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ABSTRACT

A new dimension to the time-domain synthesis problem is
proposed. In particular, the objective is to find a realizable
signal that approximates a given distribution (i.e., general-

ized function). A solution is then presented, several

convergance criteria are discussed, and some examples are
glven. A feature of the present technique is that, if

the Lapiace transform of the given distribution is known, the
realiza®ble arnproximating signal can be written down without

wny computation. It only requires valu:s of the Laplace
sransferm at varicus noints in its region of convergence.

The method also yields a convenient technique for "wvisualizing"
those distributions that cannot be plotted. Since ordinary
locally integrable functions are special cases of distributions,

the technique 1s significant for the customary time-domain

synthesis problem as well.
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INTRODUCTION

An outstanding questién in.électrical network theory
has been the time-domain synthesis problem. Given a prescribed
function f(t) of time t, the objective is to develop an
approximation technique whereby another function f,(t), whose
Laplace transform Fa(s) is a real rational function with
poles in the left-half s-plane and with more poles than
zeros, approximates f(t) in some sense. Simple imaginary
poles for F,(s) are allowed. A great deal of attention has
been paid to this problem and a number of solutions have
been expcunded. neferences E}] to [53] comprise a certainly
incomplete list of pertinent papers. The purpose of this paper
iz to suggest a new dimension to this problem and to present
¢ solution to it. An early and abbreviated version of this

viork was presented at the First Allerton Conference on Circuit

Theory.

Schwartz's distributions {[54,55] and equivalent types of
generalized functions [56+61] are now becoming used in various
branches of network theory [62+66]. 1In view of their effect
in other physical and mathematical sciences, it seems safe
to predict that the use of distribution theory will lead to
simplifications and additional results in network theory.

For example, in this paper we pose and solve the problem of

synthesizing a lumped passive electrical network whose response
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to a delta functional input approximates a prescribed
disbribution. In view of certain known network synthesis
techniques, the issue degenerates into the following approxi-
mation problem, "Given a distribution f£(t), approximate it by
a real finite linear combination of terms of the form,

n gt
l4jt) t e cos(bt+c),

where 1,(t) is the Heaviside unit step function, n is a non-
negative integer, and a, b, and ¢ are real constants with

a 2 0, In any such term, if a = O, then n = 0. The Laplace
transform of the resulting approximation will be a rational
function with real coefficients whose poles outnumber its
zeros and have nonpositive real parts; furthermore, the
imaginary poles are simple. Such a function is realizablé

as the transfer function of a lumped passive electrical net-

work.

The method that is proposed here is quite simple and yields
a convergent approximation to any distribution f(t) whose
support is bounded and contained in the open semi-infinite
interval, 0<t <, Under certain circumstances the technique
can be extended to distributions having supports that are
unbounded on the right and are contained in the semi-closed
interval, 0 £t <, O0f course, ordinary locally integrable

functions can be approximated in the very same way.

3.
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An important facet of this method is that no computation
is needed in order to write down the realizable approximating
signal so long as the Laplace transform of the given distri-
bution or function is knowﬁ. All that is required is the values
of this Laplace transform at various points in its region of
convergence and this can be ascertained in many cases by
referring to a table of Laplace transforms. (For tables of

distributional Laplace transforms, refer to [55] and [677.)

A byproduct of this technique is that it yields a convenient
means of "visualizing" distributions. For example, one crudely
thinks of the delta functional as a pulse of unit area
having an extremely small base and an extremely large height.
Similarly, one such positive pulse fo%lowed immediately by
such a negative pulse is one of the possible approximations
for the first derivative of the delta functional multiplied
by some constant. In general, however, it has not been clear
now to visualize arbitrary distributions. The approximations
generated by the method presented here can be used as picturi-

zations of various types of distributions. Several examples

of this are given below.
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A DELTA FCRMING SEQUENCE

In this discussion we shall employ various concepts and
results developed in [54,55]. A brief.sketch of the most
important ideas is given in the appendix of the technical
report 400-55 of [64]. Readers not familiar with distribution
theory can follow the discussion in a formal way by skipping

over all proofs and by interpreting the symbol <f, ¢} as the

integral,

S £(t) $(t) at.

e

The aprproxizction procedure, which we shall discuss sub-
sequently, is based upon a sequence {gy};jﬁaf functions that
converges to ¢ Dirac delta functional &(t) in the topology
of <the space-ﬂﬁof Schwartz's distributions. (#e shall refer to

. 9 N
such convergence as convergence in H’.) Each term gy of this

sequence is given by

=L _depkt
gu(t) 'y:E_- exp -5 (1)
K== P (pl;¥=1, 2, 3, «o.).

(When p is not a.. integer, it shall be understood that ,P is
replaced by the largest integer that is no larger thzn the
principal~branch value of y?. In our exampius we cnall always

set p = 2.)
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)
That (1) truly converges in & to £(t) can be shown as
follows. A well-known Fourier series that converges in.@’to

a row of delta functionals is

% & (t=ky) “'—- ;ii exp -i20Kt : (2)
K= - K= -® ¥
(See example 2-4-4 of [55].) Now, let ¢ be an arbitrary .

function in the spaceAQ of infinitely differentiable functions
of bounded supvort. Applying both sides of (2) to ¢ and letting
y be so large that the interval, -y<t<), contains the support

of $(t), we obtain the following form of Poisson's summation
formula,

P
=1‘Z =7 2aky + 1 F (LK (3)
¢(0) 5 @§_§Lﬂ) -~ ¢ ( 3 )
R=-pP (k] 7P
Here,‘é denotes the Fourier transform of ¢ znd is, therefore,
of rapid descent ( i.e.,lg(uﬂ = o(1/|w") for every integer
. (See Sec. 7-3 of [55].) Since p”1l, we may write for a

n

suitably large constant K

}'?

N
Y

;
-
IN

5;
)/
{] >pP 1x] >y

The right-hand side converges to zero as ¥ -~7<. This proves

our assertion.
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Graphs of gy(‘c) for several choices of p are shown in
Fig. 1. It can be seen that each gy consists of a row of pulses.
As y—=»=, each pulse approaches a delta functional; moreover,
the pulse at the origin :rémains there whereas all the others

move steadily out toward t = +@ or t = =,

t
Let g»'g(t) =eP gy(t), where p is a constant. (Hence,

[ . o]
g,0 = gy.) Since {gyg);r{l converges in ,O’ to & (t), {gﬂpﬁyzl

also converges in &’ to §(t). For, if & is ind then

<g))p)e> = <gy:e_Pte(t)>"‘76(0).

We shall alsoc make use of the sequence {522;:5;;1- The graphs
for Byp &ppear the same as those for g, except that all mag-

. -0
nitudes are modulated by e ‘t,

7o
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THE APPROXIMATION METHOD

Let us assume for the moment that the distribution f(t),
which we shall approximate by a realizable signal, has a
bounded support contained in the interval, £€£ t <=, where¢> O,
An approximation f, to f can be obtained by convolving f with
some g, in the distributional sense. This convolution will

certainly exist because f is of bounded support. (See theorem

5-4=-1 of [55].)

R FEN
= j‘ .S <<é@0 ) Cxp ;>
[EUEIE (4)

- = LAYkt
= f}. Z (L&_;_,__s_\) exp uk%

k=P

dere, F denotes the distributional Laplace :ransform of f.

= <f(‘15) , e'sﬂc>

Because of the continuity of the convolution process (See theorem
5-6-1 of [55].) {g}”iﬂ'converges in B to f. Moreover,

since f(t) equals the zero distribution over - =<t <¢>0, we

can truncate the approximation (4) at t=0 without upsetting the
convergence., In short, the sequence {fy+};;l’ whose terms

are given by f,, = £,{t)14(t), converges in® to £. The

approximation f5+(t) for f£(t) = 6<1)(t-l), where.p = 2, is

8.
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shown in Fig. 2. (Henceforth, h(n) shall denote the nth

distributional derivative of the distribution h.)

IE TH'E“ %:"g,.:iLTE ) AM—-AU Pg ?M""""
WL BE
A‘Gur' approximating ngnal f,4 ;g\reallzable by a passive
lossless network since the poles of its Laplace transform are
all simple and-occur on the imaginary axis. However, (4)

consists of a one-sided periodic wave which approximates not

f(t) but rather

eany).
1'_'. -

ol

This objzctionable feature can be eliminated if we convolve f

oy some g, , where p> O, Ioreover the resulting approximation
s

(""‘

will be realizable by a passive dissipative network.
In particular, we start with the approximation,

£f . .(t) = £ % gﬂf

e
nI)L <¥CY>,CXP[(F+L——TLL\)({’I]>
k:ﬁp
J / .. (5)
= 317 k=-p P F(~P+ F—%:‘m&' P Pty %ﬂ-é)' |

Once again, a realizable approximation can be genérated by

truncating (5) at t = 0, That is, set

Fupp(t) = £, (8)14(t) (6)

q



The corresponding Laplace transform is

Liﬁk)

r
5 X _L Fl~o + =5
1 %W E $+P“°Jﬂk (Re s> -p ) (7)
Kkz-yP
Referring to (5) and (6), we see that f&p+ﬁt) is exponentially
damped so that the succeeding repetitions of the desired

approximation can be made as small as one wishes merely by
choosing p and/or p large enough. This behavior is shown in

- Figs. 5 and 6, where a Cesaro mean (which we shall discuss

later) has also been used.

From stardari synthesis techniques, we know that there exists
some Z2-port network composed of only a finite number of resistors,
inductors, and capacitors, whose response to a delta functional

input is (6). Again by the continuity cf convolution and by

T e e

the fact that f has a bounded support in U<g <« t< = it follows
that f converges in 8’ to f.

Lp4
r Equations (4) and (5) contain the essence of our approxi-
mation procedure. Note that the only quantities that need be
computed are the coefficients, F(iZwk/p).cm'F(~f4*i2wk%§).Ewen thic
calculation may be eliminated if F(s) can be found in a table of
Laplace transforms. Furthermore, since f has a bounded sup-
port, F(s) is analytic over the entire s-plane. (See theorem

8-3-2 of [55].) Thus, these coefficients can always be

evaluated once F(s) is known.

0. | | ol .




Let us now remove some of the restrictions on the support
of fo First of all, assume that f£(t) still has a bourded
support, which extends up to and includes the origin, t = O.
If £ is an integrable function in a neighborhood of the origin,
then the above procedure will still yield a realizable approxi-
mating sequence that converges in &9’ to f. However, if f
is a singular distribution in every neighborhood of the origin
(this will be the case, for example, when f has a delta
functional or a singular point of a pseudofunction at the origin),
then anerror may be generated when the approximation fyp 1is
truncated by multiplying it by 1,.(t). For instance, if f{t) =
6(t), then the approximation fy+ equals g,(t)1 (t) and as y—> =

this converges in (S’ to ¢(t)/2 racher than to & (t).

We can overcome this difficulty, if w: first translate f(t)
-0 the right somewhat before applying our ap-roximation
technique, More specifically, instead of approximating f£(t)
we approximate f(t-x) where the positive number x can be chosen
as small as we wish. Since f(t-x) converges in 8’ to f(t) as
X 7%, we can approximate f by chocsing? sufficiently large

and x sufficiently small.

We can relax our restriction on the support of f in still
another way. Assume that the support-of f(t) is bounded on
the left at t =¢» O but unbounded on the rizht (i.e., it extends
infinitely toward t =« ), Then, fyp= £ * gup w21l not in
general exist siace the support of g%Pis untounded on both
sides., (See Sec. 5-4 of [55].) Nevertheless, let us formally
compute pr. We get

1l.
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P

(t “DL > <f("i , exp(&g'b’— _é_‘:?_f__}f_ﬂ ))exp(-—ph—“%}ﬁ ).

f
by
£ Kz-yFP

If £ is such that its distributional Laplace transform F(s)

has a region of convergence, Re s >Ji’ where ¢7< 0, then for
0<P< =0, the applications &f the distribution f to the ex-
ponential functions in the right-hand side of (8) will all have
sense. Indeed, the approximation (8) is the same as (5) except
that now p cannot be chosen larger than ~di. The truncated
signal fyp(t)l+(t) is once again the realizable approximation

to f.

We can verify that f;P(t) converges in®’ to £(t) in the
case where f is Laplace-transformable and .as a support unbounded
co the right, as follows. Let¢ be an arbi:irary function in

& and let o*l{~P e As y— e

(vpd) = D Bip- ST Flp s 55

5“’ B (p~idwx) Fl-ptidmx) dx.

Here, é denotes vhe Laplace transform of¢ o« By definition of the

distributional TFourier transform, the last expression equals

(2le)eft , ple)e™P®) = <, 9.

This establishes our assertion.

12,
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THE USE OF CESARO MEANS

As is indicated in Figs. 1 and 2, the approximating
functions are oscillatory. In fact, it turns out that over
intervals, where the distribution f is a continuous function,the
approximations @7, may not even converge uniformly. This is a
generalization of the Gibb's phenomena, which is the inevitable
oscillatory behavior of a truncated Fourier series in the
vicinity of an ordinary discontinuity of the limit function.
Just as the Gibb's phenomena can be eliminated by employing a
first-order Cesaro mean, our present oscillatory behavior can
also be removed in the same way. But now, the singularities in
f are in general considerably more severe than an ordinary dis-

continulty and we must resort to the higher-order Cesaro means
in order to eliminate the unnecessary oscillations. (For a dis-
cussion of these Cesaro means, see pages 76-77 of Vol. I and p.

60 of Vol. II of [68].) Unfortunately, it also turns out that

the rate of convergence slows down as we go to the higher-order

Cesaro means.

The £ -order Cesaro mean (£ =1, 2, 3, ...) of the finite

sume gy shall be denoted by gfﬁj and is given by

N
£ 2 )1 +Z (0+1-K) (n+d-K). - . (nrd=K) gy | cq)
e ) g (‘l e (N (ne2d . oo (v ) 7 ,

where n =gf. These functions are plotted in Figs. 3 and 4

foro =1, 2 and for Y= 3, 5, 7. As before, p = 2. Note that

13.
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the approximating functions become smoother while the convergence

becomes slower as we proceed to the higher-order Cesaro means.

J4
We shall now prove that, as y—y«, g)/&‘](t) converges in )

to 6(t). For every ¢ in D,

1]
) _ L r - ’)c’, L~ ~ z:!,
<ngJ) C})} ) } G ET L (p+ £~ Jk| ) $ ("21) ) (10)

o (N41) o o o (D L)

Restricting ¥ such that the support of 4(t) is contained in

-¥»< t<p and then invoking (3), we may write

<‘5\""§ycoq)<ﬁ>) = jﬂ‘ i }:-!- ﬁm\‘“!xi)-:v(nax*lk!L]@/‘(ZgJ&)

1) « oo (ni L)

K==n
L an
DR &
i >n

Y& have already seen that the second sum on the right-hand side
¢f (1l1) converges to zero as W-y~, Furthermore, for }k|< n,
we have the inequality,

£
1 (0] = {K1) o oo (Rt =1i)) A (nH - Ikl ) .

(n+l) » oo (n+dd) nt |

Setting C = (n + 1)/ and invoking the fact that ; is a continuous

function of rapid descent, we may dominate the first summation

on the right-hand side of (11l) by

14,



T g
b 35 [ ()] 5 e |
K=-n .
£ ")‘,%.L S EC'L "".(C'{"}}‘))& l[v%_é_‘},ua.
(12)
< i‘i(?)C”‘) i
p=i K= }V} L4 |5

Here, M is a sufficiently large constant. .Given any £70, we
can choose an N such that for 22 N and for p =1, 2, ..., <

the difference between

2D b Mesaver

|+ Ix\ o (13)

is bounded by £ . Note that (13) is a finite quantity. More-
over, as ¥»7®, C¥«®, It follows that the right-hand side of(12)

converges to zero as VY7« , This proves our original assertion.

The functions,

L _ -pt L]y, s
gyp (£) = eFrg () (pz 0),

will be used to generate approximations that are realizable by

dissipative networks., Fig. 5 shows some examples of it for

- 15,



L=1,» =3, 5,7, p=2, andp= 1/2. Since gi%y convergaes in

Jﬂ’ to § asp—7e, it immediately follows that g%? does also.

Now, if f is once again a distribution whose support is
bounded and contained within the positive t-axis, then an
approximation to f is found, as before, to be

L 7
fig (t) = gy * 1
n
L A1kl oo -1kl : ] "2kt
D WL AR GELLI LD Flep+ L20KY exp (=pt + L2150) (1)

. T N Gnrw)
(n=yP; p>Ll;h=1,2, 3, cee; V=1, 2, 3, sou)s

For p2 0, a realizable approximation is

[

fom(e) = £ (6)1,(¢) (15)

By the continuity of convolution and the fact that the support
of £ is bounded and ine< t<® (£» 0), it follows that (1li) and
(15) converge in B to £, e may again relax the restrictions

on the support of f in the same way as before.
As waw mentioned above, when one proceeds toward larger «,

the approximations become smoother but slower. Another illustr-

ation of this is provided by Figs. 2, 6, and 7.
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THE APPROXIMATION OF PSEUDOFUNCTIONS

So. far, we have onij approximated the delta functional
and its derivatives, Let us now turn to another class of
distributions, the pseudofunctions. (See Secs. l-4 and 2«5 of
[55].)  These distributions are based on Hadamard's concept of

the finite part of a divergent integral.

£(t) = Fp  drlt=1)l,(R-t) - (16)
t-1 |

Applying our approximating procedure and the first Cesaro mean,

we obtain for p = 0, « =1, and p = 2

p* '
(. 3 _
fp‘;){,‘t) = l+(t)_;%__)_)_ Z (vﬂ+l—k>£4(k) cos ’_IL);J‘J}
k=]
+ Blk) sin 2K ““”]
H
ere, Ak .
Alk) = 4 (cos x) dy
)
X
&
L7k .
B(k) = 4 S X dx.
X
o]

This approximation is plotted in Fig. & for y = 11.

17.



Note that over the interval, 0<t< 2, our approximation
follows the function l+(t)/t fairly well except in the vicinity
of t =1, where it has a sharp negative pulse. The need for

this pulse can be appreciated in a heuristic way as follows.

For the sake of an analogy that we shall point out in a
moment, consider an approximation h(t) to the unit step function
l+(t).b We take h(t) to be differentiable for all t and identically
equal to l+(t) except in the vicinity of t = 0, where it rises
monotonically but continuously. The sharper we make this rise
the better will h(t) approximate 1,(t). Clearly, h(l)(t) is
a sharp positive pulse of unit area around t = O, This is a
classical approximation to the delta functional and it reflects

the fact that the distributional derivative of l+(t) is 6(t).

Now, it is also a fact that in the distributional sense

rpleltd . - 4y (o) d0g )|
t dt

In analogy to the discussion of the preceding paragraph, we
might expect to get an approximation to Fp 1,(t)/t by differ-
entiating a differentiable approximation to L.(t) log t. We
could take such an approximat;on g(t) to be identical to
l+(t) log t except in the vicinity of t = 0, where it decreases
monotonically and sharply from the value, zero, to the'value,

log £, where & is a small pbsitive number (0<¢£<1). Then,

18,
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i - 2
i% gU%t) will have a sharp pulse around t = O, whose area is logé, '2
?: a negative number. Moreover, as&~7 O; this negative area increases J %’
indefinitely in magnitude. This explains the shape of the plot ?

of Fig. 8 in the vicinity of ¢t = 1. :

”é?

As a more substantial example, consider the pseudofunction,

£f(t) =TFp 1.(t=-1)14(2-t)

(t-1)3 (17)
For p = 0, we obtain in this case the following Cesaro i éf
% K
approximating means. QfL‘
. P %?:.
| - L o.2 N ~ ~1) cos (at-t) a
j F%jg.‘.(t) = l+(t) {"‘1), * v Z_ CKU&EADJ -1) 1:
b (B ~ ) i (at-w]} 1
. |
2wk 3R
a = S, i
! - 3 : o
' - i [ .,.l + 0% % ] dx !'
y — | (cos ax) = ) 1
Axu 50 x3 h | L !

i 5

| q |
x , | ,‘

By :S vES l(sm ox) —ax | 4% y

3

0 |

C - Q:uPH*K cor (UPr=K) | !
ks Wl wPel) .

19. |
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This is plotted in Fig., 9 for £ =1, 2, 3 and p= 5. Note

again the smoothing effect as we proceed to the higher order

Cesaro means. These graphs provide convenient visualizations

of the distribution in the vicinity of its singular point.
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THE CONVERGENCE BEHAVIOR

Our approximation technique possesses certain converge
properties that make it useful not only for distributions b
also for ordinary functions. In stating these properties w

shall need the concept of the order of a distribution. -

o A
it e R sy T T e

ﬁistrlbutlon f is sald to be of finite order if there exist
7 i ' )
{nonn gathe 1nteg§r q such that f(t) 18~the q*g dlstrlbut1?

| k
aez}wﬁt;zﬁ/ﬁor %}l % of ome Qﬂhtlnuous uﬁbtlon. “In th1$

|

t%ugsmal' st nonnegatlve integer r that g can be is called t

R T e I ]

order of f§ It is a fact that every distribution of bounded
support is of finite order. (See corollary 3-4=-2a of[j5ﬁ]-)
One of the convergence properties is that uniform convergenc
will be obtained over the continuous portions of the given

distribution f so long as we choose in our approximation tec
nique a Cesaro mean whose order is greater than the order of

More precisely, we may state

Theorem 1: If the distribution f(t) is of bounded supp

and of order r, if it is a continuous function over the fini

oL .
interval, a< t< b, and if « > r, then fEE](t) converges unif

1y to £(t) over a.< t<b,, where a<aj<b < b.
l 17 —— 1

In order to establish this theorem, we shall need two

lemmas,

21,



Lemma 1: Let gj,g’g(t) be defined as in (9), where n =)

p> 1, and ¢ 1s a positive integer. Then, for every integer

such that 0 £ g =« -1,

Lt iy
g ¥
dt

converges to zero as Y-7o¢ uniformly over the interval,
B e el e e TS

a £ t< Y/2, where a >0.

. <
FProof: Let K, be defined by

e () =32, (1
Therefore,
% L4 o2 4 ot
‘13}; (t)l"jf mkn(m) "

and, by a known resilt { see egqn. (1.10), p. 60, Vol. II of [

the right-hand side is dominated by

\é\iﬂ y(%—.gl.)q)"}) 4 (2

(- p)

over the 1nterval » t£ J/2, Here, M is some constant.

Lemma 1 now follows immediately,
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p : S Graphs of._fi’;3+(t) for f(t)
S given by (17). (a) » =5, |
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Lemma 2: Let gE J(tfl be defined as before with £ being

a positive integer. Ifp is some small positive constant, then,

as Yyyo , the following limits hold.

yia
L Ig <x)|dx — O (1)
57 140 ] ax — 0 o
-2/2

R

S,_ j)’ (x)dx —7 | (23)

Proof: Using the same estimate as in the previous proof

(see ®gn. (1.10), p. 60, Vol, II of [68]), we have

»/a uu L lwx\v |
= J ¢ &X
5% '9 x> | Y j? by
n* M M
£ ‘3“? 5 BTy d'{} < - ”({)P;) — O
amg 2Ty <7 (27 N)

as Y70, The limit (22) can be shown in the same way.

Finally, note that

Yy |
3;?QJ(X> dx =1,
V2

as is clear from (9). The limit (23) now follows from this

result and from (21) and (22). Q. E. D,
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e e e R = e

Proof of theorem l: For the sake of clarity, we sketch

f(7) in Fig. 10, where it is understood that £(t) is continuous
over a<% <b but may be a singular distribution cover x <t <a
and b<T <y, We also lllustrate there gtyg (t-T) as well as other

values of 7 that we shall use. It is assumed throughout that

t - % “x, £X La <4, zcet-net <+ 434&,*¢b¢%¢¢4,¢i+%

and that the support of f(7) is contained in x< T < .

Let y () and A(%) be infinitely differentiable functions that
satisfy the following conditions: _aw(#) = 1 over neighborhoods
of [x,a] and [b,y] and the support of 4 (%) is contained inEcl,cl7
and @133’1]' A4 (%) =1 over a neighborhood of [Cl’d:[_] and the

support of (%) is contained in [c d]. (Here, the brackets denote

closed intervals.) Moreover, «(T ) +4(<¥) = 1 over a neighborhood

of EX’Y]'

Now,

[x] [<J

fy!o (¢) = £(t) = gpp (t) Y o

= (202 ul0)e BB T (6.2)) + 2(2),A(T (e-2 (t-2)).
(24)

Let P be a bound on e—pt for a<t<b, Since f is of order r,

3 ot PR P T PP S A o} 2 oW
there—exists—a—constant C-sueh-that—{see—SecsI=3—and—I=fr—of—f55] -)

|<CE (7))o PN ST (o)) ) < cif;lzfa,f e 6= T (o g]
J’:"‘:Y
C r- | ,
=< CP sup r é pT g ¢ o]
Y € T g, /%o ’(%) 92 [oimre™] b dY (277)
d £y .
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Here, gj(t’ﬁv is the error term for (%) and‘éé?ﬁ is the

error term for e“P(t-t). Moreover, gl(t,?j is uniformly con-
tinuous for ¢<t<d and t-n<z<t+n so that 31(1:,’5)-70 as n7 0
uniformly for c<t<d., Also, 22(2)¢70 as 1= 0 because of the
continuity of the exponential function. These facts combined
with (23) demonstraté that the right-hand side of (25) converges
to £(t) uniformly for all t in any closed interval Eal,b‘]

that lies inside the open interval (a,b). This completei the
proof.

We indicated before that if we feplace éﬁaby é;?, wheré
@)>O, we can damp out the subsequent repetitions of the approx-
imation to the given distribution of bounded support by merely
choosing P and/or p sufficiently large. We shall now restate

this assertion more precisely and shall then prove it,

Theorem 2: If the distribution f(t) has a bounded supvort

contained in the finite interval, x%t<y, if the order of f

is r, if p> 0, and if 7 r, then QE;J(t) converges to zero

uniformly over y +n £ t <0, where h is any fixed positive

- number, ‘ .

Proof: Let

b'd <‘x<’y<yl<Q+y

1 ‘
and let 8(t) be an infinitely differentiable function that

equals one over a neighborhood of [x,y] and is zero outside

[Xl,yé]. We wish to show that

Py

_ple-7) 4T
fyP g

] = | ete T (6-2) >

26.
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can be made less than any preassigned positive £70 over all
of the interval,y +lz§_ t <gy, by choosing M large enough. Ve 5

may again write ( see Secs. 3-3 and 3-~4 of[SS_])

|53 w2 oo | S [e (=20 (g7)] |
X&?:ff#', (26)
= C sup Z B 275 L-_@ “Oe -ple- ’I)] (t- ’Z)}
X Ty, §

Firstly, consider the case where t - Y/2 £ 7 £ t-p. Ve

have that KR molt=%)m | .
EWEQC"Z)a j‘;éi.) (‘%:oll'ur)

b 07T

where B is a sufficiently large constant.

Also, by lemma 1, for a given g > 0 and for all suriiciently

large v 4
4 d, | )
} é’}:%’ 3)) ‘ut "f,) < E‘; <% (\ . 04 1)
Therefore, for all t2y +1 (27)
= ..
| 5, (t)] £ cBre=¢,.

Thus, we may preassign ¢, rather than €.
Next, let ~oco< T =t-y/2, By another known result (see

eqn. (1.9), p. 60, Vol. II of [68])

j%%g%3h~®)_.B>J

(g+1) Cp-1)

27 .



Moreover, every term inside the summation sign of (26) has an

exponential damping factor. Consequently, in view of (28) and

the fact that t-y 2¥/2, we see that each such term converges to

zero as Y 79 uniformly for all t2y +n . This result com-
with
binedA(Z'Z) proves the theorem,

We also indicated.before that we can take into account
certain distributions whose supports are bounded on the left
é

but are unbounded on the right. The precise statement is

Theorem 3: If the distribution £(t) has a supprort bounded

on the left and is of order r, if its Laplace transform has a

region of convergence, Re s)ﬁ'l, if it is a continuous function

over the finite interval, a<t <b, if «> r, and _z'._t:b’l <-p, then

[<J

fJJf converges uniformly to f(t) over a = tﬁbl, where a< al< bl< b.

Proof: The proof of this theorem is quite similar to that
of theorem 1, We again refer to Fig. 10 but it is now under-
stood that y = yl = 0o and that/a(’l:) equals one over a neighbor-

hood of [b,c‘O)gas well as over a neighborhood of [x,a].

Now, refer to (24). Since f is Laplace-transformable,

the first term on the right-hand side of (24) may be rewritten as

el e ?,/L(-z)‘e"Pte(P'c )fgf,”(t-r)},

~-pt
where 03 < =¢ <-p. Let P again be a bound on e P for a<t<b,

The distribution f(-’r)ecywill have the same order as that of f()

and, therefore, the last expression is dominated by (see 3ec.

h=4 of [55]).

28.
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CP sup ; (1+71" Z (g NML[' tr)e CP«C)LJ = 3;; (i '&)i

d, =T <00
< CP  sup i,.e/ + CP  sup }..ol,
TR A A &P &L,
d‘e'_;;ed‘—MJ/,z divlag Teoo

Since p-c¢<0,there is an exponential damping factor in every
term inside the summation sign. By lemmil the first supremum
converges to zero as Y-7& uniformly fqr ¢, tn<t<d, ~q.
Also, by our estimate (2&) and the presence of the exponential
damping factor, the second supremum also converges to zero as
J”?a>uniformly'for t in the same interval. This result again
holds true for all t in any closed interval [;l’bi] that lies

inside the open interval (a,b).

The rest of the proof, which is concerned with the second
term on the right-hand side of (24), is precisely the same as

the corresponding part of the proof of theorem 1.

So far, we have examined convergence only over those open
intervals where the distribution f is a continuous function.
In general, one is interested in all of f and not just its
continuous parts. The problem is, however, that the convergence
criteria that one ordinarily uses for functions (such as uniform
convergence or minimization of the mean square error) are
inapplicable to singular distributions. Actually the topology
of the space ZS’of all distributlons is quite complicated (see
pPp. 64-77 of [54]) and there does not appear to be any way of
constructing aAsimple convergence criterion for this space.
Indeed, the statement that 'an approximating element 1s close to
a given element in some space" usually implies that some metric
can be assigned to the space. .49{does not appear to be a

metrizable space. 29,



Nevertheless, a convergence criterion can be constructed if
we restrict our attention to some fixed finite closed interval
I, Let &Szbe the space of those elements oflgvﬂmse supnorts
are contained in I. It is a fact that every distribution #s—
. . o . .‘:‘.‘iTtsfi&s
a—bounded—funetienal on [} in-the-sense-that (see Secs. 3-3 and
Q)
|<f, > £ C suple (t)]
for every @ in Z%;, where C and r depend only on f and I and
not on the choice of . In view of this fact, we can construct
the following convergence criterion: Choose an &7 O and

construct some approximation fy to f. Then, we can say that

"fy approximates f sufficiently well over the interior of I" if

J<f -1, @] .
cr)l

sup | e
for everyi&in,igq This criterion is probably too complicated to

be of practical use.

30,
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