE .&

where v E [e( [A; BJ) ; BJ is defined by (4-15) or cqubalentl;y by (L~-16)

At tiJTICS , He ,.Jill denot.e the o-:Jerator v 14 v 0 Y.." hI 0 Y .... .'.1\.. "X

Theorem 4-6: Let v E [e.; AJ ~Ll~~~ y l'atisfy condi~ion~ G.

Then, v I~ v 0 Yx is a sequentially continuous linear mappi~ of [e; A]

in to [.&; BJ ..

Proof: That v 0 yx E [.&; BJ folloFs im;,:ediat,ely from t.he defini-

tion (4-18) and the follouing h'lO facts: cp!-+ \' is a cont.inuous linear

mapping of.fJ into e([A; BJ) according to lenm!3. h-3. ~ ~ (v, w) is a

continuous linear znapping of e([A; B]) into B according to lemma 4-2.

It is clear that v H v 0 y is a linear mapping. '1'0 verify itsx

sequential continuity, let 0 be an arbitrarily chosen bounded set in
co

.&, let (v.). 1 tend to zero in [e.; AJ, and define V. from v. as inJ J= J J

lemma 4-2. By lemIna 4-3, 'if traverses a bounded set A in e.([A; BJ)

"..hen cp traverses o. So, for the corresponding seminorm 0'0 on [.&; B],

we have

(Jo(v. 0 y J ~ sup lI<v. 0 Yx' co)!! = sup tI<-v, ~)n
J x cpEO J B '¥ EA B

By t.heorem 4-5 and (h--16)~
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(Jr,( v. 0 V )
u J ~x

p
SUp II l:
V EA k=O

k (k)
(-1) r 1(r (t) h .(t) dtll

IN k;J B

p
I

'

II f I

I (k)
~ I: sup Ih .(t,) sup I~ (t)1I dt,

k==OtEN k,J A rEA N [A; BJ

and the right-hand side tends t.o zero as j -> co. This shows that v. 0 Yx
. J

tends to zero in [.&; BJ and completes the proof.

In much the saHle i,rayJ a variat.ion of theorem 4-6 can be established.

In this case He assume that v E [.&; AJ and that y satisfies the follo1-7-. x

ing t.wo conditions:

Condi tion G':

Gl'. Y satisfies condition A.l.x .

G2 '. cp H V is a mapping of .& into .B{[A; BJ).

Dolezal [16J has sho~T-~that conditions G' in~ly that the mapping

cpH1jr of .& into.&( [A; BJ) is linear and continuous. Furt.hermore, by

modifying the proof of lerruna 4-2 (we nOH use theorem 4-L~ inst.ead of

4-5), we can also show that any given v E ~&; AJ defines a unique

V E [.&([A; BJ) ; BJ via the equation (4-15), vThere nO'ile E.u and, i.n

addi tion, v H V is a sequential:Ly continuous linear injection of [.&;.AJ

into [.&([A; BJ) ; BJ. Once again, "\oledefine v 0 Yx by (L~-18). Then,

an argument almost identicc~l to the proof of theorem 4-6 establishes

Theorem 4-7: Let v E [.&; AJ and let y sB.tisfj condHions G'.-- x

Then v H v 0 Y _ is a sequentially contjnnous linear mapping of [.&; A]x -.-----..---.---------.----._____.________

into [.&; B].

We can relate compos:\. -Lion 0 TiE1.pp:i.ngsto cOHQosi t.ion 0/)mappings in

the folloHing "!;ray. Let there be gi V8n a compo,d tion 0 mapping ~ ~ v 1-4V 0 Yx

wller-s v E [e.;AJ and Yx satisfiesconditions G. Th8n, the restriction

of :m.to lJ(A) is a continuous Unear mapping !R of l;('A) illtO [D; BJw given
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by v H f 4\ v, v E .&(A), ",here f E: [B, (A); BJ is UYliqucly determined.
lj,X

Indeed, .D(A)'c [G; A], and tht: t.opJlogy of .&(11.) is stronger than that

induced on it by [c.; A]. On t.he otter ha.nd, the topology of [11; B] is

[
-,yj

st.ronger than that. of j); BJ . Hence, by theorem 4-6, the restriction

!R of ~n to JJ(A) is a seque:ltially continuous linear Mapping of .IJ(A) into
..j

[.&; B]. It is even continuous since .fJ(A) is the inductive ]51T':1t of
..

F'rechet spaces. Thus, ..Ie may invoke theorem 4-3 to conclude that

!TI == f 0 011 1!(A), vihere f E [Dt,)A) ; B] is uniquely determined.

It is also true that the mapping 9RH ~~is injective 'because 1!(A)

is der.s(~ in [e.; AJ. 'Voleshall see latH' OE (theorem 4-8) that an;(

gi ven continuous linear mapping 9J/of [C.; A] int.o [17; BJ un..i.quely det6r-

mines a Yx satisfying con(litions G such that.9J1v== v 0 Yx for every v E [e..; AJ.

It fo110H8 from these t\-;o facts that, if f E ["&t,x(A) ; B] is given and if

f " can be extended into a cont.:tlluoUS linear ffi:i.pping ~t of [e.; "~_]into [n,; B])

then there exists a unique Yx satisfying conditions G such that f G v = V 0 ~/x

for all v E 1J(A)

As G>:arnplcs He no,,[ develop the composition 0 cperat.ors c::Jrraspond-

ing to the Co)~)osition ~ operators presented in exan~163 4-1, 4-2, and

4-3.

EX03..mole4-la: For x E Rand n a 'Oosi ti ve integer. He set---~ ....

v~here now we assume that h (: e.( [A; B]) in COll"t.rast to the less restric-

ti ve ass\.~mption. T:1.ad8in exa./'nple 4-1.. ('1'he s;ymbol Ox denotes the shifted

delt.a functionalj tha.t is, (ox, <D) == rDCx).) For mlY co E j)

(11rP 6 co,

,'/.x' (-D )nx [hex) w(x)] E JJ{[A; BJ)
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T'm,s.. Yx satisfies beth conditions G and G/, So, by theo:n;:'l L:-7,

v 0 Yx E [..0;_BJ for' e.ny v E [11; A], In Pcl:r.,ticular, for y E f}, He

have

fined vie. the analogue to (4-16),

== l g, g E g~( A), froi.1 \'i11ich v is deh

the right-hand side is equal to

By virtue of the representat~on v

n \
<h D v, Cf;I

Thus, in t.he sense of equality in [.0; BJ,

(4-20) v 0 Yx h rfv

Compare this to (4-.~),

Let "i E R, let (Jr,.be the shifting operator as be-
I

fore, let h E e([A; BJ), and set

(4--21) Y = h 0'". ox == h 0 JX I - X,-'f

Here too, y satisnes conditions G and GI, For any v E [.&; A] andx

CDE .f.tJ

As in the previous E.xamp1e, the right-hand side car, be sh)\.;n to be equal

to

(h (J~ v, 9)I

33



Thus, in the sense of equali ty in [B; BJ,

(4-22) v 0 Yx = h a~ v .

Ex:ample 11-38.: We 1'101-1turn t.o 'convolu.tion once a.gain. Let"JT E

[.!T(A) ; BJ and v E [e; AJ. By theorem )-1, y is also a member of

[ll; [A; BJJ. For each x E R, we define Yx 8,Seither a mG;11berof [.D(A) ; BJ

or [.&; [A; BJJ'by Yx. = 0x:Y' So, for 2.<YJ.yt'J Eft,

(4-23) (v 0 Yx' w) ='=(v(x), (yx(t), w(t.») = (vex), (y(t), (;j(t -I-x»).

Here, the right-hand side has the sense of the applicationof v E [e-([A; BJ); BJ

to (y(t), w(t + x» E e([A; BJ). (See [4; theorems 3-1 and 4-3J.) \'Je n01'1

employ the representation of v as a sum of derivativesof stronglycontinu-

ous A-valued functions on R of compactsupport (see t.heorcm h- 5) and the

representation of y on ok for any given compact intervalK as the deriva-

ti ve ofaxl [A; Bl-valued function on R t:ilat is continuous in the norm.

topology of [A~ BJ (see [4; theor'eHi 3-1 and equations (3.5) and (3.9)]).

This allows us to invoke Fubini I s theorem and then to re1.r.d te (4-23) as

follo;-ls, Hhere no\-! y E [B(A); BJ.

(v 0 Yx' CD) = (y(t), (v(x), w(t + x») (y -r..v, <p)

Thus, in the sense of equalityin [.&; BJ, V 0 Yx = Y ~-v

Theorem h-3 states that every continuom; lineal' mapping of B(A) into

[ll; BJH has a composi tj.on G represe!ltation. On the other hand, the cx-

amples of this sect:i.on shcJiojthat at leasJ~ in three p8,rticular cases a

composition 0 operat.or has a corresponding composition 0 operator. A

natural conjecture therefore is that every continuous linear mapping of

[e; AJ into [11; BJ has a composition 0 rnp:cesent.ation. Theorem. 4-8 be-

1011, Hhich is a partial converse to theoreml h-6, st8.tes that this is in-
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deed the case. Its proof makes USG of

Lem.ma 4-4: Ever;l v E [e; A] 2..9___!!~~_.l:imit in [e; AJ of a sequence
co

(v)v=l such that !3ach Vv is a finite SUTfl._.~f~he form:

v)t)

where a 11. E A, '-" II, E R, and l' is a nonnegative integer not depending-- v,, ",... - ,
on p, or v.

The proof of this lemma mimics that of lamrna.2 in [19; Soc. 5.8].

In this case, ,-Ie use theorem 4-5 tu ..rrite v = (_D)r+2h vrhere h E e,°(A).

(Here, h need not he.ve a compact support.) As in [19; p. 145J, ,..8 then

set up the functions hv E eO(A), cJ.l of vDlich coincide with h outside

some COJHpact interval I containing supp v. 1"nis allows us to vT.l'ite,

for any cp E e,

Lemma 4-L~ is established by estimating a bound on this integral.

Theorem 4-8: Let ~1be a continuous linear mapping of [e; AJ into. - - - --- --- -

[B; BJ. Then, ther~ exists .§:unique Yx satisfvinp.: conditions G .::J.l1.ch .tbat

for §.very v E [e; AJ, !nv = v 0 Yx in the sens~ of squali ty in CD; BJ.

Proof: Define all operator !m from !It by

(4-24) (!mg, <r) a. g (!)t(g a), <r)

where g E [e; CJ, a E A, and cpE B. By [4; theorem 3-2J, ~ is a eontinU01..1I3

linear mapping of [e; cJ into [ft; fA; BJJ. Moreover, the equation

(a!XPg, <r) = (9Jg, cp) a defines a!IF.gas a member of [J); BJ (see 4: See. 3J.

Therefore, in the seDse of equ.ality in [..&; BJ,

.'
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(4-25)

For each x E R, set Yx = !i!I<:->cE~; [A; BlJ. i.lI/eIJ01,resta.blish t'VJOfacts:

(i) For any given <r E j), (Yx' (1'1)as a function of x is a member of e.( [A; BJ)

so that Yx s.:i.tisf'ies conditions G. (ii) Hor~over, for anJr nonnegative in-

teger k,

( 4-26)
k

D yx x

k
= ~D 6

x x

in the sense of eqality in ~; [A; B]]. (Dxkyx denotes

k 1I kmetr'ic derivative of y__ defined by (D Y.' cp) __ D (Yx '.A. X X - X

the kth-order para-

cr), ~ E j).) He use

a.n inductive' arg1.lIl1ent. First note that (4-26) is true for k = 0 by def'ini.-

tion. Next, fix x and choose any ~ x E R, ~ x 7~O. Assmning that (4-26) is

true for some k, '\.re may 'VTrite

(4-27)
1 k k 1 k k- ( D Y - D Y ) =!IJ/- [D 0 - D 6 ] .
~x x+Ax x+Ax x x ~x x+~x x+~x x x

The quantity in the right-.hand side upon vrhich 9J(operat.es converges in [e.: C]
k+l

to Dx ox' Therefore, (4-27) converges in [.&: [A; B]] to

k-iJ. k+l
n. y =~D 6 ,"'"'X x x x

and, in addition, (Yx' cp) is a s~ooth [A; B]-valued function on R by the defi-
ni tion of parametric differentiation. Tne statements Ci) and (ii) are hereby

established.

We now employ the sequence [vv} indicated in lemma 4-4. By the linearity

of m and equaUons (h-?5) and (4-26), we may 'l-Jrite

( 4- 29 )
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By lemma 14-4 and the continuity of mj the left-hand side of (4-29) con-

verges in [.&; B] to m v. On the ot.her hand, the application of the right-

hand side of (4-29) to any cpE » yields

where (Yx' ~) E t ([A; BJ)as WRS noted above. The last quantity is equal

to

= (vvo Yx' cp)

But, this tends to v 0 Yx since f f 0 Yx j.scontinuous on [e; AJ. 1rnus,

theorem 4-8 i.sproven.

Finally, we define the concept of causality and point out how it af-

fects the composition 0 and compositon 0 representations of operat.crs gen-

erated by time-varying Banach systems.

Definition L~-l: Let ~~be an operato:: mapping ~setX c LiJ; AJ into

[.&; B]. 91 is sa.id to be causal on X if, for ever-:Jt E R, \fe have that- - --- 0 ----

on -00 < t < to .

The follOtdng theorems are established in the same Hay as :i.n the scalar

case [20J.

Tneorem 4-9: Let f E [..l\,x(A);BJ. Th(;op_erator f Q is c2.usal on

.&(11.)if ~nd only ~_-f supp f is containe~ in the half plane (t, x: t :? x}

Theorem 4-10: Let Yx sa.tisfy conditions G. 'l'he operator 0 Yx is-. --- - -

causal on [(I,; AJ if and only if, for each fixed x E It, supp Y _ is contained--- x-_._-
in the semi-inrlni te linE2. [x, CD).
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5. Time-invariant Banach Systems and Convolution.

A time-invariant Banach syste!fi is of course one whose compO~6Ets

do not vary with time. One car..define such a system in a JT'.a.the:natical

way by saying that ever"';;,operatc]' ge::erated by the system comm-ut6s ,.;1th

the shifting operator aT whatever be the choice of 'iE R. (\'Te shall

also call every such operatortime-invariant.) In this case the CO)iJ-

pOEd tion · and 'composition 0 operators become convolution operat.ors.

The latter is defined as follows [4; Sec. 4J.

Let y be a fixed memb2r of [.&(A) ; BJ. Then, the convolution pro..

duct Y * v of y and any v E [e; AJ is defined by

( 5-1) (y * v,~) ~ (y(t), (v(x), wet + x»)

The right-handside has a sense because wet) ~ (v(x), wet + x) E .&(A).

This also defines the convolution operator v H 'j -x-v, 'which ",e denote

by y *. This operator is a continuous linear mapping of [e; A] into

[.1T;13J (see [4~ theorem LI-IJ). Horeuver,' it is time-invariant, i'Thioh

means, as was not.ed above, that it commutes with the shiftingoperator

cr'Tfor every 'T E R [4; proposition 4-1J. In 'addi tion, y -x- is
J. .a COnlJlnU-

ous linear mapping of '&(A) into e(B), and in this case 1ve have that

(5-2) (y -x-v)(t) (y(x), v( t - x) v E peA)

in the senseof equality in [.&; B] (se'e [~; theorem 4- 3J) . Similar re-

suIts hold for several other spaces of Banach-.spac e-valued distributions.

Conversely, ever'.! continuous linear nl3.pping of lJ(A.) into [.&; BJ that

commutes with the shifting operator cr".. for every 'T E R has a convolutionI

representation [4; theorem 6-1J. In particular, vie have

Theorem 5-1: !)'( is a cO?1tinuous linear time-invariant mapping of

peA) }nto [.&; BJ if and only if t.here exists ayE ['&(11.) BJ such tha~
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~1 = y _~<- ~ .f}(A) (i.e., in the sense of equality in [17; BJ, ~v = Y -x-v

.for ~ll v E »(A)). y is unique\z... d."terEL1.n8d by m, and conversely.

(This theorem can be refined by replacing JJ(A) by the space .f} CDA

which is the span of all elements of the form ~a where ~ E.f} and a E A

[4 J.)

In view- of theorem 4-3, 4--8, and 5-1, vie see that every convolution

operator is a special case of a composition 0 operator as vJell as of a

composi tion 0 operator. 'l'his '-T8.8also observed in examples 4-3 and

4-3a. By' theorem J-l and the analysis of example 4-3a, He see that the

composition 0 operator oyx corresp:-nding to any given convolutj.on op-

eratoI' y -):-is obtained simply by setting Yx = vxy. Thus, theorem 4-10
. .

immediately yields

Theol~m 2-2: Let y E [..&(A) j BJ. Then, the convolution operator

y * is causal on [0; AJ if and only if supp y C [0, 00).

A causality criterion for y -x-can be stated in terms of the Laplace

U'ansform By of y if ~y happens to exists in the sense stated -at tile Gnd

of Sec. 3 [4; theorem 6-2 and proposition 6-3J.

Theorem 5-3: Assume that y E [~(w, z; A) ; BJ for some wand z._ __ c _
Necessary and sufficient conditions for y * t~.be causal on [e; AJ (and,

in fact, on [Q(,.r, z) ; A] are that z = ro and, on some half plane

(C : Re , ~ a, a E R}, we have

II (s3y)( C)" _ ~ P ( I ( \)
[A;B]

whe~ P is a polynomial.
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6. Hilbe::,t Ports and Passivity: A.n Admittance Formalism.

As "~as exp1a:tned in Sec. 2, the concept of a JIjlbcrt port arises

when t",o physical variables v ar d u in a system t,~k8 their values in

a com,?lex Hilbert space H and, in addition,are co;nplementary in the

sense that their in..'1er product (u, v) = (u(t), vet)) represents the

instante;.neous complex pOvTer entering the system. If t~is pOi'Jer is

Lebesgue integrable on the interval (-co, x), then the integral

(6.-1)
x

Re J (u, v) dt-co

represents the total energy entering the system du:cing the time in-

terval -co < t < x. This allov!s us to define the passivity of the ad-

mi ttance operator 91: v 1-+u.

Defb.ition 6-1: Let ?1'(In be a set of H-v&.ll:cd functiolls on R con-- -- ----

tained in the dOj;},:iin of an OD'3ra.to£,~. !.I(is said i...~.be a p3.ssi ve maE"

pJng on ~(H) if.:. for every v E ?f(n), for. u = !Iiv, and for every finite

real.2:ymber x, vTe have tl12.t (u(t), vet)~ is Lebesgue j.ri.:8fJ:'aole_~m

-0 < t < x and the integral (6-1) is nOlmegative.

When m is the admittance operator of a Hilbert por.t. and is passive,

voTeshall also call the Hilb81't port passive.

If ~i is a convolution operator y ~-, y E [.D(H); HJ, then it t.urns

out that, for every v E .&(H), u = y -~-v is a mer.1ber of t(H) and that

(u, v) E.& [4, theorem 4.-3 and lemma. ~(-lJ. Thus, (6-1) certainlJ' exists

for ever;,T x E It, and ..le may establish the pasdvi ty of ~i on .E(H) merely

by checking the nOlmegativity of (6-1).

Every passive convolution o?erator Y * has a frequency-domain descrip-

tion; namely, its im:JulsG rosponse y possesses a Laplace tl'ansfoI'ill Y "'Thich
v

is positive-"-. The last word is defin~d as folious.

Definition 6-2~ Given a complex Hilbert space H, a function Y of-.--.---.-
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the complex variable Cj~al~ed a. .208i tj.:.ve
*

simply positive ) if, on the half uleneC+

v

-~-IM.P'ping of H into H 01:-
6
= (C : Re C > O}, Y ].2 §n

[H; HJ-valued analytic function su::h__'y"~§,~Re(Y(C) a, a) ~ 0 for every"

a E H.

The principal theorem in the a.dmitta.nce for.m.llism of passive Hilbert

ports is the following [h].

Theorem 6-1: Assume that ~~is a continuous linear t.ime-inva'iant- ..- ..-----

passive mappinrL of .&(H) il}.~o [ft; H]. Then, Dchas a convolution ~-

sentation!)( = y -~ where y E [JtL (H) ; 11J and supp y c [0, 00). }breover,1

y possesses a Laplace tra.nsform Y ~at least C+ which i ~I!£si tive '>;:-.

Conversely, assume that Y is posi t.ive -:(-. Then, there ex~~ts a

unique convolution operator ~ = y * such that v E [fJ (H) ; H], supp. . L1

y c [0 , co), and S3y = Y ~ C+. Moreover,!n is a cont:triuous linear" time-

invariant passi ve mappj~~L2.f .&(H) into [.8; H].

Note that the fact that supp y C [0, co) implies that y -:(-

is also causal on [e.; HJ as Has indicated in theorem 5-2.
v

To introduce the concept of posi ti ve -~--reali ty, 1-1emust first con-

sider real operators in [H; H], and this in turn requires that He assign

to H a someHhat more compli.cated structure. In particu.lar, 118 shall 110v[

assume that the complex Hilbert space I.I is generat.ed froma real Hilbert

space Hr through complexification [21;. Sec. 2.1J. This implies among

other things that Hr c H. 'l'hen, an F E [H; HJ i,s called real if F E [Ill' H J.l'

..Q.efin~ioIL9..::)..:. Given H and HI' as state~? ~~ction Y of the com-

plex variable C is called p'?.si ti ve -x--real if it is a posi t.i VE: -x-ffi3.pping

of II into H and, for each real :e~sjt,i '\Ie number a, Y(a) isreal.

Corollary 6-la: Thf:.~.~E,~1_ ramains valid whe~ H is replaced by

valued functions in h.



(Not.e: Tne spaces »(Hr), .&~ (Rr), and [.&(R); Hr], their topologies,

and the properties of passivity, time-invariance, etc. are defined just

as they are in the complex case.)

7. Hilbert Ports and Passivity: A Scattering Formulism..

Let us consider once again a Wllbert port and its variables v, u

which determine its admittance operat-or p~; v -t u. A scatterlng formu-

lism for the Hilbert port is generated by working with thevariables:

(7-1)

A
v+ = v + u ,

to.v = v - u

x
(7-2) I [(v+, v+) - (v_; v_)] dt_00

Definit.ion 7-1: Let ~(H) be a s~t of H-va]~ed fun~tions on R con-

tained in the domain of an operator ~\3. ~ is said t~_l2E!-~cat"~er-:J2.~ssi~

o~ ?f(H) if, for every x E R, i£~very v+ E ?f(H), and for v = mv+, we

have that (v+, v+) a..'1d (v_, v_) are both Le.besgue integrable on (_co, x)

~£ (7-2) is nonnegative. m is said to ~e scatter-passive-at-infinity

£!! ?f(R) if, for every v+ E ?f(H) ~nd for v_ = Iffiv+, \ore have that (v+, v+)

and (v_, v_) are both Leb~gue integrab~~ R and

(7- 3)
00

I_co [(v+, v+) - (v_, v_)] dt

is nonnegative.

If m is a linear mapping of .&(H) into [.&; H] and is scatter-passive-

at- infinity on JJ(H), then Iffiis also continuous from .&(H) into [.&; II]

(see [5; Sec. 3J).
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We call v+ the incident 1-raveand v_ the reflected wave. The Jllapping

m ; V+ ...v_is the scattering operator of the Hilbert port. In terms of
..

v+ and v_, the energy integral (6..1) becomes



There is an interesting .relationship between scatter-passivity and

the hiO properties of causalit,y and scat.t.er-passivity-at-infiniti. It

was discovel'ed by vlohlers and Beltr~il:tfor the scalar case [22J. Its

extension to Hilbert ports, which is stated in the next,theorem, is

established in [5: Sec. 3J.

Theorem 7-1: Assume that Iffi is a .l~D.e:J.r tiJ:1e-invariant m~ping ~f

.8(n) into [.&;II]. Then, m is a scatter-passive on .5(H) if and only if

~ is causal and scatt.er-passi ve-at-infini t.y on .&(H) ."'----

For the frequency-domain description of our scattering formulisTil,

'Vre vIill need

Defini Uon '(-2: Given a complex HilbE!rt spa.ce H, a function S of
Y.

the c~~:r:ia~le , is said to be a bounded~ mappi~g of H into H (or
.v. 6.

( }~l bO\:Hded~) if, on the half plane C+:o (:: Re C > 0 , S is~

[H; HJ-valued analytic function such that 'lfS(l,:) II
[

~ 1-
--' - 1 H; HJ

A description for the scatterip-g forTIl'llism of a passive Hilbert

port [5; theorems 4-2 and 5-1J is given by

Theorem 7-2: Assume that ~ is a linear time-invariant causal

scatter-passive -at-infini ty mappin~ h(n) into [17; HJ. Then, m

has a convolution representation ~~ = s *, where s E C» (H) ; HJ~
and supp s c [0,00). Moreover, s possesses a LaplacetransformS on at

least C+ whichis bounded*.
Y-

Conversely,assume that S is bounded". Then, there exists a unique

convolution operator 'ill = s * suchthats E [.&L~(H) ; HJ, supp s c [0, OJ),

and 53s = S on C+. Moreover,!ffi is a continuous linear time-invariP...nt cau-

sal' sC3.tter-passive-at-infini ty mapping of "&(H) into [.&;HJ.

NovI, for bounded* -reality [5; corollaries 4-2a and 5-laJ. Assume

once again that H is generated froIn. a real Hilbert SDace Il. through" ...

complsyjfication.
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S. function S of the C0111------

H into H and, for each realpo~3it:lve number 0", Seer) lS-I~al.

Corollary 7-2a: ---,_._-Theorem 7-1 rema.ins valid vJr:en

We end this section b~' stating the COilllEJction bete'Tcen the admittance

and scattering formulisms. Given any Hilbert POl't, 1hoSG operators need

not satisfy a.ny assumptjons of linearity, continuity, ete., VIe see im-

mediately from (7-1) tha,'c, the admi tt.ance operator !J1: v H U uniquel)' dlJ-

termines and is uniquely determined by the scatte:dng operator~:v+H> "_'

In this case, either one en' both of these opera'Gors ill"!.:"be multivalued.

HOl-lever, \'7hen the aforementioned assumptions are imposed" WE get the

follovTing theorem. (see [5; theorem 6-1 and 6-2J).

jnto [.&; HJ" th~:n i~~:E~:.ttering operator: ~: v+ -t v_ is a l:i~~

time-invar:iant causal sC3.t.~6r-'passi"YE'-?-t-infin:i. toy ma,ppillg of .&(H) in-

to [.&; H]

The converse statemmlt....--- is also true if the sc?-tter~ng transform

s ~ g s corresponding t~ 'm '-' s -~,is such tl}at, for every C E C+, (1 + S)-1

exists. Her.£.;.,I denotes__ the identity operator on H.
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8. co -ports.

Henceforth, HG CI.ssume that the complex Eilbel't sp2.ce H is 5'392.r61e.

This allov:s us to exploit the isomorphism betHeen any such Hilbert space

and the space 1-2 in order to intr.:iduce D.TJinfinit.e-dimensional extension

to the concept of an n-port. vIe also assume throughout the rest of this
co

paper that an orthonormal ba~is tek}k=l has been chosen in H. (1-'!henanaly-

ing systems such as micro lave-tr2.rJsmission netKorks, it is natural to fix

upon the orthonormal basis generated by a. modal analysis:)

Lemma 8-1: Let v E B(E) . 'l'hen. in the sense of con\'e:'zence in IT(H),
~:- ?"---

(8-1) v=-1: (v, Ck )c1.
k=l ~

Proof: . Since, for an? nonnegative il1teger p and an;r fixed t, ~v(t) E H,

\ole have that

By parseval's equation,

As m -.. co, the right-hand sid8 tends to zero m~notonically at every po:tnt

of R. By Dini's theorem [23, p. 117J, it therefore tends to zero uniformly

on every compact interval in R. But, DPv has a compact support. Th.erefore,
m
L: (v, e'K)e,.

k=l !'.

tends to v in B(H).

Le~~a 8-2: Le~ u E [B; H]. Then, in. the sense of convergence in [B; H]," ,~.. - -

(8-2)

Moreover, the series is unique;. ,.- th~t is, .if t~~ such series conver~in

[n; H] ~e s~~.1~mit, they !~~~_~.th8 same coefficients.
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- We first note that, for each k, (u, ek) E [.&; C] accordingProof:

to rJ..; See. 3J so that (u, ek) 6k E [ft; l:IJ. Moreover, for eacr! cp E };, we

have that (u~ cp) E Hand

again according to r4; Sec. 3J. Hence, we may set up the orthonormal series

exp8.nsion :
(X)

IX>

(8- 3)

\ie vd..sh to shaH that this series converges uniformly with respect to all cp

in any givell bounded set 0. in lJ. Since JJ is a Montel space [8; p. 357J,

the closure 0' of [2 is a compact set j..TIft. So, i'i8 need merely establish the

uniformity of the convergence on any compact set A in JJ.

00'

'I
11

2
Ii 2: Uu, cp), e ) ek=m k k

Fm is conti!JUous on O. }foreover, by Parseval's equation,
IX>

Fm(cp) =k~ml«u, ~>, 6k) 12,

and therefore, for each cp E 0, Fm(CP) tends monotonically to zero as m ~ ro .
By the standard argument, we can conclude that Fm(cp) tends to zero uniform-

ly on any compact set A in o. This in turn implies that the series in

(8-3) converges uniformly on A.



The uniqueness of the eJlpansion folloHs from the fact that... for any

a E H, the mapping u I-~ (u, a) is a. continuous linear mapping of [.&; H] into [ft; CJ

(see [4; Sec. 3J again). Indeed, we need merely set a ~ ep and then ap-

ply this mapp:i.ng to both sides of
ro

where bk E [.&; C], doing this terrn by term on the right-band side, to get

Lemma 8-3: Let!Q be a continuous linec:.r mc.pp:LIigof '&(H) into [.&;H]._ __T~ "-__ ~ _

Then, fer ev~.!:.f choice of the pod t..i.ve integers j an~ k, there exists aI1

( 8-4)

~There the series converges in [ft; H].
~~ .-

Proof: Since mer ek E [.&j H], 'l-T8ca..TJe:x::pand it according to lenL'Tla 8-2

t.o obtain

(8-5)

where

!Q. k maps .& into [ft; C] by [4; Sec. 3J.J,

In addition, !Q. k is both linear and continuous. Indeed, its linear-J~

ity being clear, consider its continuity. Assume that cp 0 in .& as \J a:>.
\)

Then, cpvek 0 in .&(H), and therefore m&~\J€k) 0 [.&; HJ. We may also write

for any t E j)

(8-6)
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because 1\ ejll = 1. Since !II'P\Iek --+0 in [.17; Ii] as \I --+OJ, the right-hand

side of (8-6) tends to zero uniformly for all * in any bou~ded set in n.

This proves the asserted continu.itj-" of ~j,k'

We may nOH invoke theorem 1+-3 withA :: B :: C to conclude that 91j, kCP =

f
J' k & cpo (Here, f. k is defined as in (8-7) below.) Inserting this re-, J,

suIt into (8-5), \'78 complete the proof.

We are at last ready to establish for the mapping ~ a composition 6

representation that is amenable to an 00 -port interpretation.

Theorem 8-1: If 91~is a :..ontinu.ous linear mapping of '&(H) into [D; H],

then there exists a collection [f, k }' k of distributions in [.17t x , C] de-
I J, J, --- ,

fined~y

( 8-7)

cpE .f); '¥ E.&; j :" I, 2, ...; k = 1, 2, ...

such that, for any v E .&(H),. -

(8-8)
~ 00

~ ~ [f. k D (v, e k )] e,
j=l k=l J~ J

where the series .converge in [.&; H].

Proof: 1;,Temay' apply P. term by term to the series indicated in lermna

8-1 to get
OJ

!Yt v = ~ IJC(v, ek) ek .k=l

Upon replacing 'P by (v, ek) in (8-h) and invoking lem..rna8 - 3, we can rewrite

the las t equa tiOIl as

( 8-9)
00 00

!Ytv = 1: ~ [f J' k 0 (v, ek)J e J
"

k=lj=l '

first series in (8-8). Here, it is understoodthat we sumwhich is the

first on j and then on k to obtain in both cases a limit in [.&;H]. To

show that this order of suwJnation can be reversed, \'/'e expc>..nd DC vE [D; H] :i.n-

to a series according to lemma8-2 to get
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(8-10)

Upon a.pplying the operator u1-. (u, e }to (8-9) as in the proof of lemlna.p

8-2, we obtain
ro

(mv, €p ) = ~ [f p k " (v, ek)J .
k=l ' , .

Then, substituting this result into (8-10) \-,rj.th P replaced by j, we ar-

rive at the second series in (8-8).

vIe can interpret the representation (8-8) in terms of an 0) -port.

Tl1ink of a black box to Kho8e interior we ha\'e access only through a col-

lection of electrical ports which are countably infinite in number. Num-

ber thse ports 1, 2, J, ... 'l'hen, given the 9'1of theol'em. 8-1 and any

v E .&(H), sErt u = ~v. Also, for 68.ch positive integel' n, assume that. the

voltage impressed on the jth port is Vj = (v, 6j) E j} so that the corre-

spanding current is

u. ~ ~ f. k ~ vk E [..&; CJ .
J k=l J, ro .

The operator that maps the vector [vk}k=l lnto

represented by an cox co matrix [f; kJ. In applying this matrix to any~I ,

[vk} to get [Uj}' we follow the customary rule for the multiplication of

matrices. Thus, the matrix equation corresponding to the composition it

representation (8-8) is

(8-11)

It represel1ts the behavioI' at the ports of a time-vary"ing 0) -port corre-

sponding to the Hilbert port "lhose adm:l.ttance operator is the ~1of theor-

em 8-1 8...11dto the given choice of the orthollormal basis [ek} .
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"Te now take up the case \-There D'1 con mutes ..oJ:Lth the shifting operator

and develops the matrix representa.tion of a time-in-.;ariant (.1)-port. vIe

first note that each 9'- k in (8-7) also com.mutes \<''ith the shifting opera-J,

tor. Indeed, for any' ,. E R, any 1\1E ft and any f E [.8; C], \ve have that

Hence, in the sense of equality in [1f; C], vie have for any. cp E .& .

u,.!nj,kCP = u,-(9lcpek,ej) = (U,.!J(cpek' OJ) = (~crT cPek, ej) = ~j,kuTCP , as was

asserted.

By virtue of theorem 5-1 vdth A = B = C, the composition ~ representa-

tions in theorem 8-1 become convolution representations, and we have

Corollary 8-10.: If 9l is a continuous linear time-invariant maDping of-- ~~~ . H

'&(H) into [.&; H], then there exists a collection [y j ,k} ~. distributions in

[ft; cJ definedby

(8-12)

cP E.&; j = 1, 2, ... ; k = 1, 2, ...

such that, for_any v E .&(H),

(8-13)

where the series converges in [.&: H] 8.nd the order of summat.ion can be re--
versed.--

The matrix representation for the adnritta..TJce equation of a time-invari-

ant 00 -port corresponding to the chosen [ek} and the Hilbert port whose ad-

mitt~lce operator is the 9lof this corol1a~T, is

( 8-14)

Here again, He use the customar-.v rules for mat.rix multiplication.
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Finally, we turn to the case where m is not only continuous, linear,

and time-invariant as a mapping of lKH) into Co; H] but also passive on

.8(H). As v-Ias stat.ed in theore:n 6-1, this implies that y E [.&L (H) ; H]
. 1

and that supp Y c [0, .,.,).Let, us show that these conC1itions on y imply

that, for each j and k, Yj,k E [LLl; OJ

Indeed, first consider y * (eko).

and supp y. k C [0, ro].
J,.

As before, we drop the parenthe-

ses in this expression and simply v-rritey * eko. B-J the standard dofini-

tion of convolution, we have for any w E 0 the e~~ression:
L1

( 8-15)

In the right-hand side, Y now denotes a member of [BL ; [H; H]J. Thus,
1

Y * eke is a mapping of'.&L.into II. }foreover, this mapping is both 1in-1

ear and continuous, as is easily seen from the right-hand side of (8-15).

Hence, Y -x- eke E [.& ; H J .

. L
1

consider Yj,k
We get this expression fromNext,

(8-12) by letting cp converge in [e; OJ to 0 and invoking the continuity

of the operators Yj,k * and Y * on [c; oj and [e; H] respective]~. So,

again for any cpE.&L ' we have from [L~; Sec. 3J that
1

( 8-16)

This show"S that Y. Tll::!pSor. into 0J,k J.

is, Y. k E [..8:..; 0 J .J, ~

As for the

in a cont.inuous linea.r faRhion.

This

support of Y. , let w E g and rev~ite (8-12) as a regQ-
J,k

larization process [4; theorem 4-3J.

( 8-17)
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Given any, E» with supp ~ c (-~, 0), we C~~ choose t E Rand

~ E}} such thatcp(t -x) =' vex) foX' all x E R. Since supp y C [0, co),

it follows immediately that the right-hand side of (8-17) is equal to

zero. Thus, supp Y. c [0, co).
J,k

We noted in Sec. 3 that these properties of y and Yj,k imply that

they have Laplace transforms Y and Y. k respectively on at least the
J,.

/).

half-plane C+ = (C : Re C > OJ. We can relate Y to Y as follows.
j,k

For a.ny, E C+,

Y. k(C) == (Y. k
' e-Ct} == «(y *e ~, e.), e-Ct}

J, J, k J

== ( v * e 0 e-Ct\ e )
J k' /J j

The last equalityholds because y -r.-e 0 E [£ d; HJ for any c E R .with
k c,

c > 0, and any d E Rand Toloreoversupp y * eke C [0, co). (See again

[Lq Sec. 3J. ) Thus,

Yj,k(C) (y(t), (eko(x), e-C(t + x)), ej)
-Ct

( (y ( t), ek e >, ej )

or

(8-18 ) Yj,k(C) (Y(C) ek, ej)
{; E C+

In the fol10w-ing ~ represe!1ts the standard Hilbert space of all

sequences Ct [elk} of complex numbers for loJhich the norm

lIali = [ E lel 12J
-h

k==l k

exists. We knOi-7from theorem 6-1 tha.t, under our stated assumptions on

~, y( {;) E [H; HJ for each fixed C E C+ . Having fixed upon the orthonor-

malbasis [e } in H, v18 construct an <XI x co matrix [Y. k( {;)] that repre-k J,

sents the operator in [~; ~ J corresponding to Y(~) E [H; H] under the

isomorphism existing between H and~. The elementsof this matrix are
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given precisely by (8-18). (See [24; Sec. 3.1J.) Moreover, if v E [B; HJ

has a Laplace tra.nsform V whose strip of definition contains the chosen

, E C+, then the Laplace transform of the equation (8-14) yields

( 8-19) (U.C~)} = [Yo kCC)] (Vk(~)}
J J,

where (Uj} and (Vj} denote the component:l;;ise transformations of (Uj}

and (vk} respectively and, for the given C, (Uj(C)} E ~ and (Vk(C)} E J.:?-.

We conclude this section by relating the positivity* of Y to the
~

positivityA of [Yo kJ.J,

Theorem 8-2: Y is a positive~ mapping o~ H into H if and only if

><.

[Yj,kJ, as defined by (8-18), is a posi ti ve"Xmapping of 1-03into ~.
.. ~

ThuD, Y and [Yo k J are positiveA if and onlyif ~ is a continuous lin--- - J, \. ---:---

ear time-invariantpassive m9.ppin~ B(H) into [.&; HJ.

Proof: We have already noted that, for any fixed C E C+,Y(C) E [H; HJ

if and only if [Y _ k (c) J E [~; L.a].J, .

Now let a and b be arbitrary members of H and let {ak} and (bk}

be the corresponding members of L.a (i.e., (ak) is the sequence of Fourier

coefficients of a vath respect to (e }). Then, we have that
k

(8-20) CYa, b) = ([Y. k J (a }, (b.}).
J, k J

Thus, Y is weakly analytic on C+ if and only if [Yo J is weakly analytic
J,k

on C+. But, weak analyticityis equivalent to analyticity in the norm

topology [25; p. 93J.

We check the nonnegativity condition and thereby complete the proof

of the first sentence of this tileorem by setting a = b in (8-20) and

then taking real parts. The second sentence follows immediately from

theorem 6-1.

Finally, assume once again that H is obtained froma real separable.
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Hilbert space Hr_through complexification and assume that the orthonormal

basis [e } is contained in Hr' Through',the isomorphism between H and ~k

we have that Hr corresponds to the subspace 1,2,r of ~, where ~,r con-

sists of all sequences of real numbers in ~. Thus, for any cr> 0,

(Y. k(cr)J maps ~ r' into 1, if and only if Y(cr)maps Hr into H. This
J, ,:a ,r r

allows us to state

II

'Corollary 8-2a: The first sentence of theorem 8-2 remains true if

" ositive *- real." In this case. for ever

cr > 0 and every j and k, Y (cr)is a real number. In addition, the- j,k

second sentence of theorem 8-2 remains true if "positive *" is replaced

by IIpositive *-real", H El Hr and 17~,JJ(R).

We have treated only the admittance formulism of the c:o-port. An

analysis of the scattering formulism can also be made, but, since it is

quite similar to the foregoing, we omit it.

~. A First Thrust at the Synthesis of an ~port.
~

Given a positive ~-real mapping [Yo kJ of ~ into ~, can one
J,

synthesize an oo-port to realize it? Here are a few thoughts on the sub-

ject.

First of all, let it be said that we are trying to synthesi ze a

"paper network" [3J, which is a perfectly legitimate mathematical idea

that can only be approximated by a physical system. (So too is the ideal

one-ohm resistor.)

Assume once again that H is the complexification of a real separable

Hilbert space Hr and that (ek} C Hr'

, tained from [Yo kJ by replacing eachJ,

j > n or k > n. This corresponds to

Let [Y. kJ be the 00 x 00 matrix ob-
J, n

element Y. k in [yo J by 0 if eitherJ, J,k

the following alteration of the

~-port whose admittance matrix is [Yo kJ: For every port beyond theJ,

nth,' disconnect the',wires'to 'the port terminals and short them together.
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The resulting system which is in fact an n-port, possesses

[Y ] as its admittance matrix. [Yo k ] can be identified with the
j,k n J, n

n x n matrix'obtained by dropping all rows and columns in [Yo k J beyond
- J,

the nth row and nth column, and the latter is a positive-real n x n

matrix in the usual sense.
Indeed, let a = (ak} be any member of ~

such that ak = 0 if k > n. Then, for' E C+,

n n

Re ~ ~ Y. kC') a. ak = Re C[Yj kJ [ak }, (aj}) ~ 0j=l k=l J, J '.
*

by virtue of the positivity of [Yo k J. The analyticity of each Y~ kCC)J, J,

on C+ and the reality of Y. kCa) for cr> 0 is equally clear.J,

If ~~ now assume in addition that every Y. k is a rational functionJ,

of C, then WS can apply known synthesis procedures [26J to realize [Yo k JJ, n
as an m-port whose first n ports c~~ect to a lumped passive network and

whose ports beyond the nth all have broken terminal wires. Thus, we have
m

synthesized in this way a sequence [[Yj,kJn}n=l of ~ports.m
([Y. kJ} l is an approximating se quence for the originally givenJ, n n=

[Yo k J in the sense that, for each fixed C E C+, [Yo CC)J ~ [yo k (C)J
J, J,k n J,

in the weak topology of [t.a; ~J. To show this, let a = [ak} and b = (bk}

be arbitrary members of~. Then,

Ic[y. k CC)J a, b) - ([Y. kCC)J a, b)12J, J, n

ex> n
= IC ~ r; +

j=n+l k=l

ex> ex>

.~ ~ ) Y. (0 a iL /2
J=l k=n+l J,k k J

By applying the Schwarz inequality to the summations on j, we bound the

last expression by

ex> IX) n co

~ Ib.12- ~ I ~ Y. CC) akl2 + ~ Ib.12
j=n+l J j=n+l k=l J,k . j=l J

co co

L: I ~ _ Y. ( r ) 1

2

j=l k~n+l J,k b ak
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We nm.; invoke a result [24; Sec. 3.1], which states ttl..at [yo (c)] E [1.:a; ~]J,k
if an.d only if there exists a constant }1 > 0 such that, for every pair p, q

of positive integers and every choice of the complex numbers ~, ..., ~,

Under the assumptions that [Yj, k(,)J E [t:a; t:a] and (ak} E ~, we may take

p ~ m and/or q ~ ro and still obtain a valid inequality. In view of this

fact, we have that

n
/b./2 ~ /a 12

J k=l k

ro :x>

+M2 ~ !b.12 ~ la 12.
j=l J k=n+l k

The right-hand side tends to zero as n ~ ~, which establishes our as-

sertion.

If it happens that, for the chosen' E C+,

ro ro

~ ~ IY; k(C)/2 < m ,
j=l k=l ",

then, the convergence of [Yo k(C)] to [Yo (C)] occurs in the norm topo-
J, n J,k

logy of [t:a; ~]. Indeed, if b :: [Y. k (C) ] a, a E ~, then by the Schwarz
J,

j=l

Therefore,

56

inequality,

co CD ex> co CD

IIbll2 = / Y. k(C) ak/2 IY. k(c)12 /a 12
j=l k=l J, j=l k=l J, k=l k



h-

II [1. k( C)J - [YJo k ( 0 Jnll = sup II [ [Y0 k(,) ] - [y 0 k (') ] } all
J, , IIall=1 J, J, n

00 n 00 00

~ [ ~ ~ I Y.: ( 1;:)I a + ~ ~ I Y. (,) I a -~
j=n+l k=l J,k j=l k=n+l J,k J

The right-hand side tends to zero as n ~ roo

~

In summary, we have not obtained a synthesis of the given positive A_

real [yo k J but instead have constructed an approximating sequence [[Yo k J }J, J, n
whose members have n-port realizations whenever the [Yo kJ are rational.J, n

,7
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