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1. Introduction

This work is a development in gradual stages of éeveral con-
cepts that may become of some value in the analysis and perhaps eventu-
ally in the synthesis of physical systems. A typical concept is the
idea of an n-port where n = ». This idea arises not only as a natural
mathemstical extension of the n-pert but, more importantly for the en-
gineer, as a representation of certain physical systems. For example,
consider a modal analysis [1l; pp. 21-27] of a miérowave transmission
system. FEach mods can be teken to be the excitation at a port of a
black box with a separate port for each mode, and theréfore the black
box has in general an infinity of ports. In network theory it is
common, indeed almost the rule, to assume that all but a finite num-
ber of modes can be neglected (see, for example, [2; p. 3]) so that it
is sufficient to représent the system by an n-port.

But is it? To do so in every situation makes as much sense as
would the replacement of every Fourier series occurring in network
theory by a finlte sum. Network theorists do not resort to the latter
simplification since Fourier series are well understood and quite use-
able. The situation is very different for the systems considered here.
The subject is in its infancy and poséesses from the engineering (i.e.,
synthesis) point of view, very few results. Moreover, from the analysis
viewpoint, a variety of mathematical difficulties arise. Indeed; the
systems considered herein possess input and ouvtput signals which take
their instantaneous values in Banach spaces, whereas for an n-port these
valugs occur in n-dimensional euclidean space Eﬁf Tt happens discon-

certingly often that a readily established fact concerning operators on
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En~valued functions is very difficult if not impossible to extend te
operators on Banach-space-valued function.
Neverthﬁless, we propose to explore this subject. For the mathe-
matician no justification for doing so is needed. (The mountain is
there; let's climb it.) The engineer asks, and indeed should ask,
"Tg it worth 1t?" We coffer no reply to this question other than the
hope that perhaps someday it may be. The fact that the electromagne-
tic waves within microwave systems, solid-stata devices, integrated
networks; etc. are better represented by Banach-space-valued functions
rather than by En—valued function: offers soms bhasis for this hope.

To put all this another way, this paper is motivated by physics,

but its content is mathematics.

2. Some Definitions and a Swamary.

The first in the order of business is to define the phrases ap-
pearing in the title. Throughout this work A and B will denote complex
Banach spaces and H a complex Hilbert space. A Banach-space-valued
function f is a mapping of scme domain, which in this work will always
be the real line R, into a Banach space, say, A. Thus, for each fixed
t €R, £(t) is a member of A, and, as t varies in R, £(t) may vary in
A. Such a function is a typical signal in a variety of physical systems,
as for example a microwave-transmission system. Indeed, we can conceive
of a physical system (more precisely, a model of a physical system) whose
signals are Banach-space-valued functions or even Banach-space-valued
distributions. It seems natural to call such a system a "Banach system",
and this we shall do.

A Panach system may have many different Banach spaces associated

with it. Thus, at one location x in the system the signal representing
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a particular physical variable may be an A-valued distribution and at
another location y the signal for another physical variable may be a
B-valued distribution. Moreover, the system defines an operator that
maps the signal at x into the signal at y. In general, it defines man
different operators depending on the choices of the locations x and y
and of the variables-of interest (i.e., electric-field intensity, magnetic-
field intensity, etc.) We shall always make this distinction between the
model- of the physical system and the operators that it generators. The
term "Banach system" refers to the model and not to any particular oper-
ator.

By a "Hilbert port" we mean the following. Assume that in a given
Banach system we have singled out two physical variables u and v that
are complementary in the following sense: Both u and v take their values
in a Hilbert space H and the real part of their inner product (u, v) re-
presents the instantaneous power entering the Banach system. Then, the
Banach system with these two variables so singled cut is called a "Hilbert
port". When discussing a Hilbert port we in general pay no attention to
the other variables within the system. We become interested exclusively
én the variables u and v and the three operators N: v » u, §: u + v, and
B v+u-+v-u (In microwave transmission systems, it is customary
to choose v as the electric-field intensity on a closed surface contain-
ing the system and cutting a1l the wave guides to the system on trans-
verse planes. Also, u is taken to be the magnstic-field intensity on
the same closed surface. Then, M is called the admittance operator, §
the impedance operator, and B the scattering operator. Furthermore

A

Vi v + u can be related to the incident electric-field wave and v_

1
<
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to the reflected electric-Ffield wave.)

How about "ew-ports"? Assume that the space H for a2 given Hilbert
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port is separable; it will be for all practical systems. Choose an or-
thonormal basis for H. The separability of H implies that the basis
will be countable. (Moreover, a medal analysis of v and u suggests a
natural orthonormal basis for H.) Then, v and u can be represented by
their sequences of Fourier coefficients [VHJ and [un} respectively.
Thus, for each n, we have a pair Vi3 By of complex-valued functions

or distributions on R. We can for the sake of analysis assume that each

pair v_, u_ occurs on a separate port, and thus we are lead to a system

n’ “n

having a countable infinity of ports. We call such a paper network [3]
corresponding to the given Hilbert port an "e-port". In this case the
operators R, 8, and W mentioned above can be represented by « x « matrices,
as will be indicated in Sec. 8.

These are the kinds of systems with which we will be concerned in
this work. Our primary objective is to develop characterizations and
representations for various operators generated by such systems when
they satisfy various idezlized physical properties such as linearity,
time-invariance, and passivity. Our theory depends crucially on the
concept of a Banach-space-valued distribution, and therefore we pre-
sent an introduction to this concept in the next section. Timg-varying
Banach systems are taken uwp in Sec. L and both a kernel representation
and a composition representation for their continuous linear operators
are established. To the authors knowledge, this theory does not appear
elsewhere in the literature and so we also present proofs. Time-invariant
Banach sy;tems are discussed in Sec. 5; in this case the kernel and com-
position representations become convolution representations. The results
of Secs. L and 5 apply toc both active and passive systems. Next, we re-
strict our attention to pzassive Hilbert ports and observe that such sys-

tems have frequency-domain descriptions. The frequency-domzin character-



izaticns of their admittance and scattering formulisms are given in Secs.
6 and 7 respectively. The proofs of the results in Secs. 5, 6, and T
appear elsewhére (4], [5], and so in these sections we merely survey
some pertinent results but omit all proofs. In Sec. 8 and its tail we
return to detailed arguments. There the ® x « matrix representation

for the admittance operator of an «-port is developed, and the problem
of synthesizing an «port is considered buﬂ not resolved.

3. Banach-space-valued Distributions.

The natural language for the theory of continuous linear systems
is that provided by distribution theory. It not only simplifies proofs
but permits one to establish a number of theorems that sinply could not
be formalateé in terms of conventional functions. Moreover, it 2llows

the consideration of many idealized systems, such as those that d

futa

Tfer-

entizte an arbitrary number of times, without requiring that

c+

he domain
of inputs be excessively restricted. The signals we will be concerned

with are Banach-space-valued distributions on the real-time line - < 1 < «,

and so our first objective is to present a brief introduction to the theory
of such distributions. This we do in the present section.
Throughout this work we use the following symbolism. If U and V are
two topological linear spaces, the symbol [U; V] denotes the linear space
of all continuous linear mappings of U into V. Moreover, if o € U and
£ € [U; V], then fp, £(¢), and {f, ¢) all denote that element of V as-
signed by f to ©. H will always denote a complex Hilbert space, and
(+, ¢) will dencte its inner product. On the other hand, both A and B
will always represent complex Banach spaces. Furthermore, R? is n-dimensional
euclidean space, R = R* is the real line, and G the complex plane. 0, de-

notes the open right-half of C; i.e., G, = {¢: £ e C, Re { > 0].
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A function © mapping an open set T € R into A is said to be strongly
continuous or strongly differentiable al a point t ¢ I if the standard
difference eﬁpression that definss continuity or the derivative at t
converges in the norm topology of A. ¢ is sald to be smooth on I if
it possesses strong derivatives of all orders at all points of I. Simi-
larly, if © maps an open domain J € C into A, ¢ is said te be analytic
on J if, for e%ery point { e J, the standard difference expression that
defines the derivative at { converges in the norm of A independently of
the path in which the increment Al is taken to zero. Derivatives are

denoted alternatively by

.-EI— = Ty == — (l)
. 3 ?=Dp =D o(x) = o't/ .,

The support of a continuous functicn @ mapping R into A is the

smallest closed set cutside of which v 1s the zero function; it is de-
noted by supp @. ”.”A or simply ”'H denotes the norm of a Banach space
A. If nothing else is explicitly stated, it will be understood that
[A; B] carries the usual operator-norm topclogy (i.e., the uniform topo-
logy) .

If T and X are either members of R, 4w, or - with T < X, then
(T, X) and [T, X] represent open and respectively closed intervals in
R, and similarly for the semi-open and semi-closed intervals (T, X] and
(1, %). |

Let K be a compact (i.e., closed bounded) interval in R. jk(A)

denotes the linear space of all smooth functions @ on R into A whose

supports are contained in K. We sssign to ﬁK(A) the topology generated

by the sequence {Yk]§=0 of seminorms defined by
A ka i
(3-1) Yile) = sup [[D° o(t)], ©eb(8) .
teR £



Thus, a sequence {@v] is convergent in EK(A) if and only if every

o
v =1
Py, E.BK(A) and there exists a @ G.BK(A) such that, for every k = 0, 1, ««.;

Yk(wv - @) +0as v o,

2

ned similarly except

. s : ; ; k
that we impose the conditions on the derivatives D¢ for enly k = 0, 1, ..., m.

s
o

: m
For any nonnegative integer mn, ﬁk(ﬁ) iz def

Next, let Kn denote the compact interval -n < U = n. Set

B W)

Ka) =u T,
and equip H(A) with the inductive-limit topology [6; vol. 15, pp. 61-
62]. This implies that a sequence {mv] . f | converges in X4) if and
only if the entire sequence is contained in some fixed space B (A) and
. n
converges in that space. It is also a fact that & linear mapping f of
H(A) into some locally convex space V (every topological linear space
considered in this paper is locally convex) is conbinuocus if and only
if its restriction to each ﬁk (A) is sequentially continuous [6; vol.
n

15, p. 62]. The latter means that the convergence of [@v} to zero in
ﬁkn(A) implies the convergence of {{f, w,)} to zero in V. Moreover,
a set Q is bounded in H{A) if and only if there exists an n such that
Q Cil% and, for every k, Yk remains bounded on Q. Vhen A is C, we

n
denote A(C) simply by .5.

(L) is defined as the inductive-limit space Un - 1_ﬁ§ (A) and
has similar properties. "

The linear space of all continuous linear mappings of .B(A4) into
B is denoted by [B{(4); B]. It is a space of vector-valued distributions.
We assign to it the so-called "topology of bounded convergence". This
is the topology generated by the collection of seminorms {UQ]Q vhere
Q) varies through the bounded sets of B{A) and



- b .
(3-2) Uﬂ(f} = sup |[(£, @}HB £ e [B(A);
: P e

When A and B are both C, we gel the customary space £’ = [B(C); C] of
scalar distributions on ths real line, and the'topology of &' is then
the so-called strong topology.

[ﬂm(A); B] and its topology of bounded convergence is defined in
just the same way.

We will on occasion use a weaker topology for {8(A); B), namely,
the "topology of pointwise convergence"; this is genﬁratod by the col-
lection of seminorms (3-2) where now Q is restricted to the finite sets
in B(4). Tt corresponds to the weak topology of S'. The symbol [B(A); B}"
will denote the space [B(A); B] equipped with this weaker topology.

On just one cccasion (when we discuss a kernel theorem in Sec. It)
we will need functions and distributions defined on the two-dimensional
euclidean space R®. In this case, the definitions of ﬁK(A), B(4), and
L&(a); Bj, as well as ﬁZ(A), ﬁm(ﬂ), and [FM4); B], are the same as above
except that now K, is a compact interval in R® (i.e., Ky = {z: =z e R®,
|z| < n}), k is a nonnegative integer in R?, and Dk is a partial differ-
entiation corresponding to k. In the definition of 5 (&), k = {k , k]
is restricted to those values for which 0 £ k; + ks < m. In this two-

. . M ) - n
dimensional case, we will always denote .B{4) by ﬁ{ X(A) and ﬁ'(A) by
3

(A); moreover, we will on occasion replace {+, *) by {+ ) to

t, L b ¢

emphasize that we are dealing with the two-dimensional case. Henceforth,
the symbols .5, H(A), and AR w1l 2w rays signify that their members
are defined on R = R,

We return now to the one-dimensional case. Of importance te us

is the space [#; [A; B]] of continuous linsar mappings of b = S{C) inte



the space [A; B]. Ths topology of [.B; [4; B]] is that generated by

na

o with ¢_ defined by
[ Q}Q ! (2 il N

ﬂ '
o 1) =c§%§2”<f; Q>H[A; B]

where now £ € [.B; [A; B]] and Q traverses the bounded sets in 5. A
erucial result for our theory is the following [L; theorem 3-1].

Theorem 3-1: There is a bijection (i.e., a one-to-one onto map-

ping) from [5{4); B] onto [#; [A; B]] defined by
(3-3) (gs wa) = (Ff, 9) a

where ¢ €5, a € A, g € [B(4); B], and £ € [5; [4; B]].

Because of this theorem, we can identify the members of [B{A); B]
with those of [.8; [A; B]], and in place of (3-3) we will write {f, @a) =
(f, 9la.

Here are some examples.

Example 3-1: Let F denote a fixed member of [A; B] and let & denofe

the customary deltza functional. F& is defined on any 8 é.ﬁ(é) by
oA
(3-L) (F&, 6y = Fo(0) € B .

Clearly, F& € [B(A); B]. On the other hand, we define F§ on any © € .5
by _

A P
(3-5) (Fé, ¢) = Fo(0) € [4; B]

and obtain thereby a member of [5; [A; B]]. That these two definitions
accord with (3-3) follows from the fact that, for any a € A, wa have

¢a € SH(A) so that by (3-L) and (3-5)

(Fé, @a) = Fp(0)a = (FS, @) a .

10



Thus, Fb is simultaﬁeously 2 member of [8(4); B] and [B; [4; BI].
Emamgle;ng; Let h be an [A; Bl-valued function on R that is con-
tinuous in the norm topology of [A; B]. Define a mapping (also denoted

by h) on any 6 € B(4) by
(h, 6) = _}‘R h(t) 6(t) ét €B .

The integral on the right-hand side is the strong limit in B of the
corresponding Riemann sums because h(t) 8(t) is strongly continuous
from R into B. That h is a linear mapping follows from the fact that

integration is a linear process. The continuity of h from BH(A) into

"B is implied by the estimate:

¢, o3l = [ In(o)]

A ol Ml T (ot
HB(J}LA dt = ;éi HB{t)LA IK In(t)

[4; B] i[A; B] e

where K is a compact interval that contains supp ¢. Thus, h € [5(4); BI.

On the other hand, we can define h as a mapping of . into [A; B] by
<h: (P> = IR h(t) (P('t') dt € [A; B] @ €.5,

and considerations similar to those above show that h € [B; [4; Bl].
Thus, the originally given [A; Bl-valued function h on R generates both
a member of [BH(A); B] and a member of [B; [A; B]l.

We can generate still other members of [B(A); B] or [ﬁf [4; B]]
by differentiating in a generalized sense the distributions of the pre-
ceding examples. OSuch a differentiation I’ of order p is defined on any

£ in [B(A); B] (or in [B; [A: B]]) by
(3-6) O £, 0) = (-1DP <15 PP o)

where ¢ is an arbitrary member of B(A) (or respectively of £). Since

D” is a continuous linear mapping of B(A) (or 5) into itself and hence

¥
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maps bounded sets into bounded sets, it follows that (generalized) dif-

g 0 0 R G . g YL o ey " |
ferentiation IF is a continuous linear mapping of [&{(4); B] (or [&; [4; B]J)

into itself.
Emﬁmé} 3-3: We can now define a member of [B{A); B] or of [&; [4; B]]

by applying T to the F§ of example 3-1. Upon'applying (3-6), we obtain

(3-1) @P(ro), o) = (1P ) (0)

b)
where ¢ is either in S(A) or respectively in .f. Since (ﬁpé, Q) = (—l)p @(p’(o),

we see that DD(Fﬁ) = F IFs.
Example 3-4i: Similarly, by applying DP to the results of example 3-2,

we get the member IPh of [H{A); B] or of 0B; [A; B]] defined by

(3-8) WPhy o) = (1P [ n() 0P () at

where again © € BH{A) or respectively © € 5.

Let us also state the definition of the shifting operator o} we
shall have need of it later on. For any given T € R, o is defined on
any © € 5(4) by o, o(t) 4 o(t - 7). o, is a continuous linear mapping of

BH(A) into itself. Next, o, is defined on any f € [5(4) ; B] by

A
<OI.T f’ (?_>\ = <‘f§ c._"i' (‘p> 2

and consequently 0. is a continvous linear mapping of [5{A); B] into
itself.

Thers are several other spaces of Banach-gpace-valued functions
and mappings on them that we shall need. One of these is €(A), the
space of all smooth A-valued functions on R equippsd with the topology
generated by the collection of seminorms [y where K traverses

K,k K,k
the compact sets in R, k traverses the nonnegative integers, and

A k i
(3-9) v (o) = Sup HD @(t}ﬁl
Bk tCK A

12



Here again, when A is C, we denote £(C) by simply €. A sequence fmv}

converges in €(4) if and only if there exists a ¢ € £(A) such that,

for every K and k, YK,k(mV -®) * 0as v o, A setin &(A) is bounded

if and only if, for every K and k, v, remains bounded on Q. A linear
Tk

mapping £ of €(4) into any topological linear space V is continuous if

and only if the convergence of {@v] to zero in €(A) implies the conver-

gence of {{f, @v)] to zero in V.

Let m be a nonnegative integer. We define e™(4) as was (L) ex-
cept that conditions on D—m,are impoged only for k = 0, 1, ..., m.

[€(A); B] denotes the 1inear'space of ali continuous linear mappings
of €(4) into B. The distribution P (¥8), when extended onto &(4) in ac-
cordance with (3—?}, is a member of [S(A); B]. So too is ﬁph, as defined
by (3-8) with ¢ € £(A), so long as supp h is a compact set. In fact, it
can be shown that every member f of [€(4); B] has a compact support (i.e.,
there exists some compact set K such that {f, @) = O for every v € €(4A)
with supp ¢ contained in the complement of K). We assign to [E(4); B]
the topology of bounded convergence, that is, the topology generated by

the collection {o of seminorms defined on any f € [€(A), B] by (3-2)

Q}Q
where now Q traverses the bounded sets in €(4).

We obtain the definition of the space [€"(A); B] by replacing £(4)
by €"(4) in the preceding paragraph. z&m(A); Bl is alsc a space of dis-
tributions of bounded support.

Here's another space of importance to us. Let p € R be such that
l<p<ew & (A) is the set of all smooth functions w on R suéh that,

for every nonnegative integer k,

1/¥
L"i'_.i-] p << @ -

(3-10) o (@) = [ 10" o)l

D
A A



We assign to ji (A) the topology generated by {o As before, we

k}k=0'
o]
use the notation A (C)

L = éi . We can make the same comments concern-
y p P ) -
ing convergent seguences, bounded sets, and continuous linear mappings
on B (A) as those made for €(A) except now Yo is replaced by @, .
5t

L5 (A); B] is the topological linear space of all continuous linear

mappings of ;. (4) into B equipped with the topology of bounded conver-
p

gence.,

We now turn our attention to the spaces £(o, «; A) and [£(o, «; A)
A detailed discussion of the scalar versicn of these spaces, where A and B
are both C, is given in [7; chapter 3]. First of all, for any ¢ € R and
d € R we define & d(A) as the space of all smooth functions on R into

3 .

4 such that;'for every nonnegative integer k,

k ke
(3-11) Y (tD) = sup “H 48 D o(t)|| <
c,d,k tER c,d A
where
A (eCt t =20
% t) = o
,d( ) ledt’ L .

The topology of & ;(A) is that generated by the collection [y g k]m
3

of seminorms on 30 d(A). Once again, the comments concerning convergent
3

sequences, bounded sets, and continuous linear mappings on £C d(A) are
2

quite the same as those made for €(4).

Next, let w be either a member of R or -« and let z be either

a

member of R or +=. Also, let {a 1 and [bn ?=l be two monotonlc seguences

in R such that a, + w + and b, # z -. It follows that, for m > n, £a s b (&)
: n “uo

C:Sam’ b (A) and the topology of £an’ bn(A) is stronger than that induced

on it by Sam’ bp(é). We set

1L



w, z; A) = Upeg €

A G.n 3

v, (&)

_'1‘1
and assign to &(w, z; A) the inductive-limit topology. This means among
other things that a linear mapping f on &(w, z; A) into a locally convex
space V is continuous if and cnly if the restriction of f to each $an, bn(A)
is continuous. Here again, we set &(w, z; G¢) = &(w, z) |

[£(w, z3; A) ; B] is the 1inear.space ﬁf all continuous linear map-
pings of £(w, z; A) into B. We assign to it the following topology.

Let Eh denote the collection of bounded sets in £ | (4) (i.e., Q€ 621
“n* “n
n’ bn,

remains boun?ed on 6n)' Let © = Uz=1 @5. Then, the topology of [&(w, z; A)

is that generated by the collection {Gﬂ}

if and only if Q< &£, = (&) and, for each k, the seminorm v, Kk
n’ °n e %

o of seminorms where ch o_ is
Qe ms whe ea o s

defined by

A
UQ(f) = sup [[{£, o)
@ EQ

. f € [&(w, z: A) ;3 B] .

If w< gz and if y € [£(w, z; A) ; Bl, we define the Laplace trans-

form ¥ = 8y of y by

(3-12) Y(2) a = (y(1), o5 a) v < Be U< 5.

where a is any member of A. The right-hand side of (3-12) has a sense

bEpausE B oY a € £(w, z; A)for every { such that w<Re { < z. It turns

out that ¥ is an [A; B]-valued analytic function on the strip

gy ={{ :w<Rel <3z} .

(See [b; Sec. 51.) Moreover, the Laplace transformation 8 is unique
in the following sense: If Y({) is the zero member of [(4; B] on any
open subgst of gy’ then y is the zero member of [£(w, z; A4) ; B]. (See

[L; corollary 5-2a].)

15



A fact that we shali subsequently employ is the following: If
£ € [& (a) ; B] where 1 < p < © and if supp f < [T, ») for some T € R,
then £ € [£(o, »; A) ; B] (see [L; lemma 7-2] for the case p = 1 and
[5; lemma 2-1] for the case p = 2) so that (2y)(£) exists on at least
the ripght-half plane C, = {{ : 0 <Re { < =} .

We now take note of certain relations between scme of the above

spaces. We have

(3-13) Ba) < By (8) c€(4)
P
and
(3-1hL) BA) < E(w, z; A) CE&(A) .

In both (3-13) and (3-1kL), any space therein is a dense subspace
of any space occurring to the right of it, and the topology of the former
space is stronger than the topology induced on it by the latter space.

By virtue of these facts, we have

(3-15) [e(a) ; Bl c [ﬁLp(A) ; Bl « [&(4) ; B]
and
(3-16) [e(A) 3 B] c [£(w, z; &) ; B] < [&(4) ; B] .

L. Time-varying Banach Systems, a Kernel Theorem, and Composition.

We wish to consider a model of a physical system which determines an
an operator that maps a class of input signals into a class of output
signals. Our purpose is to investigate the relationship between various
analytic properties of the operator and certain (idealized) physical pro-
perties. In this section the only physical propérties we shall impose

are single-valuednsss, linearity, and continuity. (Throughout this paper,

16



whenévér we specify that an opefator is linear on some domain ), it will
also be understood that it is single-valued on Q. On occasion we will
allow multivalued operators but these will not be called linear.) Thus,
time-varying systems are allowed at this point. Active sgystems are also
allowed. The adjective "active" signifies merely that no requirement
of passivity, as defined in Secs. 6 and 7 below, is being imposed but
may nevertheless be satisfied. Thus, we view passive systems as being
spaecial cases of active ones.

The kind of operator we have in mind is one that is geﬁorated by
a Banach system and therefore maps, say, A-valued distributions inte
B-valued distributions. We can obtain an analytic representation for
the operator by extending Schwartz's kernel theorem [8; p. 531] to
Banach-space-valued distributions. This extension is given by theoran
L4-1 below. (A proof of theorem h-1 is provided in a paper by Bogdanowicz
[9]. Actually, Bogdanowicz's work restricts the range space B to the
corplex plane C, but it is not difficult to extend his argument to the
more general case considered here.)

To say that M is a separately continuous bilinear mapping of
& x HA) into B means the following: M maps any ordered pair ¢, v of
a® €. and a v €.84A) into a member W, v) of B, and, in additicn,
if v (respectively ©) is kept fixed, then M is linear and continuous

with respect to © (respectively v).

Theorem L-1: If M is a ssparately continuous bilinear mapping of

B x 5(4) into B, then there exists a unigue continuous linear mapping

o= flt, x) o f ﬁ£ X(A) intc B such that
3

(4-1) Wes, v) = (B(t, %) olk) v(x))

for every ¢ € & and every v € 5(A).

1T,



Next step: We define a composition product f ¢ v on any f € E§£ x(A) ; B]
)

and any v € S(A) by
(14-2) e v, w5 2 e, x), olt) w2 9 ES

We shall refer to the process of forming this product £ ¢ v as "composi-
tion o" to distinguish it from another such brocess, called "composition o",
which will be defined subsequently. The right-hand side of (L-2) has a
sense and determines a member of B because o(t) v(x) € ﬁf,x(ﬂ)' Thus, we
can consider the composition e operator fe : v® f . v as a mapping of
H(A) into the space of mappings of 5 into B.

Theorem L-2: For any given f € [ﬁﬁ X(A} 3y BJ, the composition opsra-
2

tor f e is a continucus linear mapping of AA) into [&; Bl .

-

Proof: We first observe that f ¢ v € [f; B]. The linearity of
f evondis obvious. Its continuity follows from the fact that, if
P, 0 in .5, then @v(t) v(x) = 0 in ﬁﬁ,x so that (f e v, $v> -+ 0 in B.
Now consider f e. Its linearity on A(A) is again clear. To show
its continuity, let Q be any bounded set in S and let v = 0O in 5(4A).
Consequently, o(t) vv(x) Q0 in Bt’x(A) uniformly for all o € Q'. More-~
over, there exists a compact set K € R®, a nonnegative integer m € R,
and a constant @ > 0 such that supp o(t) vv(x) C K for a1l v and all
¢ €0, and, in addition,

o P i S g 1 @ By
ot £ 2 BB IIK0 ® g W

(L-3) = swp [[Ke(t, x), o(t) v, ()l
ulte!

Sup HDk o(t) vv(x)”
m t,x A

= gup Q ma
pen 0=k

18



where.k = {ky, ka} is a nonnegative integer.in R® and [k[ =k + ks
In view of the uniformity of the convergence of @(t) v,(x) with respect
_to all @ € Q, the right-hand side of (L-3) tends to zero as v = w. Since
Q was érbitrary, we conclude that £ e v, = 0 in [B; B].

Theorem li-2 possesses a converse. In order to obtain it, we will

nead

. W
Lemma L-1: Let M be a continuous linear mapping of S(4) into [B; B] .

Define M from % b .

(L-L) i, v} & Wy, 5 w B B

Then, M is a uniquely defined separately continuous bilinear mapping

of B x 5(A) into B.

Proof: Since Mv € [#; B], the right-hand side of (L-L) is a mem-
ber of B. Thus, M maps & x S5{4) into B.

Next, fix ¢. Let o« €C, B €C, v, € HA), and vo € 5(4). Then,

the linearity of I with respect to v is established by
Mep, av; + Bvy) = <m(w1 + Bvz), @) = <G’mvl +BRvz, @)
= Q’<m'\’1:‘?> + B(‘RVEJ vy = al(o, V) ot E)ﬂ‘(tp, VE_)

To show the continuity of M with respect to v, let v, #» 0 in S(4A). We have
that M(vy,, ©) = Mv,,, ©), and this tends to zero in B because N is con-
tinuous from S{4) into [&; BI¥.

Similar arguments establish the lineérity and continuity of M with
respect to ¢ when v is held fixed.

We may now combine lemma L-1, theorem L-1, and the definition (L4-2)
to get the aforementioned converse to theorem L-2.

Theorem L-3: For every continuous linear mapping % of HA) into
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g B]w, there exists a unique £ € Lﬁi X(A) ; B] such that, for all
3

v € (A), Rv=f e v in the sense of eouality in [5; B].

Theorem L-3 provides an explicit analytic representation for a suf-
ficiently well-behaved operator M of a time-varying active Banach system,
but it does so for only a very restricted domain for the representation,
namely, H5{A). We can construct a composition representation for certain
such M with wider domains for the representation by appropriately ex-
tending to Banach-space-valued distributions the concept of the composi-
tion of distributions as developed by Cristescu [10], Cristescu and
Marinescu [117], Sabac [12], Wexler [13], Cioranescu [1hL], Pondelicek [15],
and Dolezal [16]. But, before doing so, let us present some examples of
composition e operators.

Example L4-1: We first present the composition e representation of
an n®" order differential opérator th,with a variable coefficient
h € €°([A; B]). That is, h is a strongly continuous [4; B]-valued func-
tion on R. For this purpose, we define the operator I(t, x) € Lﬁ; X(A) ; Al
by ’

<I(t; x): e(t: }E)}

j 0(t, t) dt € A e € ﬁg (AY
R X

. n
Consider £(t, x) = h(t) (-D)" I(t, x); it is a menber of E&:' (A) 3 Bl <
o
[ﬁt X(A) ; B], as can be seen from the equation:
; ;

e, ), 408, 2> = [ n(e) [0 u(e, D), 06 ¥ €87 (1)
3 X

With this choice of f, we have for any v € H{4) and 0 € &
(£ o v, @) = (£(t, x), o(t) v(x)) = fp h(t) o(t) " v(t) dt

oY, o) .

I
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It follows from this expression that ths composition e operator

a continucus line 5

2 g = : 1 -
at the desired representation for hD ; namsly, in the sense of

in [5; B],

(1-5) ' hD'v = £ 6 v

v € {A),. h € &°([4; B]), £(t, x) = h(t) (-D Ik, x) €

; X
Example L-2: Here's the composition e representztion for

tor h o, where h € &°([4; B]) again, 7 €R, and o,(x) is the shifting

2 i I L o 7] . . . o e
ing of BH{A) into [B; B]. Thus, we have

0 - R - L S
[5° (4) ; B s (A) ; B]. Then, for all v € K(A) and 0 € .5,

& j} n(t) of{t) v(t - 7) at-=¢h o, v, ©) €B .

This equation shows that £ ¢ is a conbirvous Linear

{£5; B]. Tnus, in the

(11"6) I o

v € (L), h € &°({a; BY), £(%, %) =nl{t) o (x) I(t, x) €

21
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Example Li-3: We now show that convolution is a special case of
composition. Let y € [H(4) ; B]. Define y(t - x) as a mewber of

. B by
(9, (8 5 51 by
(L-17) Gle - x), (b, 2, = Gb), J"R ¥(t + x, x) dx) .

Let £(t, x) = y(t - x)» Then, for all v € 5(A) and 9 €5,

(f ov, o) = {y(t - x), olt) v(x)

o (t),; j} w(t + x) v{x) dx)
Jo= t

(), (x); ot + )N

he last expression is the definition of tha convolution product 3 % v
applied to ¢ [li; Sec. h]. Thus, in the sense of equality in [5; B],

we have
(h—g} Yyev=Favw
v € K(4), y € [5(4) ; B], £f{t, x) =y(t - x) € [# (&) ; B] .

We now attack the problem of findin
is 'xplicit Ly dai:rcu Ton a paur of Banach-sp:
neither of whlch'afe in‘E{A}. (Tn fact, they mzay both be singular dis-
tributions.) We shall refer to this latter procedure as "composition o

to distinguish #% from the previously discusséd ¢composition & procedure.

We first develop some properbies of Banach-space-valued distributions

that we shall nesed.

is a compact intorvsal in R. Also, L. o with
surgble

- ok 4 s+
with |f] Lebosgue integrable on N. The norm for L.
n,M
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By the Schwarz inequality,

o = el

.

1

where ¢ denotes the square root of the length of N.
Tneorem L-L: Let ths sequence {v ]

q tend to mero in (8; A, and

let N and K be compact intervals in R such tl‘-_aht K containsg a neighborhood

to
L)
2,
s
Q
A

2 0 such that the

conditions are satisfied.

(i) For each j there exists a strongly conbinuous A-valued function

. b o
g. on R such that supp g €K and v, =D g in the
LU L 5 22 j

(ii) The sequence [g, (x)} T"'?ﬂ.u to zere in A uniformly for 211 x € R.

Proof: By hypothesis, 'VJ -+ 0 in [F*N, Al. By [L; lemma 3-1], there

exists a constant M > 0 and an integer r = 0 such that, for all o € -'}N,

k
(4-9) sup v, cr))”ﬂ <M max sup |D olt)] .
i 3 A O<k<r +LER

Next, for each derivative IJL 0, W& may urite

D g=] r1 Ir- k p¥ (1,({_.1 %l dbya, e -

Let T = min N and 7 = max N. We get

1 r-k t Tt .
sup ,I] of f‘:] < {1 = T) sup u!"r ’D g mkx}! dx
R t€r "7
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We see from (L-9) that there exists a constant M, > O such that
L P .
(L-10) sup H(vj, m>HA < M j |D {x)| dx = ;

i Logds

J [

Next, consider the following linear subspace of Jy:
ril
A={y: ¥4 =D " o, o€hl
Let U, be the linear mapping of & into A defined by

i A
(L-11) U, ¢) = <vj, ©)

3’

Thie defines Uj uniquely because, if § = 0 and ¢ € b . then @ = Q so
"\

that <U1’ 0y = (vj, 0) = 0. Moreover, U, is conbinucus when & is

supplied the topology induced by L.

L=

b
ha
=

(b12) [, oI = s o), = 1l

We extend Uj cento the closure A of A in L, by continuity. The ex-

-
[

tended mapr’ gz, which we

also denote by U, , is continuous

on A and satisfies
ffy M < Ml
li \“35 b”!‘q lcfl‘fiiz i
for all ¢ € A . Turthermore, let CA be the orthogonal complement of
AinL_ , and define (U,, 4> = O on every ¢ € CA. Finally, define
i .

2y :
U, on all of L2 N.by linearity. Thus, we have arrived at & uniquely
5% :

i
=

y

defined continvous linear mapping U. o L into A
- d 2,N

¥

We now invoks a result [17; p. 259, theorem 1] w

wm

thers exists an A-valued measure mj definsd onn the Borsl subhssts of N

such that

h asserts that



(h—l‘j) <U"|J 1$f> - x_,!ﬂr-T ¥ dj‘l!‘l
o 5 8

for each § €L tends to wero as J = «. Indeed,

2,N°

[ vam, = W, ¢ =U., ¢y +4) =W, )= U , 4, - 6 + (U, 6)
[ J J d J 3 J

for any 6 € A. Hence,
IJ, ¢l <meliy - ol v g o, -

-

Given any e¢ > 0, we can choose § € A such that

By the hypothesis on v, and (L-11), |[<U., 8}l
J ol A

all sufficlently large j. Thus, (11-13) truly tends to zero as j - o,

s also less than ¢/2 for

-t

Moreover, we also have that, for every ¢ €L

2 7
(L-1l) l r ¥ ChJ " ”(U >I < Myelly, H = 1 ef|y] #

Next, considsr the function

f1fort<x, teN

L O othsrwise ,

T = min N and de:

m
D
o=

where X is any m As before, we

A-valued function f on R by

fﬁ(x} = r; dn.. = I K, dm x €ER

1., . for each x € R,

Since the restriction of K (1) to N is a
X 2,N

N
R,



£f(z) %0 as i o Moreover [f ] is

S

Lo}

it S Ll By ppe ..f..- £ k| - 1
Consequently, [f.\})}j tends to O in A wniformly for all x € R.

Finally, we have from (l wLT)j (L-13), and an integration by parts
that, for o € By,

‘v«w 1 it : l LR S
(V%; o) = <Uj} 0y = ﬂrT © dmj = "Fr f D3+H w dt .
(3] vy

I
L

.

Let gj = (-1 o £, where o €5 is such that ¢ = 1 on a neighborhood
of N and o = O outside K. Then, for all o € Lo

;.!.a

) (e fi)’ )

o]

{vgs @) = &1, @ B2 ) = ((-1)7

= { £, 0 .

This cong

We ncle in passing that the foregoing proof can ba modified to

L3

eliminate the integ

L representation in the right-hand side of (L-13).
Cne need merely work with the left-hand side of (L-13) and define i bs)

as <Uj’ Kx>' But then, this will require the use of the concepts of the

primivive of Uj its differentiation.

in [€; A] to =mero,

then there exist a

contimuous A-valusd functd

in the sense of equal-

ity in [€; 4],



whera supp h C N for all k and j and, for each fixed k, h = 0 in

1“:;' Eae ; 1{,3
A vriformly for all x € R.

That {v_} converges in [€; A] implies that there exists a

compact interval G € R such that supp vj c G for a1l j [18; chapter 1,

=

pp.62-63]. Let N be a compact interval in R containing a neighborhood
of G. Choose ) € .5 such that A = 1 on a neighborhood of Gand A 0

outside ¥. Then, for any ¢ € €, we have that Ao € ﬁg and (x .y ©

(vj, Ao). By theorem l4-li and the fact that convergence in 6; A

implies convergence in [5; 4],

[ S

=

L=

—
1

(73, ho) = (P gys Mod = (-1)P 5 Plia))

n

D Pop “k
(1) (gss B (k)( PRy %)y =43 Dh _, @
k
J7 k=0 k==O 53

where
-\btk /D ~k
h. . = (-1)t () I %) By
K5 - (1) i) £
The functions h possess the properties stated in the theorem.

Ky
Lemma L-2: Any given v € [€; A] generates a unique Vv € [€([4; B]) ; B]

by means of the definiticn:

a .
(L4-1%) (¥, J8Y = J (v, ©) J €[A; B], 6 €& .

a sequentially conlinuous linear injection

=3
(R
rn

Moreove;s the mapping v - i

e
o
[ E]

of [€; A into [E([A; BY)
Proof: Let P denote the set of all elements in E([A; BJ]) of the

form J6. Eguation (Li-15) uniquely defines from the given v € [€; A]



a mapping g of P into B.
: *

Next, as a consequence of theoram L-5, wa have that v is a n
of [€; A] if and only if the

terval N, and a finite set {h

tions hk on R with supp h} € N such that

Pk
v= 3 Dh
k=0 k

in the sense of equality in [€; A]. We define a linear mapping ¥ of
&([A; B]) into B by

s P k P k k
(L-16) F, ¢ = (X D h = x (1) [ b, D ¢ dt €B

k=0 k=0 Nk
v €e([4; B]) .

-

(For any J € [A; B] and any a € A, we denote the application of J to a

L

by either Ja or ad. Thus

. . . . ~ - A 0 .
also happens to be strongly continuous.) ¥ is continuous because

Thus, ¥ € [&([4; B]) ; B] .

T, - p——— %, Paey ” s P | 2 & = o s .-
e now obsserve that the svbstitutiocn of J§ for { in (11-16) vields

: \ 4o i n
€([4; B]); that is, the spsn of

Indeed,

Q=1{Jdx : J €[4 B], x €5} is total in S{[A; B]) according to [l

:~;I*-.‘!d the topology of



HTa; B]) is stronger than that indu

Q is total in &([4; B]). Since Q € P, so too is P. This

that ¥ is uniquely determined by its restriction to P. This restric-

tion is 6, which is uriquely determined by v, as was note
This proves the first sentence of the lemma.

. Turning to the second sentence, we first show th
injection (i.e., a one-to-ons mapping). Assums that vy and vy ars

both members of [£; A] and that (v;, 8) # (v,, 8) for some & €E&.

There exists at least one J € [A; B] such that J{v, 8) # J(v,, 6).

Tndeed, by the Hamm-Banach theorenm (8; p. 187, ceorollary 2], there
3 J 3 L] o

exists a continuous linear functional F on A such that F(v,

\ M ' 4 & T L] = = 3 Pl [
F{vz, 8). Now, set J= DF where b is any member of

zero member.) Next, let
defined by v, and v, resg

fore, (¥,, J0) # (¥, J6).

a lin

-3
=
&
o
<]

1

-
-
[
n

i

ot
b
E’
&
&
Hy
O.
i
w
QJ
e
=

~actly from (L-16) and theorem h-5.

The concept of "composition o" employs the idea of a distribution
¥x depending on a parameter x € R. For our purpose, we will impose upon
the
Ty
Conditions Gt

Gl. For each fixed x €R, y, is a member of [5; [4; Bjl. Thus,

for any given ¢ € .5, the equation:

(4-17) $(x) = o, @)

lefines an [A; Bl-valued function ¢ cn R.

G2. © B f} _:Eo:_ )

BY). .



The next lemma is dus to Dolezal [16].

e
i

Lemma i-3: Assume that y. satd

¥ sfies conditions G. Then, the

. . e e “ .
mapping @ # ¢ of & into &([4; B]) is linear and continuous.

We now define the composition

o
o

roduct v o y, of any v € [€; A]

with y by
x

ne=

(1-18) oy, 0 2 @, P F G, G, o(8))) o €s

-

where ¥ € [E([A; B]) ; B] is defined by (L-15) or equivalently by (L4-16)
At times, we will denote the operater v= v o Ve by o I

Theorem li-6: Let v € [€; A] and let y satisfy conditions G.

Then, ve v o o is a sequentially continuous linsar mapping of [€; A]

Proof: That v oy € [ B] follous imnedia

pur

aly frﬁm the defini-
tion (L4-18) and the following two facts: @# § is a continuous linear

mapping of B into E([A; B]) according to lemma l-3. ¢+ (¥, ¢) is a

=

continuous linear mapping of E([A; B]) into B according to lemma L-2.

It is clear that v©» v o 43 is a linear mapping. To verify its

sequential continuity, let Q be an arbitrarily chosen bounded set in
©w

B, leb [Vj}jr] tend to zero in [€; Al, and define Qﬁ from vy as in

lemma L-2. By lemma L-3, ¢ traverses a bounded set A in €([A; B])

v

when ¢ traverses Q. So, for the corresponding seminorm O on 5B,
we have
A X |
CTQ(V__I o yx) = sup H(v T m}[ = gup ”(v, &)hB .
i GRS Y; ¥ EA

By theorem L-5 and (4-16),



o (k)
on(v. 0 v.) = sup || E‘ - 1) [ o 77 (8) b (%) atl
737 fen k0 ‘N K, Iy
P : X
= 2 ol 0 sw [ 1w e,
k=0 teN X>J A yeA N (4; B]

et
o

nas

Ll

and the right-hand side t
tends to zero in [&; B]

In much the same way, a va
In this

case we assume that v

ing two conditions:

1.

€ [.B; A] and that i

0 Zero as j o o,

This shows that_vj 5 W

and completes the proof.

riation of theorem L-6 can be established.

satisfies the follow-

Condi ti_;?n G’

@’ ¥, satisfies condition Al.

G2/, owb ¢ is a napping of A into H{[A; B]).

Dolezal [16] has shown that conditions G’ imply that the mapping
| o+ § of B into K [A; B]) is linear and continuous. Furthermore, by

modifying the proof of lemma L-
L4-5), we can also show that any

v € [A([A; B]) ; B] via the equ
addition, v» ¥ is a sequential

into [B{[{4; B]) ;

B].

an argument almost identical to

Once aga

Theoren L-T1:

Let v

¢ (5

s a uCOUFHJZQ]

into [#; Bl.

We can relate composition

Let there b

the following way.

vhere v € [€; A] and ¥, satisfi

1) { . u .
of M to H{A) is a continuocus 1

2 (we now use thsorem li-l, instead of

given v € [B; A] defines a unique

ation (L-15), where now 0 E b and, in

v
(2

Al

ontinuous linear injection of [A;.

in, we define v o y, by (4-18). Then,

the proof of theorem ;-6 establishes

A] and let v,

satisfy conditions G’.

1y continuous

o mappings to composition ® mappings

in

e given a composition o mapping M s v v o ¥

es conditions G. restriction

Bra
]



by v £ e v, v € 5{A), where £ € [ﬁt (4) ; B] is uniquely determined.
5 :

Indeed, H(A) < [€; &), and the topology of S{A) is stronger than that
induced on it by [€; A]l. On the other hand, the topology of [B; B] is
stronger than that of [#; B] . Herce, by theorem L-6, the restriction
% of M to H(A) is a-sequentially continuous linear mapping of A(A) into
[.5; B}W. It is even continuous since S{A) is the inductive limit of
Fréchet spaces. Thus, we may invoke theorem }i-3 to conclude that
R=1fe on HA), where £ € Eﬁi,x(A) ; B] is uniquely determined.

It is also true that the mapping M= M is injective because .S{A)

i’

is dense in [€; AJ]. We shall see later on (theorvem L4-8) that any

.

given continuous linear mapping M of [€; A] into [f; B] uniquely deter-

mines a y, satisfying conditions G such tha tMWv=vo ¥ for every v € [€; A].

It follows from these twe facts that, if f € [Ji (&) 5 B] is given and if
f ® can be extended intc a continuous linear mapping M of [€; 4] into [5;
then there exists a unique 9 satisfying conditions G such that f ¢ v = v

for all v € A(4)

As examples we now develop the compositicn o cperators corraspond-

1.

ng tc the composition e operators presented in examples L-1, L-2, and
L-3.

Example l-la: For x € R and n a positive integer, we set

(L-19) v, (t) = h(t) D%_éx(t}

vhere now we assume that h € €([A; B]) in contrast to the less restric-
tive assumption made in example L-1. (The symbol 6, denotes the shifted
delta functicnalj; that is, {8y, o) = o(x).) For any © € 5

Gys @ = 0 T 8, 03 = (-0 [B(x) w(x)] € K[4; B]) .



o
4

e AT i I3 o A e
setisfies both conditions G and G°. So, by thsorem 4-

HUTIEE:
Inus,

]
tn

et
4
f

=4y

R0 T K [F; B] for any v € [P; A]. In particular, for © € B, we

have

i

N
(v oy, o
'}J

"L

s 1 LY
(#x), (h(t) B 6 (1), o(t)))

]

@), (<) =) o(x)1) € B.

. b 0 ; i
By virtue of the representation v = D g, g € .3}1 (L), from which Vv is de-
' k

fined viz the analogue to (L-16), the right-hand side is equal to
IN g(x) (—DX)EJFP h(x) o{x)] dx = ¢h Dnv, o)

Thus, in the sense of equality in [A; B],

(4-20) ¥ o ¥ = h Ty

Compare this to (L4~5).
Example Li-2a: Let 7 € R, let ¢, ba the ghifting operaztor as be-

fore, let h € &([A; B]), and set

{=20) Vo =ho b=kl .

Here too, yx satisfies conditions G and G’. For any v € [#; A] and
o €5,

v 0 yyg o = (F(x), ((t) 8,0 (t), o(t)))
= (¥(x), h{x+ 7) olx + 7)) € B

As in the previous example, the right-hand side can be shown to be equal
to

(h(x) vix - 7

L

33



Thus, in the sense of equality in [P3 B],
(L4-22) ) voy_=hosv.

=

Example lL-3a: We now turn to convolution once again. Let y €

[5(A) ;3 B] and v € [€; A]. By theorem 3-1, y is glso a member of
[5; [4; B]). For each x € R, we define y_ as either a member of [5(4) ;

B; [4; B]] by Yy = 9,¥. So, for any o €8,

x

(L-23) & ooy, o) = (Fx), (r,(t), o(t))) = (F(x), (b)), ot + x))).

Here, the right-hand side has the sense of the application of ¥ € [€([4; B]); B]
to {y(t), o(t + x)) € €([A; B]). (See [L; theorems 3-1 and L-3].) We now

employ the representation .of ¥ as a sum of derivatives of strongly continu-

ous A-valued functions on R of compact support (see thecrem h-5) and the
representation of y on ﬁk for any given compact interval K as the deriva-

tive of an [A; Bl-valued function on R that is continuous in the norm
topology of [A; B] (see [L; theorem 3-1 and equations (3.8) and (3.9)7]).

This allows us to invoke Fubini's theorem and then to rewrite (L4-23) as

p }

follows, where now y € [#(A); B].
(v oy, o) = {5(t), w(x), oft + x)D) = & * v, @)

Thus, in the sense of equality in [5; B]l, voy,. =5 %v .

Theorem ;-3 states that every coﬁtinuous linear mapping of H4) into
(.53 B}w has a composition ¢ representation. On the other hand, the ex-
amples of this section show that at least in three particular cases a
composition ¢ operator has a corresponding composition o.operator. A
natural conjecture therefore is that every continuous linear mapping of
[€; A] into [.83 B] has a composition o representation. Tﬁeorem_h~8 be-

low, which is a pariial converse to LHFU¢CV -6, states that this is in-

3h



deed the case. TIts proof mzkes uss of

Lemma h-L: Every v € [€; A} is the limit in [€; A] of a sequence
L<)
[v } such that each v, is 2 finite suw of the form:
AV RRTE ¥ e ST S

where a, €R, and r is a nomnegative integer not depending

" €A, Ty,

on | or v.
The proof of this lemma mimics that of lemma 2 in [19; Sec. 5.87.
)
. R s 4 n iz 1 0
In this case, we use theorem L-5 tuv write v = (-D) h vhere h € €°(4).
(Here, h need not have a compact support.) As in [19; p. 1L5], we then
set up the functions b, € €°(A), 11 of which coincide with h outside

some compact interval T containing supp v. This allows us to write,

for any ¢ €€,

v - (-D)**2pn,, o) = --rz (h - b)) D8y .,

Lenma L-lL is established by estimating a bound on this integral.

Theorem 1-8: Let &t be a continuous linear mapping of [€; 4] into

[J; B]. Then, there exists a unigue y, satisfving conditions G such that

for every v € [€; A], ®mv=v o y, in the sense of equality in [5; B].

Proof: Define an operator 9t from M by

(L-21) Mg, ¢) 2l (N a), o

vhere g € [€5 C], a € A, and ¢ € 5. By [L; theorem 3-2], M is a continuous
linear mapping of [€; C] into [B; [A4; B]]. Moreover, the equation

(aPg, @) = (g, @) a defines aTlg as a merber of [8; Bl (see L: Sec. 3].

Therefore, in the senss of equality in [8; B],



(h-25) atg = %(ga) .
For sach x € R, set ¥ " e, € {73 [A; B]]. We now establish two facts:
(1) For any given @ €5, (¥4» ¢ as a function of x is a member of &([A; BI)

¥ S " R vy - o g %
so that T gatisfies conditions G. (ii) Moreover, for eny nonnegative in-

5 k
in the sense of eqality in [5; [4; B]] (D, Y, denotes the xth_order para-

k
derivative of y, defined by (D te e @ L ﬂ P (}l, s © €.5.) We use

an inductive argument. First note that (4-26) is true for k = 0 by defini-

tion. Next, fix x and choose any A x € R, A x # 0. Assuming that (L4-26)

true for some k, we may write

k k

1 ey -
(L-27) (et o e Vndie = B ) = W e S ™ T Bl

The quantity in the right-hand sids upon which M operates converges in [€: C]

k+i

to D, 6x . Therefore, (L-27) converges in [8: [A; B]] to

kh . k3,
D, vy =RD 6x s

and, in addition, (y,, ¢ is a smooth [A; Bl-valued function on R by the defi-
nition of parametric differentiztion. The statements(i) and (ii) are hereby
established.

We now employ the sequence {vv} indicated in lemma lL-lj. By the linearity

(1-25) and (L-26), we may write

of % and equation

44}

v
(L-29) vy = Zay,, Dy,
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mma Li-) and the continuity of M, the left-hand side of (Li-29) con-
By lem i % 5
verges in [.B; B] to Mv. On the other hand, the application of the right-

hand side of (4-29) to any @ € P yields

m

r T \
pziav,unx (3x: @flx .

v,
vhere (xk, @) €E (LA B])rb wes noted above. The last gquantity is equal
to

v T
Za, n (DT' 5, (x), (), o(t))) :
u:l 3 \",U-' lV,U, e :

(v,0 g5 @
But, this tends to v o yx since £+ f oy is continuous on (&5 A]. Thus,
theorem 4-8 is proven.
Finally, we define the concept of causality and point out how it af-
fects the composition ¢ and compositon o represent tetions of operaters gen-
erated by time-varying Banach syslems.

Definition l-1: Let % be an operstor mepping & set X < [B; A] into

(&5 BI.

=3
[
[43]
m
foN
&
o]
to!
]
n
[k
o
o]
e
b
1
F
e
Hy
(@]
e
sl
-
(4}
=
e_j
ct
m
=]
-
-
i
o
ek
=
i
o

(me(t) (mvﬁft) on - < t < t, whenever v, €%, v, €%, §Qg,vl(ﬁ) = va(ﬁ
on ~m < t <, .

The following theorems are established in the same way as in the scalar
case [20].

Theorem L-9: Lgt £ € [B y(A); ﬁ]. The operator f ¢ is causal on
JX : is

HA) if and only if supp f is contained in the half plane {t, x: t = x}

Theorem };-10: Lot ¥y satisfy conditions G. The operator o o is

causal on [€; A) if and only if, for each fixed x € R, supp y, is contained

in the semi-infinite line [x, ®).

LWL
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5. 11me invariant Banach Systems and Convolution.

A time-invariant Banach system is of course one whose components

-

do not vary with time. One can define such a system in a mathematical

way by saying that every operator generatéd by the system commutes with

&

» be the choice of T €R. (We s

‘-n
T
Lagd

the shifting operator o, whate:

also call every such operator time-invariant.) In this case the com-
position ¢ and composition o operators become convolution operators.
The latter is defined as follows [L; Sec. L]. .

Let y be a fixed member of [B{A) ; B]. Then, the convolution pro-

duct y ¥ v of y and any v € [€; A] is defined by
(51 Gev o o), 66, et e . ses

The right-hand side has a sense because (%) v(x), o(t + x)) € 8(4).

This also defines the convolution operator vH v . V¥
ES J

% V, which we dencte

e

by ¥y %. This operator is a continuous linear mapping of [€; A] into

[6; B] (see [L: theorem L-1]). Moreover, it is time-invariant, which
mezans, as was noted above, that it commmtes with the shifting operator
o, for every T € R [li; proposition L4-1). In addition, y 4 is a continu-

ous linear mapping of S{A) into &(B), and in this case we have that
(5-2) (v & 9)(2) = (=), v(t - x)) v € .5(4)

in the sense of equality in [f; B] (see [L; theorem 4-3]). Similar re-
sults hold for several other spaces of Banach-space-valued distributions.

Conversely, every continuous linear mapping of 5(4) into [5; B] that

o=

commtes with the shifting operator 0. for every 17 € R has a convolution

representation [L; theorem 6-17. In particular, we have

Theorem 5-1: M is a continuous linear time-invariant mapping of

H(A) into [B; B] if and only if there exists

t5(4) ; B] such that

[
o




% =y onBA) (i.e., in the sense of equality in [#; B, Bv=y v

for 211 v € A(A)). y is uniquely determined by M, and conversely.

(This theorem can bé refined by replacing S5(A4) by the space 5 @ A
which is the span of all elements of the form @a where ¢ € J and a € A
[L1.)

In view of theorem Li-3, L-8, and 5-1, we see that every convolution
operator is a special case of a compositicn e operator as well as of a
composition o.operator. This was also observed in examples L-3 and
li-3a. By theorem 3-1 and the analysis of example l-3a, we see that the
corposition o operator oyy correspranding to any given convolution op-

erator y « is obtained simply by setting y, = o,y. Thus, theoren Li-10

immediately yields

=

Theorem 5-2: Let y € [B(A) ; B]. Then, the convolution operator

" : . . = \
¥y % is causal on [€; A] if and only if supp y © [0, =).

A causality criterion for y % can be stated in terms of the Laplace
transform 8y of y if @y happens to exists in the sense stated -at the end

of Sec. 3 [L; theorem 6-2 and proposition 6-37.

Theorem 5-3: Assume that y € [8(w, z; &) ; B] for some w and z.

Necessary and sufficient conditions for y % to be causal on [€; A] (and,

in fact, on [8(w, 2z) ; A] are that z = = and, on some half plane

{C:Re { 2a, a €R}, we have

< P([c])

4A;B]

[(8y) (Q)HL.

where P is a polynomial.

3%



6. Hilbert Ports and Pa ssivity: An Admittance Formulism.

As was explained in Sec. 2, the concept of a Hilbert port arises

vwhen two physical variables v and u in a system tzke their velues in

complex Hilbert space H and, in addition, are complementary in the
sense that their inner product (u, v) = (u(t), f(t)) represents the
instantaneous complex power entering the system. If this power is
Lebesgue integrable on the interval (-w, x), then the integral

x
(6-1) Re | (v, v) at

-C0

represents the total energy entering the system during the time in-
terval -o < t < x. This allows us to define the passivity of the ad-

mittance operator Hi: v v u.

Definition 6-1: Let WH) Hc a set of H-valved functions on R con-

of an onerstor R, M is said to be a passive map-

e e < e

tained in the dom

ping on #(H) if, for every v € 2%(H), for u = Mv, and for every finite

real number x, we have that (u{t), v(t)) is Lebesgne integrable on

- < t < x and the inte gral (6-1) is nonnegative.

passive

o
=
=
O
fute
w

Wen M is the adm_tbance operator of a Hilbert port s
we shall also call the Hilbert port passive.

If % is a convolution operator y %, y € [A(H); H], then it turns
out that, for every v € XH), u =y % v is a mewbsr of &(H) and that
(u, v) € 8 (L, theorem L-3 and lemms 7-17]. Thus, (6-1) certainly exists
for every x € R, and we may establish the passivity of B on B(H) merely
by checking the nonnegativity of (6-1).

Every paasive couvolution operator y x has a frequency-domain descrip-
tion; namely, its impulse response y possesses a Laplace transform Y which

sl G 5 ;
is positive . The last word is defined as follows.

Definition 6-2¢ Given a complex Hilbert space H; a function Y of

Lo



-3
the complex variable { is called a positive mapping of H into H {or

A
simply positive ) if, on the half plene €, = {{ : Re { >0}, Y is an

[H; HJ-valued analytic function such that Re(Y({) a, a) = O for every

a € H.
The principal thecrem in the admittance formulism of passive Hilbert
ports is the following [L4]

Theorem 6-1: Assume that % is a continuous linear

passive mapping of B(H) into [#; H]. Then, R has a convolutio

sentation M = y % where y € [BLI(H) ; H] and supp y © [0, ).

y possesses a Laplace transform Y on at least Cy4 which is positive “.

Conversely, assums that Y is yqﬂi Aye T,

unique convolution operator M =y x such that y

y < [0, @), and 8y = Y on C,. Moreover, R is a continuous

. . . . T . 3 .
invariant passive mepping of 5(H) into [.B; H].

Note that the fact that supp y < [0, ») implies that y *
is also causal on [€; H] as was indicated in theorem 5-2.

To introduce the concept of positive —reaLlLv, wae must first con-
sider real operators in [H; H], and this in turn requires that we assign

3 2
to H a somewhat more complicated structure. In particular, we shall now
I p 3

assume that the complex Hilbert space H is generated from a real Hilbert
space Hr through complexification [21; Sec. 2.1]. This implies among
other things that H, < H. Then, an F € [H; H] is called real if F € [,

Definition 6-3: GCiven H and H, as stated, a function ¥ of the com-

ELS
"

plex variable { is called positive -real if it is a positive " mapping

of H into H and, for each real positive number o, Y(o) is real.

Corollary 6-la: Theorem 6-1 remains valid wl en H is replaced by

- - b - . _K_ ' 1
Hy, "positive *" by "positive “-real", and B by the space H(R) of real-

valued functions in 5. . ;

il



(Note: The spaces .B(Hr); .Ele (Hr)’ and [H(R); H,], their topologies,
and the properties of passivity, time-invariance, etc. are defined just

as they are in the complex case.)

7. Hilbert Ports and Passivity: A Scattering Formulism.
Let us consider once again a Hilbert port and its variables v, u
which determine its admittance operator ¥:v - u. A scattering formu-

lism for the Hilbert port is generated by working with the variables:

A 4
(?“1) v+:v+u, VQV"U .

We call v;‘ the incident wave and v_ the reflected wave. The mapping

B®:v, » v_ is the scattering operator of the Hilbert port. In terms of

v, and V_, the energy integral (6-1) becomes
X
(7-2) J v ) - (o, v )] ab

Definition 7-1: Let #(H) be a sat of H-valued functions on R con-

tained in the domain of an operator W. M is said to be scatter-passive

have that (v,, v4) and (v_, v_) are both Lebssgue integrable on (-w, x)

and (7-2) is nonnegative. B is said to be scatter-passive-at-infinity

_o_n_%(H} if, for every v, € %#(H) and for v_ = v, , we have that (v, ., v,)

and (v_, v_) are both Lebesgue integrable on R and

o

(7-3) Joo Tlwy, we) =v_y v.)] at

is nomnegative.

If ® is a linear mapping of HXH) into [B; H] and is scatter-passive-
at- infinity on B(H), then ® is also continuous from S(H) into [&; H]

(see [5; Sec. 3]).

12



There is an interesting relationship between scatter-passivity and

L]

the two properties of causality and scatter-passivity-at-infinity. It

extension to Hilbert ports, which is stated in the next theorem, is

established in [5: Sec. 3].

Theorem 7-1: Assume that W is a linear time-invariant mavping of OL

HH) into [#; H]. Then, ® is a scatter-passive

M
0
=
=)
~
.
S
-
=
i

nd only if

> 3 2 . - . » ST
B is causal and scatter-passive-at-infinity on XH).

For the frequency-domain description of our scattering formulism,
ve will need
Definition 7-2: Given a complex Hilbert space H, a function S of

the complex varizbls [

e

s said to be a bounds d mapping of H into H (gg

simply bounded ) if, on the half plane C, = {{ : Re { > 0}, S is an

(H; H]-valued analytic function such that {S{C)“[H Hj R
3

A description for the scattering formulism of & passive Hilbert

port [5; theorems L-2 and 5-17 is given by

Theorem 7-2: Assume that M is a2 linear time-invariant causal

scatter-passive-at-infinity mapping of 4(H) into [5; H]. Then, ®

has a convolution representation B = s %, wvhere s i& ( 1) 3

and supp s € [0, =), Moreover, s possesses a Laplace transform S on at
2 s ¥*
least C,_ which is bounded”.
z 3,
Conversely, assume that S5 is bounded . Then, there exists a unique
convolution operator B = s % such that s € [ﬁia(H) ; H], supp s < [0, =),
and £s= S on C;. Moreover, B is a continuous linear time-invariant cau-

sal scatter-passive-at-infinity mapping of B(H) into [A; HJ.

Now, for bOLnd“’%—“C“llty (g "or01]qr105 L-2a and 5-1 ] Assune

once again that H is generated from a real Hilvert space H, through

H

complexification. _ :

L3



&8s stated, gz function 8 of the con-
cir 3 -
-real if it is a boundsd mapping of

L

Corollary 7-2a: Theorem 7-1 remains a]Ld when H is replaced by

oA

B 3
rs "bounded " by "bounded -real", and & by S(R).

H

We end this section by stating the connection between the admittance

and scattering formulisms. Given any Hilbert porit, whose operators need

not satisfy any assumptions of linearity, continuity, etc., we see im-

mediately from (7-1) that the admittance operator M: v r u uniquely de-

termines and is uniquely determined by the scaltering cperator M: L 2

In this case, either one or both of these operators may be multivalued.

Howsaver, when the aforementicned assumptlons are ilmposed, we get the

i

following theorem (sce [9; theorem 6-1 and 6-2]).

Theorem 7-3: If the admittance operator M: v = u of a Hilbert

port is a continuous linecar tims

into [5; H], then its scattering operator W: v, - v_

time-invariant causzl scatter-passive-at-infinity

(5; H]

The converse stabemesnt is alsc true if the scattering transform

o

§ i T L CE G L1t AL R 1 oy T
S = @scorresponding to W = s % is such that, for every { € C,, (I + S)

exists., Here, I denptes the identity opserator on H,.

Ll



8. oo -ports.

Henceforth, we assume that the complex Hilberit space H is separable.
This allows us to exploit the ¢qcmﬁrphism between any such Hilbert space
inite- dlmenqworaW extension
to the concept of an n-poru. We slso assume throughout the rest of this

paper that an orthonormal basis has been chosen in H. (Vhen analy-

{ae]
e
¢ k]k=1
ing systems such as microwsve-trensmission networks g, it is patural to fix

upon the orthonormal basis generated by 2 modal analysis. i)

Lemma 8-1: Let v € B(H). Then, in ths sense of convergence in 5(H),

{6-%) v = Z (v, ek)ck

Proof: * Since, for any nonnegztive integer p and aﬁy fixed t, D‘v (t)€H,
we have that

25
vy =30 (P, & )6
K i

; D e @ be) =
I = (v, e )efl =2 (D°v, e.)]| .
Ik=m+1 ey kﬁm+1| TR |

As m—~ o, the right-hand side tends to zero monotonically &t every point

of R. By Dini's theorem [23, p. 117], it therefore tends to zero uniformly

=i
e
"

. N D
on every compact interval in But, PPv has a compact support. Thersiore,

®

m
kgl(v, ek)a

tends to v in BA(H).

Lemma 8-2: Iet u € [#; H]. Then, in.the sense of convergence in [.5; H],

i

(8-2)

Moreover, the series is unigue; that is, if twe such series converge in

[.B; H] to the same limit, they must have the seme cosfficients.

bS



Proof: We first note that, for each k, (w, ¢ ) € [5 C] according

to [h; Sec. 3] so that (u, ek)ek € [B; H]. Moreover, for each ¢ € 5, we

((U-, f?),- el{)ek = ((U-: Ek)s (?}C'k = ((U, E‘k)ek: &
again according to [l; Sec. 3]. Hence, we may set up the orthonormal series
s ©
(8-3) {u, o) =2 ({u, @, ek)ek = % (u, G o).
k=1 k=1
We wish to show that this series converges uniformly with respect to all ¢
in any given bounded set O in B. Since £ is a Montel space [8; p. 357],
the closure Q) of Q is a compact set in J. So, we need merely establish the
uniformity o? the convergence on any compact set A in 5.
Consider the function E on L into R defined by

lo -5 -3 I
F (o) A || - L ) e L =] Z 0
m( ) & k=_]:(u’ ek) k 3 ) l k‘—'m( U, @), ek) ekl

F, is continuous on f. Moreover, by Parseval's equation,

Fm(f@) =k;—::m| ((u, @, ek) Iz s

and therefore, for each ¢ € B, F (¢) tends monotonically to zero as m~ .
By the standard argument, we can conclude that F () tends to zero uniform-
ly on any compact set A in b, This in turn implies that the series in

(8-3) converges uniformly on A.

16



The uniqueness of the expansion follows from the fact that, for any

a € H, the mepping ut (u, a) is a continuous linear mapping of [B; H] into [B;

(see [li; Sec. 3] again). Indeed, we need merely set a = ep and then ap-
ply this mapping to both sides of

u=2xbe ,
kg EF

where bk € [B; C], doing this term by term on the right-hand side, to get
bp = (u, ep).

Lemma 8-3: ILet M be a continuous linear mapping of B(H) into [B3H].

Then, for every choice of the positive integers j and k, there exists an

J

f',k € [ji,xs C] such that, for 2ll ¢ € 5,

(8-L) Nepep =L (£, 0 e,
51 JoK J

where the series converges in [8; H].

Proof: Since m:;ek € [B; H], we can expand it according to lemma §-2
to cbtain

(8-5) m‘Pek :jf](mj,kﬁ)ej

where

A
R 9= (Moo, o).

!'Rj . meps B into (55 C] by [h; Sec. 3].
2

In addition, ﬂj % is both linesr and continuous. Indeed, its linear-
2

ity being clear, consider its continuity. Assume that P Oinb as v - =,
Then, ¢ e, = 0 in 5(H), and therefore ﬁﬂpvey) - 0 [5; H]. We may also write
for any { € B

519 D] = [y e eg)s 9]
(8-6)
= [(Ceyeps 95 e5)| = [Boy e W

L7
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becauss Hej” = 1. Since Rq e~ 0 in [B; H] as v = oo, the right-hand
side of (8-6) tends to zero uniformly for 21l ¢ in any bounded set in J.

This proves the asserted contlrmﬁbx of ﬁj,k‘

1!

We may now invoke theorem L-3 with A = B = C to conclude that mj, K® =
£5,6 ° (Here, f ‘J i 18 defined as in (8-7) below.) Inserting this re-
sult into (8-5), we complete ths proof.

We are at last ready to establish for the mapping % a composition e

representation that is amenable to an co-port interpretation.

Theorem 8-1: If M is a continuous linear mapping of BH(H) into [D; HI,

then there exists a collection {fg,k}j,k of distributions in LB£5 - C] de-

fined by
(8-7) L oY sty L e ¥ AR )y 4
iy 5k (tsx) s Ht)e(x)) = Ry po, ¥) = P eys ©5)s

e s S B 5 Je @y wend = Ly By e

such that, for any v € B(H),

£ @ @ w
(e-8 Byt Bt .ol ed] 6= 3 o3 [ ® : _
) v ko1 §=1 i,k ( 5 ek).; GJ 551 k’”l[ 3.k (V, (‘k)] eJ

-

where the series converge in [B; H].

Proof: We may apply M term by term to the series indicated in lemma

8-1 to get

[« =)
s 50 WL
Nv zjfc(f, ek) €y

Upon replacing ¢ by (v, €y ) in (8-L) and invoking lemma 8-3, we can reurite
the last equation as

8— LV = 5 e ( )] e

( 9) T“' k}_\'_‘_;]}:l[f , kv: ei{)'] e‘]!
which is the first series in (8-8). Here, it is understood that we sum
first on j and then on k to obtain in both cases a limit in [F; H]. To

show that this order of summation can be reversed, we expand Mv e [B; H] in-

L
¥

[

to 2 series according to lemma ¢-2 to g

1,8



¥ o«
(8-10) Rv . TEl(f'fv, ejles

Upon: applying the opsrator ut (u, ep)to (8-9) as in the proof of lemma

8-2, we cbtain

[ =]
(%, ep} 2 X [fp i (v, ek)] .
Kel. 2 . _
Then, substituting this result into (8-10) with p replaced by j, we ar-
rive at the second series in (8-8).

We can interpret the representation (8-8) in terms of an o -port.
Think of a black box to whoze interior we have access only through a col-

lection of electrical ports which are countzbly infinite in number. Num-

ber th

w

e ports 1, 2, 3, ... . Then, given the N of theorem 8-1 and any
v € 5(H), set u = Rv. Also, for each positive integer n, assume that the
voltage impressed on the j°" port is ¥ = (v, cj) € B so that the corre-

gponding current is

oo

.= D f . *% €[h el .
J k=1 J’k 5 ’ co] ) eo
The operator that maps the vector {w .}, into the vector {uj}jzl can ‘be

represented by an cox oo matrix {fj,kj‘ In applying this matrix to any
{vi} to get [uj}, we follow the customary rule for the multiplication of
matrices. Thus, the matrix equation corresponding to the composition &
representation (8-8) is

(8-11) {uj} = [fj,k] ¢ {vk] .

It represents the behavior at the ports of a time-varying o -port corre-
sponding to the Hilbert port whose admittance operator is the M of theor-

em -1 and to the given choice of the orthonormal basis {ek} :



Ve now take up the case where ' commutes with the shifting operator
and develops the matrix representation of a tims-invariant w -port. We
first note that each mj & in (8-7) also commutes with the shifting opera-
tor. Indeed, for any T € R, any § € 5 and any £ € [5; C], we have.that

<07(f}ej); ¢> = <(fjej), G_,i.‘%f) = ((f, G—T ‘i’), E'J)
((GTf: ‘P): E’J} = <(0'1—f: ej)s ‘[> .

Hence, in the sense of equality in [% C], we have for any @ € 5 .

, D) = o s2) = (Mo ¢ =, ) = At O, a5 WS
G'Tm.], UT(th E}k;e‘]) (GT b & ek} GJ) ( G-—r ¢ ek: EJ) JJ’]{G"“T 3 = =
asserted.
By virtue of theorem 5-1 with A = B = C, the compos 1t30p e representa-

tions in theorem 8-1 become convolution repressntations, and we have

Corollary 8-la: If % is a continuous linear time-invariant mapping of

F(H) into [B; H], then there exists 2 collection {yﬁ 1 of distributions in
S - Jaf . .

[B; C] defined by

[N

(8-12) Vi, ¥ =05 40 = (Roey, e.) = (y % oy, 6.)

such that, for any v € A(H),

(8-13) Rv = B kzl[y % (v e ey

where the series converges in [B: H] aﬁd the order of swmmation can be re-

versed.
The matrix representation for the admittance equation of a time—invari—
ant oo -port correquﬂdlng to the choaen {eﬁ} and the Hilbert port whose ad-

.

mittance operator is the M of this corcllary, is

(8-1) fyd = Iy * ()

Here again, we use the customary rules for matrix multiplication.
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Finally, we turn to the case WiL“& ® is not only

and time-invariant as a mapping of H(H) into [5; H] but a

5(H).

and that supp y < [o,

As was stated in theorem 6-1

cw) &

yj;k € [f‘il;

=
>

that, for each j and k,
Indeed, first consider y %
ses in this expression

tion of convoluticn,

(y * e85 ©) = (y(t)

(8-15)
= (y(t), € o(t)) =

In the right-hand sids, now denotes a member
g gy

¥y * 8 is a mapping of £ vointo H.

L

1
ear and continuous,

Hence, y % e, 6 € [i? ; H].

Next, consider Wy g (y * CRY
0 ]

Let us show that these conditions on

(eké).
and simply write y * eké.

wahwefm’awuaE%;

{ekf)(}{), w(t +

- (y, o) e

as is easily seen from

this implies that

LEH

:j,k G [0, m].

As vefore, we drop the parenthe-

C] and supp ¥

By the standard defini-

the expression

i

NN

k

Moreover, this mapping

the

We get this expression fr

ej).

(8-12) by letting ¢ converge in [€; C] to & and invcking the continuity

of the operators yj i ¥ and y % on [&; C] and [€; H] respectively. So,
LR f

again for any o € ﬁL s, we have from [L; Sec. 3] that

' 1

(8-16) (7.

st (y = e8> ej)

This shows that y. maps S 1qto C
Jsk ‘L‘1
This is . € LB 3 . B
3 yj,k L} C]

As for the support of ¥y,
3

larization process [L; theorem L-37.

(8-17) (yj,k(x), olt - x)) =

o) = (F *

g J
in a continuous linezr fashion.
) € .8 and rewrite (8-12) as a regu-

(G(x), olt - x) ek), ej)

-



Given any ¢ €.9 with supp y < (-=, 0), we can choose t € R and
¢ € .5 such that o{t - x) = §(x) for all x € R. Since supp y < [0, =),
it follows immediately that the right-hand side of (8-17) is equal to

zero. Thus, supp y. . < [0, =).

Jsk
We noted in Sec. 3 that these properties of y and yj i imply that
2 >
they have Laplace transforms Y and'Yj ” respectively on at least the
o]
A
half-plane C, = {{ : Re { > 0}. Ve can relate 1, i to Y as follows.
o2
For any ( € C+?
-Ct Ct
Y. = 7 a :/{ e b, e a )
G R R AR IENE
i " -Cty
= *e b, 8 e .
| ((} K ? bt J)
The last equality holds because y ¥ ¢ & € [£c & H] for any ¢ € R with
)¢ 3

¢ >0, and any d €R and moreover supp y * e C [0, ). (See again

[h; Sec. 3]1.) Thus,
. , : 4._( S "gt
Yj’k(g)_= ((t), (e 8(x), e St * 3y, ej) - (G(t), e e ™), ey
or

(8-18) Y. (0)

il

(Y(g) ekJ ej) €€ C+

In the following £, represents the standard Hilbert space of all

sequences « = {ak} of complex numbers for which the norm

\‘}\H

il

Joli = [ B o 1T

>

k'

exists. We know from theorsm 6-1 that, under our stated assuriptions on

R, ¥(¢) € [H; H] for eachfixed{ € C_. Having fixed upon the orthonor-

mal basis [ek} in H, we construch an » x o matrix {Yj k(g)] that repre-
2

sents the operator in [4.; 4 7] correspending to I(¢) € [H; H] under the
- 2 = - C 3 = |

isomorphism existing between H and & . The elemsnts of this matrix are
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given precisely by (8-18). (See [2L; Sec. 3.1].) Moreover, if v € [B; H]
has a Laplace transform V whose sbrip of definition contains the chosen

€. €0, then the Laplace transform of the equation (8-1L) yields
- ) = ol fv (r
(8-19) {Uj(s;} [Yj’k(a)J (v (O]}

where [Uj} and [Vj} denote the componentwise transformations of [uj}

and [vk} respectively and, for the given (, {Uj(g)} € £, and [vk(;)} € Lo
We conclude this section by relating the positiviby% of Y to the

positivity* of [Yj,k]' |

Theorem 8-2: Y is a positive% mapping of H into H if and only if

[Yj k]’ as defined by (8-18), is a_positive%'mapging of £ into & .
3

A * . : i : : g
Thus, Y and [Yj 1] are positive” if and only if M is a continuous lin-
L ol Lk

ear time-invariant passive mapping of JA{H) into [&; H].

Proof: We have already noted that, for any fixed € C4,¥(() € [H; H]
if and only if [Yj’k(g)] € [ Eg]f

Now let a and b be arbitrafy members of H and let [ak} and [bk}
be the corresponding members of £ (i.e., {ak] is the sequence of Fourier

coafficients of a with respect to {ek}). Then, we have that
8-20 Ya, B} =Y a b.})e
(8-20) (ta, b) = (¥, ] (a1, {o,])

Thus, Y is weakly analytic on C; if and only if [Ij,k] is weakly analytic
on C,. But, weak analyticity is equivalent to analyticity in the norm
topology [25; p. 93].

We check the nonnegativity condition and thereby complete the proof
of the first sentence of ﬁhis theorem by setting a = b in (8~20j and
then taking real parts. The.second sentence follows immediately from

theoren 641.

Finally, assume once again that H is obtained from a real separable
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Hilbert space Hr_through compleiification and assume that the orthonormal
basis [ek'} is contained in H,. Through the isomorphism between H and

we have that Hr corresponds to the subspace £, of %, where f’z,r con-

%
sists of all sequences of real numbers in f,. Thus, for any ¢ > 0,
[Yj,k(c)] maps ﬂa,r into £b,r if and only if Y(o) maps H, into Hr' This

allows us to state

‘Corollary 8-2a: The first sentence of theorem 8-2 remains true if

.y Fr s - ¥* /
"positive "" is replaced by "positive "- real." In this case, for ever
I 3 X

0 >0 and every j and k, Y k(c) is a real number. In addition, the
J

3

Eal

second sentence of theorem 8-2 remains true if "positive is replaced

by "positive *—real", H by Hr and 5 by KXR).

We have treated only the admittance formulism of the e-port. An
analysis.of the scattering formulism can also be made, but, since it is
quite similar to the foregoing, we omit it.

8. A First Thrust at the Synthesis of an =-port.

Given a positive %—real mapping [Yj,k] of 4 into £, can one
synthesize an «-port to realize it? Here are a few thoughts on the sub-
ject.

First of all, let it be said that we are trying to synthesize a
"paper network" [3], which is a perfectly legitimate mathematical idea
that can only be approximated by a physical system. (So too is the ideal
one-ohm resistor.) ’

_Assume once again that H is the complexification of a real separable
Hilbert space Hr and that (ek} CZHr. Let [Yj,k]n be the = X = matrix ob-
tained from [Yj,k] by replacing each element Yj,k in [Yj,k] by O if either
jJ>mnor k>n. This corresponds to the following alteration of the
o-port whose admittance matrix is [Yj,k]: For every port beyond the

nth, disconnect the wires to the port terminals and short them together.
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The resulting system which is in fact an n-port, possesses

(Y ] as its admittance matrix. [Y, . ] can be identified with the
J!k n J,k n

n x n matrix ‘'obtained by dropping all rows and columns in [Yj k] beyond
; 2

th

the nth row and n" column, and the latter is a positive-real n x n

matrix in the usual sense. Indeed, let a = [ak] be any member of 4,

such that " 0 if k> n. Then, for £ €C,,

n n .
o j§1 kgl ngk(g) aj - Re ([Yjsk] {ak]’ [aj}) =0

*
by virtue of the positivity of [Yj k]. The analyticity of each Yj k(g)
2

2
on C, and the reality of Yj k(c) for o > 0 is equally clear.
3

If we now assume in addition that every Yj K is a rational function
3

of {, then we can apply known synthesis procedures [26] to realize [Yj k]
sk n

as an «=-port whose first n ports connect to a lumped passive network and

th

whose poris beyond the n™ all have broken terminal wires. Thus, we have

synthesized in this way a sequence {[Y, ] of w-poris.

}U)
G s oo
[[Yj ]n}n=l is an approximating sequence for the originally given
" - Y
[Yj,k k(b)}n [ j,k(g)]

in the weak topology of [4; %4, ]. To show this, let a = [ak} and b = tbk}

] in the sense that, for each fixed { € C_, [Yj
3

be arbitrary members of £,. Then,

I(Ty, ()2, B) - ([T, ()] a, B)I?

w el == -] S .
= (= PR3 3 dradte B
j=n+l k=1 j=1 k=n+l J>
By applying the Schwarz inequality to the summations on j, we bound the
last expression by

==} f==] n L=+] =s] =2
3B ¥ T LA alPrr WP o2 obroxoaloyal? .
jen+1l 9 el k=1 oK R = (R T T e . K |



We now invoke a result [2L; Sec. 3.1], which states that {Yj k(g)] € [4; 4]
3
if and only if there exists a constant N > O such that, for every pair p, q

of positive integers and every choice of the complex numbers a;, ..., 8,

d

q
e
=] k

p
2 Yealey g R 2@y s PP
T « " B | k

] P\,Jl

J
Under the assumptions that [Yj k(;)] € (43 & ] and [ak] € 4,, we may take
M
p @ « and/or g @ » and still obtain a valid inequality. In view of this
fact, we have that

= I
Ty, ((©T 2, B) - ([Y, (D] 2, B)|7 <17 o o2 . |2, [

o
- ) 2
+ M I Io_l by Ia Iz .
j1 4 k=n+l
The right-hand side tends to zero as n - =, which establishes our as-
sertion.

If it happens that, for the chosen L €C

+72
] w I
b3 % |Y_1 k(g) 52 <=
=l k=1 J?

then, the convergence of [Y. (¢)] to [Y. . (¢)] occurs in the norm topo-
Jsk n Jrk

logy of [#; £,]. Indeed, if b = [Y_ k(g)] a, 2 € 4,, then by the Schwarz

Js

inequality,

olF = = | = P<% % | 2 % la]

ibj* = X lalPy ¥ WA & 2P

j=1 k=1 Jsk k j=1 k=1 Jsk k=1 kl

=lalf 2z Iz, (OF
j=1 k=1 Jsk

Therefore,

56



A i = !
ICx, ()] - [Y, (D1 ]l - S ety (1 - [y, (0]} al
@ n [Y ( )] @ @ IY (g)l ”;‘
< ¥ bN . 2 4 » » IE -
j=n+l k=1 Jsk ¢l j=1 k=n+l Jrk J

The right-hand side tends to zero as n - .

. ; g 5 2 O

In summary, we have not obtained a synthesis of the given positive "-

real [Yj k] but instead have constructed an approximating sequence {[Y. k] 1
. J, n

whose members have n-port realizations whenever the [‘.L’.j k]n are rational.
2
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