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I. Introduction

Our purpose herein is to construct a network theory for

the variations in prices and flows of commodities in a collection

of markets interconnected by transportation facilities. We do

this under the assumption that the deviations of these prices

and commodity flows from their static equilibrium values are so

small that the various supply, demand, and tran~portation

characteristics can be taken to be linear.

The model we set up for such a system of markets is similar

to a grounded electrical network; prices correspond to node

voltages, and commodity flows correspond to electronic flows (not

~o conventional current). We exploit this analogy by borrowing

a number of results from electrical network theory. In fact,

one of the contributions we claim for this work is that our

ne~work models make the large body of literature concerning

tne dynamic behavior of electrical networks available to the

~nalysis of spat~ally distributed markets interconnected by

~ransportation facilities. Actually, analogies between electrical

networks and market behavior have previously been pointed out
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and exploited, especially with regard to analog computation.

For example, Morehouse, Stotz, and Horwitz [12] have developed

an electrical analog for the dynamic behavior of a single

one-commodity market. Enke [8] has proposed a piecewise-linear

electrical analog for the determination of static equilibrium

in a one-commodity multimarket system. Our work is distinguished

from these in that it is addressed to the dynamic behavior of

a multimarket system, moreover, our an~lysis can be extended

to a multicommodity system. (It may be worth mentioning that

electronic analogs have also been used for various feedback-control

models in macroeconomics, see, for example, [1, Chapter 9],

[15J, and the referencestherein.)

We first assume that a single homogeneouscommodity is

traded in a finite number of purely competitive markets, which
.

are situated in different locations. Some or perhaps all pairs

of markets are connected by transportation facilities. In addition
,

~

to the producer~nd consumers at the various markets, there is

another (not necessarily disjoint) class of traders, called the

"shippers" who transport goods between markets becaus~ of price

differences. Under static conditions, the behavior of the producers,

consumers, and shippers are specified respectively by supply,

demand~ and transportation curves. ~he prices in the various

markets are then determined by the market-clearance conditions~

which equate the goods supplied per unit time in every market

to the goods demanded per unit time, including those supplied

or demanded by the shippers. A result from the theory of nonlinear

resistive electrical networks is invoked to establish the existence

of a unique set of equilibrium prices in the markets, given certain
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assumed shapes for the supply, demand, and transportation curves.

Next, we turn to the incremental dynamic behavior of our

system of markets. The first step is to postulate the behavior

of the producers, consumers, and shippers by means of various

mathematical expressions or equivalently by network configurations,

which will be taken to be linear. This assumes in effect that

the variations in each price around its equilibrium value are

small and that the behavior of the producers, consumers, or shippers

at each market varies in a smooth fashion as the equilibrium price

changes. The equivalent networks are then connec~ed together

in accordance with the interconnections between the markets.

The result is a "market"network", which can be analyzed by means

of Kirchhoff's node and loop laws to obtain the price variations

in each market, and thereby the variations in commodity flows

between producers and consumers and along the transportation
.

.

facilities.

Our market networks correspond to certain kinds of electrical

networks, about which much is known. We cite some results of

this nature. For example, the concept of passivity, which has

been such a fruitful idea in electrical network theory, can

also be interpreted in terms of our system of markets. We discuss

how the "customary" behavior of producers, consumers, and shippers

is passive, whereas speculative behavior is not passive.

Apparently, the passivity concept has not been taken into

consideration in the economics literature.

In addition, we establish restrictions on transient

variations in price on the following sort. Sudden shifts in

demand or supply can be represented,:bysuddenly applied
I
I

n- -- ___on



4

commodity-flow sources at certain points. The resulting transier ~

propagate throughout the market network, but the further away

a market is from the point of disturbance the more slowly will

these effects be felt. Our results state quantitative restrictiol

on the way these propRgated disturbances build up.

In the last section of this work we consider the case of

many commodities traded in a number of locations interconnected

by transportation facilities. For each different commodity we

have a separate market network. Under the assumptions that at

each locality the total static-equilibrium consumer expenditure

on all commodities remains fixed with regard to different

static-equilibrium points and that the variations in prices and

commodjty flows remain small as compared to their static equilibrium

values, it is shown that the separate market networks are coupled
.

together by ideal transformers. Thus, electrical network theory

can also be used to analyze the dynamic behavior of this multimarket

multicommodity system.

II. Static Nonlinear Market Networks

In this section we discuss the static equilibrium of a

spatiall~istributed but interconnected system of markets for

a single commodity. First, consider one of thos~ markets. Typical

supply and demand curves are shown in Figure l(a). for a given

price P, QS(P) is the commodity units per unit of time supplied

to the market by the producers and Qd(p) is the commodity units

per unit of time taken from the market by the domestic consumers.

The differen?e Q = H(P) = QS(P) - Qd(p) is shown in Figure l(b)

for two different forms for QS(P). if the market remains cleared,

,I



5

Q represents the commodity units per unit of time shipped out

through the various transportation facilities servicing that

market. In order to establish the existence of a unique equilibrium

in our market network, we shall extend H(P) for negative values

of P (as is indicated by the dotted lines in Figure l(b» and

shall assume that for every market in our network H(P) satisfies the

following conditions.

Condition A. H is a continuous, strictly increasing function

of P such thatH(P)-++0;) ("'01) as p~+(!D(respectively,-Q».

Moreover, H-l(O) ~ 0 (i.e., the curve H(P) cuts the P-axis at a

nonnegative point E).

We shall subsequently show that the manner in which H(P) is

extended for negative P is immaterial because the equilibrium

price (which, because of the transportation connections, is in

general different from E) is always nonnegative.

Set r(Q) = H-l(Q) - E. In words, r is the function of Q

obtained by shifting the function H downward to make it pass through

the origin. Since P = H-l(Q), it follows that P and Q can be

symbolically related by the electrical circuit of Figure 2 consisting

of a fixed voltage source E in series with a nonlinear resistor r(.).

(In Figure 2 as well as in subsequent network diagramsp we use

conventional electrical symbolism.) Here, the market is represented

by a single node whose price P is taken to be the node voltage

measured with respect to a hypothetical ground node. The commodity

flow Q is analagous to the flow of electrons toward the market

node and produces a voltage rise in the direction of its flow.

Thus, voltages such as E have units of price, and flows are

measured in commodity units per unit time.
II
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Next, we consider the collection of all transportation facilities

connecting two given markets, say, market i and market k. Its

aggregat~ehavior is a function rik relating the price difference
.

Pk - Pi to the flow Qik of commoditiesrrommarket i to market k

through those facilities. This is illustrated in Figure J(a).

We shall assume that the following is satisfied.

Condition B. For every i and k, rik is a continuous, strictly

increasing function Qik~ Pk - Pi such that rik(O) = 0 and

rik(Qik)~ +00 (-00) as Qik- +c:n (respectively, -co). Moreover,

rki(Qki) = - rik(Qik)' where by definition Qik = - ~ki.

rik can be represented as a nonlinear resistor connecting

the market nodes i and k, as shown in Figure J(b).

Upon connecting together the equivalent circuits of Figures 2

and J(b) in accordaQce with the interconnections between the

various markets, we obtain a.network such as that shown in Figure
.

4. We shall refer to such a network as a static market network

if the following conditions are satisfied. The network is finite.

There is a node, called the ground, which is adjacent to every

other node. (Those other nodes will be called market nodes.)

Between every market node and ground, there °is exactly one branch,

and that branch has the form of Figure 2. Not every pair of

market nodes need be adjacent, but those that are are connected

by a single branch having ~he form of Figure J(b). There are

no other elements in the network.

Any arbitrary assignment of the market-node prices P. will
3.

yield price differences across the branches that satisfy Kirchhoff's

loop law, namely, the sum of the branch price rises minus the

sum of the branch price drops found by tracing once around any,

loop ois equal to zero.
I

Moreover, these price ~ifferences determine
I
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commodity flows in the branches if conditions A and B are fulfilled.

But, the commodity flows will not in general satisfy Kirchhoff's

node law, which states that the sum of the commodity flows going

towards a node minus the sum of the commodity flows going away

from that node is equal to zero. However, dlearance at every

1

'j

j
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market is equivalent to the fulfillment of the latter law. So,

the question at hand is whether there exists a set of market prices

for which Kirchhoff's laws are satisfied and, if so, whether that

set is unique. Some results of Duffin [7. Theorems 1 and 3J

immediately yield the following answer.

Theorem 1. Let there be given a static market network

whose ground node is at zero price and whose branches satisfy

Conditions A and B. Then, there exists ond and only one set of

~ market-node prioes for which Kirchhoff's laws are satisfied (i.e.,

J

.

for which every market is cleared).

A theorem of Desoer and Katzenelson (6, Theorem IJ implies
~

that the monotonicity requirements in Conditiohs A and B need

not be strict. H andrik may have zero slopes on parts of their

domains.

The signs of the equilibrium prices have yet to be settled.

Theorem 2. Under the hypothesis of Theorem 1, every market

price is nonnegative.

,i
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Proof. Assume that the ith market node has a negative price.

P. < o.1 We first show that there is at least one market node,

say, node j adjacent to node i for which P. < P.. Indeed, ifJ 1

all adjacent nodes had prices no more negative than Pi' then,

by Kirchhoff's node law and Condition B, there would have to be

a nonnegative commodity flow from the ground to the ith node through

the branch that connects ground to the ith node. But, in view

of Condition A, this implies that Pi ~ 0, a contradiction to our

first assumption.

We now apply the same argument to node j to conclude that

there exists a node k adjacent to node j such that Pk~ Pj.

We must have that node k is distinct from node i since Pk < P. < P..
J 1

Continuing this argument, we see that there must be an infinite

sequence of distinct nodes in the market network. But, by definition
.

a market network is finite. Hence, Pi ~ O. -

Given a static market network, the equilibrium marke~rices

can be computed by using anyone of a number of suitable

algorithms. See, for example~ [4J~ [5], [9], [10J, [11]" and the

references therein.

III. Dynamic Linear Behavior

We now examine possible types of aggregate dynamic behavior

for the producers~ consumers~ and shippers when commodity flows

and prices are allowed to vary with time t by only small amounts.

By virtue of this restriction~ we take that incremental behavior

to be linear, and we do so by postulating such behavior by means

of either linear operators or their equ~valent electrical networks.

II
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Producers. one-ports. Consider the collection of all producers

supplying a particular market. We shall represent the collection

by a two-terminal network whose behavior is the same as the

aggregate behavior of those producers, and, in conformity with

customary electrical-network terminology, will refer to that network

as a producers' one-port.
-

First of all, we assume that the equilibriumprice P and

the equilibriumcommodityflow QS for our producers'one-port

are linearly related bY.

QS =
-

- a + bP , b > O. (3.1)

This could be taken to be a tangent or a chord of the static supply

curve in the region of variation for the dynamic behavior.

As one possible mode of dynamic behavior in the vicinity

of the equilibrium point [2, pp. 435-436], we then assume that

the commodity units per unit time QS(t) supplied by the producers

(3.2)

(3.3)

(3.4)

In (J.2) the prime denotes the first derivative, and a. b. and

c are constants. The term h(t) is inserted to allow for the

shifting of the supply function with time; in effect, we are

allowing the static equilibrium line (3.1) to shift its location

but not its slope. Insert (3.1) into (3.2) and note that P is

constant with respect to time. This yields the following expression

,u ' '

is related to the price ,pet)at the market by

QS(t) = - a - h(t) + bP(t) + cP'(t),

where
QS(t) QS + qS(t)=

and N
pet) = P +p(t).
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for the incremental dynamic behavior of our producers' one-port.

qS(t) = - h(t) + bp(t) + c~'(t). (3.5)

An equivalent representation is provided by the parallel network

of Figure 5. Going from left to right, we have the fol~owing

elementsl A commodityflow source that propels h(t) commodity

units per unit of time in the direction shown by the arrow. A

linear "conductance" of b commodity units per unit of time and

per unit of price. A linear "capacitance"of c commodity units

per unit of price.

A positive value for h(t) corresponds to a shift in the static

equilibrium line in the di~ction of decreasing supply. Also,

if the static supply curve is an increasing function of P in

the region of variation, then it is natural to assume that b > O.

(If the static supply curve is .backward~loping in the region

of variation for P, then b should be taken to be negative. The

presence of negative conductances - or negative cpapcitances -

leads to less stable dynamic behavior.) Furhtermore, c can be

either positive, negative, or zero, depending on the kind of

behavior we wish to assume for the producers' one-port. A positive

value of c implies that producers respond with more goods per

unit of time not only to higher prices but also to increasing

prices. This seems to be reasonable behavior for producers of

consumption goods. On the other hand, a negative value of c implies

that rising prices tend to decrease the supply rate of commodities.

This may be characteristic of a speculative market, where, when

prices are rising, producers will tend to hold onto their stocks

in hopes of higher prices, and will tend to sell when prices are

falling. In line with this reasoning, we may v~ew the "charge"I
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appearing on the capacitance c as the increment in the inventories

of the producers.

Furthermore, inertia in altering production or marketing

goods can be taken into account by introducing inductances.

Morehouse, Strotz, and Horwitz [12] have proposed a piecewise-linear

equivalent network with just this provision. The corresponding

incremental network is shown in Figure 6. Here, qP(t) represents

the increment in goods produced per unit of time, whereas qi(t)

is the goods coming out of inventory per unit of time. !1 and

12 are inductances whose units are price units times the square

of time units divided by commodity units. They reflect respectively

the inertia in alterin~ qP(t) and qS(t). (Actually, Morehouse,

Strotz, and Horwitz include a nonlinear elemen~in series with

the capacitance to account for an inventory policy.)
.

Actually, far greater generality can be encompassed by our
.

models if use is made of distributional convolution operators

[18; Chapter 5]. Beckman and Wallace [Jl have used this approach

with ordinary convolution operators to determine the stability

of market equilibria. Letn' be the space of real (Schwartz)

distributions on the real line R, and 8' the subspace of distributions

of compact support. Let f € e' and QS, a, h, P € ~', with a being

a con~tant distribution. Then, we may hypothesize the following

behavior for a producers' one-port.

QS = a - h + f.*P (J.6)

With the notation of (J.J) and (J.4), where as and P are constant

distributions, and with the condition

"'s e:
Q =-a+f*.t', (J.7)

,I
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(3.6) is equivalent to

s
q = -h+f.~p. (3.8)

By regularization [18; pp. 132 and 135], we have f * P = bP,

where b is the value f assigns to the function that equals one

everywhere. Thus, (3.7) is the same as (J.l). Equations (J.2)

and (3.5) are special cases of (3.6) and (J.8) respectively

obtained by setting f = bJ + c6', where 0 is the delta functional.

Higher-orde~erivatives and discrete time lags can be encompassed

by allowing in f the shifted delta functional and its derivatives.

Finally, by restricting P to appropriate subspaces of £)' that

contain the constant distributions, we can allow f to have an

unbounded support. Thus, for example, f can be the ordinary function

that equals e-t for t ~ 0 and 0 for t < 0 if P is any distribution

of slow growth.

.
We note in passing that time-varying networks also arise

naturally in our market networks. For example, not only may the

supply line shift with time parallel to itself, but its slope b may

also change. In this case, the conductance b in Figure 5 becomes

a time-varying one.

Consumers' one-ports. The aggregate behavior of all consumers

trading in a particular market shall be represented by a two-terminal

network, which will be called a consumers' one-port. We assume

that the equilibrium price P and e~uilibrium commodity flow ijd

to the consumers are related by the straight line

Nd
Q = ct.- pP . (J > O. (J.9)

An appropriate expression for (3.9) can be obtained by taking a

tangent or a chord of the static demand curve in the vicinity of

incremental operations. For small variations we postulate that

---n- - -
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the dynamic behavior of the consumers' one-port is given by

Qd = ~ +t? - j*P (3.10)

where j € l' and Qd, ~, ~, P € D', ~ being a constant distribution.

Upon setting Qd = ad + qd, P = P + p, and b equal to the value

that j assigns to the function that equals one everywhere, we

obtain as before

qd = '1 - j*p. (3.11)

As a special case, we set.j = pJ + tJ' and obtain

d
q = tz - f3P - tp', (3.12)

which can be represented by the equivalent network of Figure 7.

Here too, we can relax the restriction on the support of j if

we restrict the growths of j and p appropriately.

We have taken p to be a positive number to give the static

d~mand line (3.9) its usual negative slope. On the other hand,

t can be either positive, negative, or zero. A positive value

means that consumers tend to buy fewer goods if price is increasing [13

A negative value means that increas~ng price encourages consumers

to acquire more goods, as in a spe<wlative market. Consumer

inertia, such as that arising from the reluctance of consumers

to change their buying habits, can be accommodated in Figure 7

by insertingan inductanceinto the line carrying qd(t).

Shippers' one-ports. A two-terminal network representing

the aggregate behavior of all transportation activities between

two given markets will be called a shippers' one-port. By taking

a tangent of chord of the curve of Figure 3(a), we get the

following relationship between the equilibrium commodity flow

,I
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~ ~ ~

Qik and the price rise Pk - Pi from market i to market k along

the shippers' one-ports

N

Qik
=

d + g(Pk - Pi)' g ? O. (3.13)

Here, d and g are constants.

As for dynamic behavior it does not seem reasonable to allow

a shifting term because shippers do not create or consume goods.

Hence, we postulate the relationshipi

Qik
=

d + S "*(Pk - Pi)'
(3.14 )

where SEe' and Qik' d, Pk' Pi € 1)'. By letting g be the value

that s assigns to the function that equals one everywhere, we

obtain the following relationship for the incremental variations.

qik = s *"(Pk - Pi)
(3.15)

IV. Passive Behavior

A concept that has proved to be useful in the examination

of energy transference in physical systems is that of passivity

[19; Section 8.2]. This section examines the corresponding idea in the

present context. As we shall see, passivity is a behavioral

attribute of producers, consumers, and shippers.

Consider a producers' one-port whose static supply curve

has the form of one of the increasing curves of Figure l(a).

At the static equilibrium point (P, QS), the quantity PQs

represents the expenditures on the goods flowing from the producers

to the market. However, for the incremental dynamic variables

variables p(t) and qS(t), the quantity p(t)qs(t) does not represent

the increment in those expenditures, for, the latter quantity

is Pqs(t) + p(t)Qs +p(t)qs(t). Nevertheless, it is useful to

examine p(t)qs(t) because it allows one to classify the behavior of
/

. I

the one-port as being either "customary" or "unusual".



15

Producers may increase quantities produced when prices

rise and lower them when prices fall. Such behavior is reflected

in a nonnegative value for p(t)qs(t) whatever be p(t). This

need not be the case however when producers react in a more

complicated way to variations in price, as for example when producers

exhibit a continuous lag in their adjustments to p(t). Indeed,

if producers react in accordance with (3.5) wherein h(t) = 0,

b is small,and c is large and if p(t) equals t for 0 < t ~ 1,

2 - t for 1 ~ t < 2, and 0 everywhereelse, then p(t)qs(t) can

be negative during part of the interval 0 < t < 2a

the integral

Nonetheless,

tha~ is, so

It p(x)qS(x)dx-ro
.

nonnegativeror all t so long as b and c are positive,

long as the static supply curve is not backward sloping

(4.1)

will remain

and the produceps do not exhibit speculative behavior.. It appears

justifiable to view this as the "customary" behavior of producers

and contrary behavior as "unusual". Indeed, it is a fact that

if the equivalent circuit for a producers' one-port is a finite

network containing only positive conductances, capacitances, and

inductances and no sources, then (4.1) will remain nonnegative

for every value of t and every p in broad classes of functions [14J.

Similarly, if a consumers' one-port has a static equilibrium

curve (like that of the decreasing curve of Figure l(a», then

under static-equilibrium conditions pQd represents the expenditures

on the flow of goods from the market.to the consumers. Moreover,

if consumers raise (lower) their consumption when prices fall

(respectively, rise), then p(t)qd(t) will be non positive. For

the more complicated behavior of (3.12)~ this need not be so;

however, the integral ,I
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- f:~ p(X)qd(X) dx
(4.2)

will remain nonnegative for all t and every p in certain broad

classe~of functions so long as rand ( are positive. that is, so

long as the demand curve does not have a positive slope and the

consumers do not speculate. If we attach the minus sign in (4.2)

to qd(t), we obtain the same situation as that for producers.

Namely, when the incremental commodity flow is measured as a flow

toward the market node, the nonnegativity of (4.1) and (4.2) is

a characteristic of the customary behavior of producers and

consumers.

The same arguments can be advanced to support the contention

that the "customary" behavior of shippers is such that

J

,t

-~ [Pk(X) - Pi(X)] qik(X) dx
~ Q

/

.

for all t and all suitably restricted Pk and Pi. Needless to

say, the nonnegativity of these integrals may not hold for a

particular system of markets, i~hich case the consequences of

passivity cannot be invoked.

To make these ideas precise, we introduce some terminology

common in electrical-network theory. As before, a one-port is

a two-terminal network representing the relationship between a

commodity flow q and the price rise through which it flows. This

is shown schematically in Figure 8, where the plus (minus) sign

designates the terminal of higher (respectively, lower) price.

In general, p and q are real Schwartz distributions on the real

time axis. The one-port may define a single-valued mapping

n. p ~ q on some domain in 1)' into £>', in this case', 11 will be

called the admittance operator for the one-port., For example,

( J. 8)wi th h = 0 defines an admittance operator,on all of f)' .
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Similarly, Z' qt-+ P is called the impedance operator for the

one-port whenever it exists.

Now, let B be the customary space of real-valued functions

on R whose supports are bounded and whose derivatives of all orders

are continuous. An operator 'fa p"'" q mapping 1) into D' will be

called passive if. for every p € D. q is locally Lebesgue integrable

and

ft p(x)q(x) dx-(I)

~ 0

for every t E R.

The convolution operators appearing in (3.8), (J.ll), and

(3.15) have a variety of properties that make them analytically

attractive [18]. [19J. We mention just a few results. Le t f t: E".

The mapping p"" f* P is passive if and only if the Laplace transform

F of f exists ~d is a positive-real function [18; p. 186].

(A positive-real function F(,?)is a function of the complex variable

, which satisfies the followingthree conditionson the right-half

plane t? I Re 2 > 0\. F is analytic. Re F(.,) ~ O. F(}) is real

whenever, is real and positive.) Another consequence of passivity

is that the support of f is contained in the nonpositive real

axis [19; Theorems 5.11-1 and 8.2-1].

Now,assume in addition that the positive-real function F(})

is analytic at infinity and tends to zero as ? approaches infinity.

The positive-realityof F(l) now implies that F(}) N KJ-1 as

,ll-:> ex> 1/ where K > O. It also follows that f is a continuous

function for 0 < t <.roand has no distributional singularities

in the neighborhood of the origin, that f(O+) = K, and that
.

If(t)! ~ K for all t > O. (The proof of the last bound, although

given for rational F(~) in [17], extends readily to the F(~)
.

I

considered here.) Actually, everyone-port consisting of a finite
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network of positive conductances, capacitances, and inductances,

having no internal sources, and having at least one purely

capacitive path connecting its terminals satisfies the conditions

of this paragraph. In this case, K is the reciprocal of the

total capacitance between the one-port's terminals remaining

after every conductance and inductance is replaced by an

open circuit.

v. Market Networks

A network suitable for the incremental dynamic analysis
,

of our system of markets can be obtained by interconnecting

appropriate producers', consumers', and shippers' one-ports

in accordance with the given transportation connections. We

shall refer to such a configuration as an incremental market

network. ~An example of such a network is shown an Figure 9.

In that diagram the producers' and consumers' one-ports

.

at each market have been combined into a single one-port

consisting of a conductance and capacitance in parallel. Also,

it is assumed that there is a shift in supply and demand only

at the first market; thus, only the first market's one-port

has a commodity-flow source.

Although an incremental market network can be much more

complicated than its corresponding static market network, the

. former does have the following properties in common with the

latter. The network is finite. There exists a hypothetical

node, called the ground node, with respect to which every price

in the market system is measured. Each market is represented

by a unique node, called a market node, and the price at that

market appears as the voltage at the market node. (Since we
I
j

are now dealing with incremental quantities, ~arket prices
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may be negative.) Between every market node and ground there

exists a one-port consisting of producers' and consumers' one-ports

and possibly other parameters such as'tax-induced price sources.

Not every pair of market nodes need be adjacent, but those that

are are connected by shippers' one...ports.',

However, in contrast to static market networks, our incremental

market networks are linear, and therefore we may apply results

from the vast literature on linear electrical networks. Indeed,

for a spatially distributed and interconnected system of markets. the

incremental deviations of the market prices from their equilibrium

values due to shifts in the various supply and demand functions

can be determined by setting up the corresponding incremental

marke~etwork, inserting appropriate commodity-flow sources to

represent these shifts, and then analyzing the network under

Kirchhoff's laws. F9r, market clearance in every market at 'every

instant of time is equivalent to the satisfaction of Kirchhoff's

node law at every market node. At the other nodes (such as those

inside the producers', consumers', and shippers' one-ports),

Kirchhoff's node law is satisfied simply by the definition of

these one-ports as electrical networks. Also, the condition

that each node has one and only one price associated with it is

equivalent to the satisfaction of Kirchhoff's loop law. Finally,

the one-ports characterizing the behavior of the producers,

consumers. and shippers impose the remainingrestrictions required

by electrical network theory, namely, relationships between

commodity flows and price differences along the network's branches.

If the ~umber of markets is large, then the analysis of the

incremental market network can become onerous. However, a variety

of conclusions may be drawn from the general be~avior of electrical

.d- ---------
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networks. For example, if the market network consists only of

conductances, capacitances, and inductances, all of which are

positive and if every capacitance (inductance) is in parallel

(respectively, in series) with a conductance, then the market

system is stable in the following sense. The transient price

or commodity-flow variations due to a sudden shift in supply or

demand in one of the markets will die away exponentially, and

all prices and commodity flows will approach a new stable equilibrium.

More particularly, if all the producers'and consumers' one-ports

have the forms shown in Figures 5 and 7 and every shippers' one-port

is a single conductance, if all conductances and capacitances

are positive, and if all commodity-flow sources are zero except

for the one at the first market which is instead the delta functional,

then the incremental variation in the price at that first

market is given by .

P1(t)
=

n
L ~ .-pkt.
k=1 k e .

t > 0,

where the ~k and Pk are all positive numbers [16. PP. 312-313].

In other words. the market network as seen from the first market

and ground terminals is a relaxive one-port [20].

VI. Bounds on Transient Responses

As was mentioned above, the determination of transient

responses in large incremental market networks may require extended

computations. However, the special form that market networks

have allow us in many cases to write down bounds on those transient

responses merely by inspecting the networks. These bounds indicate

how slowly the prices and commodity flows respond to variations

in supply and demand. I!
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As an example, consider again the incremental market network

shown in Figure 9. Assume there occurs a shift in either supply

or demand in the first market resulting in the commodity-flow

source h(t). If all capacitances and conductances are positive,

the price variation at the fourth market lags h(t). In fact, when

h(t) is the delta functional, the price P4(t) at the fourth market

satisfies

gagc t) gbgd t) gagegd t4
0 ~ P4(t) ~ . - + . - + . -

Clc2C4 )!' C1C)C4 )!
CIC2C)C4

4!

(7.1)

resulting price, say, V4(t) at the fourth market can then be bounded

by estimating the convolution integral

v4(t)
= r: h(t - x)P4(x) dx.

t > o.

(7.1) will be justified by establishing a more general result.

Consider an arbitrary incremental 'market ne~wor~here ev.erymarket

one-port (i.e., the parallel combination of~he p~oducers' and

consumersg one-ports for the market) satisfies the following condition,

wherein Zk is the driving-point impedance of the kth-market one-porte

(A driving-point impedance of a one-port is the Laplace transform

of p in Figure 8 when q is the delta functional.)

Condition C. For every k, Zk is a positive-real function

analytic at infinity, and Zk(?)"" (Ck,)-l as ~ -~.

Let us introduce some additional terminology. A path in

a network is a finite alternating sequence of nodes and branches

such that the first and last terms are nodes, each branch is incident/

to the nodes immediatelyprecedingand succ~ing it in the

---- --- ---

gbgegc t4
+

. 4T .

CIc)c2c4

When h(t) has a more general form with h(t) = 0 for t < 0, the
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sequence, and no node appears more than once in the sequence.

Now, consider a market network where every shippers' one-port,

no matter how complicated, is treated as a single branch. By

an admissible 1 to illpath we shall mean a path in a market

network which terminates at nodes 1 and m and has only shippers'

one-ports as branches. Next. assume in addition that every shippers'

one-port is a single conductance and every market one-port satisfies

Condition C. The conductance-capacitance ratio of an admissible

1 to m path is the product of all the conductances in the branches

of the path divided by the product of the constants ck for the

market one-ports connecting the path's nodes.to groUnd.

Theorem 3. Assume that, in a given incremental market network,

the impedance of every market one-port satisfies Condition C,

and every shippers' one-port is a single positive conductance.

Let p (t) be the incremental price variation at the mth marketm .
.

node (m ~ 1) resulting from the application of a delta-functional

commodity-flowsource at t = ° directed from the first market

node to ground. Then, for t ~ 0,

Here, A. is theJ

1 to m path, n. is the number of branches in that path, and theJ
summation is over all the admissible 1 to m paths.

n.
A t J

Ip (t)1 ~ L j CI

m j n.!J
conductance-capacitance

(7.2)

ratio for the jth admissible

Proof. Assume there are r shippers' one-ports of condunctances

ga' gb' ... , gr incidentto the firstmarketnode. Let Pt(t)

be the price variation at that node. We replace our market network

by another one obtained by deleting the first market one-port

and the delta-functional source and connecting r pri~e sources

from ground to those shippers' on~-portsthat are incident at

-----
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the first market node. The procedure is illustrated by the

transition from Figure 10(a) to 10(b). If each price source

generates Pl(t), then this transition does not alter the price

and commodity-flow variations throughout the rest of the market

network. B~superposition, Pm(t) is the sum of r terms, each

of which is obtained by shorting out all but one of the price

sources indicated in Figure 10(b). Consider the resulting

network for one such term, say, the one pa(t) for which allm

price sources other than that connected to g are shorted out.
. a

Make a change of source by replacing the series combination of

Pl(t) and ga by the parallel combination of a commodity-flow source

g Pl(t) and the conductance g. This is indicated in Figure 10(c).a a

Assume that ga connects node 1 to node Z and that~he price

variation at node Z is vZ<t). We now repeat the above procedure

.by deleting the parallel combination (including the market

one-port) that connects node Z to ground, separating all leads

to node Z, and connecting a separate price source of value vZ<t)

from ground to each and everyone of those leads. This yields

a set of connections similar to those of Figure 10(b). It

follows by superposition ap,ainthat p:<t) is a sum of terms,

each of which results from the shorting out of all but one of

the price sources just introduced.

Continuing this procedure, we see that p (t) is a sum ofm

terms, each of which corresponds to a distinct admissible 1 to

m path in the original market network. Indeed, our procedure

results in a contribution to the terms comprising p (t) wheneverm

we trace out an admissible 1 to m path. On the other hand, if
.

we apply our procedure along a sequence of shippers' one-ports

fI
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in such a fashion that we meet a node for a second time, that

node will be shorted to ground. Therefore, its price in the

resulting network is identically zero and cannot contribute

anything to p (t).m

qfwe can now estimate each term in the aforementioned sum for

p (t) as follows. Let W be the driving-point impedance betweenm

the first market node and ground for the entire network, but with

the commodity-flow source J(t) removed, and let X be the

corresponding driving-point impedance with the first market

one-port also removed. It is a fact that the driving-point

impedance of a one-port consisting only of an interconnection

of one-ports having positive-real driving-point impedances is

also positive-real. Hence, W is positive-real. Moreover, X is

a rational function of the impedances in the market network,

all of which are analytic at infinity by Condition C. Consequently~.

X is either analytic or has a pole at infinity. X cannot have

a zero at infinity because every shippers' one-port incident to

the first market node is a finite conductance. Since W is the

parallel combination of X and the

one-port, it follows that W(~) is

That is, W(?} -v (c 1 ?) -1 as J~ co .

Laplace transform of W, we may now

impedance Zl of the first market

asymptotic to Zl (1) as '2 -- 00 .

Since Pi is the inverse

invoke [17. Theorem 11 to obtain

/Pl(t)1 ~ ci1.

In Figure 10(c), let Z2 be the impedance of the market

one-port connected between ground and node 2. Then, the same

argument shows that the driving-point impedance W2 between those

two nodes (w~th gaPl(t) = 0) is asymptotic to Z2(1} and hence

to (CZ ~)-1 as ].-.lD. Let Wz be that right-sided distribution

whose Laplace transform is WZ. Then, we,see as,'before that
,
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IW2(t)1 ~ cit. But, for t ~ 0,

v2(t) = i: gaPl(x)w2(t- x) dx

and therefore

, v 2 ( t )1 ~

ga-t.
c1c2

Continuing this sequence of estimations along an admissible

1 to m path, we obtain one of the terms in the sum (7.2).

completes the proof of Theorem J.

This

The significance of Theorem J is a natural onel The

further away one market is from another market having a shifting

supply or demand function, the greater must be the lag in the

response of the former market to that shift.

(7.2) justifies the right-hand inequality in (7.1).
.

The

left-hand inequality in (7.1) can be established by using the
.

following two facts.

is again nonnegative.

The convolution of two nonnegative functions

Every function appearing in the sequence

of convolution integrals in the preceding proof is nonnegative

due to the fact that the altered networks arising from Figure 9

are all relaxive one-ports.

The driving-point admittance of a one-port is the Laplace

transform of q in Figure 8 when p is the delta functional. A

result similar to Theorem J can be stated if every shippersg one-port

satisfies the following condition, 'wherein Yk denotes the

driving-point admittance of the kth shippers' one-port.

Condition D. Yk is a positive-real function analytic at

infinity, and. Yk(?) ~ (~k1)-1 as }-'(X7.

With the notation introduced in Conditions C and D, we define

the inductance-capacitance factor of an admissi~le 1 to m path
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as the reciprocal of the product of all the constants ck for

the market one-ports connecting the path's nodes to ground and

all the constants !k for the shippers' one-ports through which

the path proceeds.

Theorem 4. Assume that, in a given incremental market
. ma...ke t

network, the driving-point impedance of everyone-port satisfies1\

Condition C and the driving-point admittance of every shippers'

one-port satisfies Condition D. Let Pm(t) be as in Theorem 3.

Then, for t ~ 0, Ip (t)1 is bounded as in (7.2) except that nowm

A. is the inductance-capacitancefactor for the jth admissibleJ

1 to m path and n. is the number of lk and Ck in A.".
J - J

This theorem is proven as is Theorem 3 except that, instead

of making the changes of sources indicated in the transition from

Figures 10(b) to 10(c), we proceed as follows. To obtain the

appropriate figures for the present case, replace the conductances

g , ... ,g by shippers'one-portshaving the admittancesa r

Y , ... ,Y. In Figure 10(b), the commodityflow q passinga r a

to the left through Ya is equal to the convolution of Pi with

the function that qa would be were P1 the delta functional. This

function is zero for t < 0, and it can be shown as before to be

bounded in magnitude by 1-1, where Y ('~)IV (1 ,%)-1 as 'r--C\:I.-a a -a~ ~

Then, in Figure 10(c), a commodity-flow source of value q (t)a

is applied between node 2 and ground (but now g P1(t) and g . doa a

not appear.) The proof continuesin this fashion, and the

desired bounds are obtained by estimating a sequence of convolution

integrals.

Actually, we can combine the proofs of Theorems 3 and 4 to

write down a bound on p (t) even when some of the shippers' one-portsm

are conductances gi and the remaining shippers~ one-ports are
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admittances Yk satisfying Conditions D. In this case the factor

Aj contains those gi in its nUmerator and !k in its denominator

corresponding to the shippers' one-ports occurring in the jth

admissible 1 to m path, nj is again the number of !k and ck in

the denominator of Aj.

It is worth mentioning that with no further assumptions

on our market network, the bound (7.2) cannot be improved. For,

networks can be constructed for which the difference between the

two sides of (7.2) can be made arbitrarily small for any given t.

Upon replacing nj by nj + 1 in (7.2), we obtain a bound on

how quickly a market price can start responding to a unit jump

in supply or demand. Another consideration of interest is the

delay inherent in the transition of that market price toward its

new equilibrium value. There are a variety of results in the

electrical~network literature on this question,
.

just one of them.

we describe

Assume.there is a unit jump in supply of demand at the first

market. This is represented by a commodity-flow source h(t) = l+(t)
('.(t) c!1c.t.ah I '.r t~" .l."J 0 ro~ t<o.) ,

connected between the first market node and ground.' Assume further"

that the driving-point impedance Z of the entire market network ~s

seen from those two nodes is positive-real, analytic at infinity

and on the closed right-half plane (l' Re 1 ~ oJ, and such that

Z('~) = (c,)-l as 1.-.;..:v and Z(O) = r > O. In many cases, c and

r can be determined simply by inspecting the market network.

Under these assumptions, the incremental price Pl(t) at

the first market node is a continuous function, zero for t < 0,

which rises ~oward and exponentially approaches (possibly in an

oscillatory fashion) the constant value r as t ~~ . With

,I
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0 <. £ < 1, we d,efine the settling time Z"£ as the least time beyond

which Ip(t) - r\ < fr. There is a lower bound on ~E depending only

on c, r, and E [20; Corollary 21. It is

Lf
>

{

Try
rc max -

O~y<l sin Try
2yJ! (-1) j+l

j=l j(j2 - y2)

[
TryE-

sin Try
+

co

]}
2yJ L 1 .

j=t j(j2 - y2)

The ri~ht-hand side is plotted in [20; Figure 5]. Thus, here

ag,~ain, we can readily ascertain an informative restriction on

the transient behavior of our market network.

Similar restrictions exist on the settling times of the prices

Pk(t) at the other markets (k ~ 1); see [211 and [221. But now,

some extended computations may be needed to see if the market

netwQ~k satisfies the hypotheses under which the restrictions hold.

VII. Several Commodities

We now relax the assumption that we are dealing with only one

commodity. We assume ins~ead that, at each of m different market

locations, n different commodities are traded. By the (k. i) -

market we shall mean the market at the kth location that

trades in the ith commodity. Thus, k = 1 ~ ~ m and i = 1 ~ in..

The prices and commodity flows in each market will be denoted by

a similar double subscript notation.

It follows that we have n different market networks, one

for each commodity. In order to relate them, we restrict the

behavior of ponsumers as follows.

Postulate E. At each market location, a shift in demand

for any commodity causes simultaneous shifts i~ the demands

for the other commodities in such a fashion that the total
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static-equilibrium expenditure of the consumers on all the commodities

traded at that location remains the same before and after the shift.

This implies that the con~umers at each market location have

a budget constraint. If their demand for one commodity increases,

then their demand for another decreases, and their total expenditure

before the transients have started equals their total expenditure

after the transients have died away.

We could have used another postulate; namely, the supply
rt'\8rke t

curves for the commodities at a given~location shift together

in such a way that the total static-equilibrium value of all

goods delivered by the producers at that location remains the

same before and after the transient period. However, the analysis

in this case is virtually the same as what we present below.

Let (Pki' ~~i) and (Pki' ~~i) be two static-equilibrium

points as seen by the consumers at the (k, i) market..
Postulate

E is equivalent to the equations

1!.. - d n A Ad
1- PkiQki = ~ PkiQki; k = 1, 8U ; me1=1 1=1

A "" "'d -d °

Set Pki = Pki + vki and Qki = Qki + uki. Then, (8.1) 1S the same

(8el )

as
n

[ -d 1 )~. vki(Qki + '2uki1=1
+ 1

J(Pki + ZVki)Uki = o.

We now assume in addition that uki is small as compared to Q~i
""

as compared to Pki. Then, upon discarding
. .

the last equation, we get an approximation

take as an equality.

and that Vk o is small
. 1

the product ukivki in

to zero,which we will

n d
~ (vkiQki + Pkiuki)

= 0 , k = 1, ... , m (8.2)

We base the rest of our analysis on (8.2). In other words,

,I
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instead of using Postulate E precisely, we use an approximation

to it given by (8.2). The smaller the increments in the static-

equilibrium points, the better will be this approximation.

We take the increments vki and uki to be the results of shifts

in the demand curves with no slope changes as before. The latter

shifts appear as commodity-flow sources fki across the market

one-ports. To compute the vki for a given i, we alter the incremental

marke~ network for the ith commodity by replacing all capacitances

by short circuits and all inductances by open circuits. This

assumes that all transients due to shifts in supply and demand die

out with time, which will certainly be the case for-jump-type

shifts whenever the network is passive with only positive

parameters and every loop in the network contains a nonzero conductance

The result will be a linear grounded network having the form of

Fi~ure 4, except that ~ach branch incident to ground consists'of

a conductance in parallel with a commodity-flow source fki. In

this network the vki (k = 1, ... , m) are the prices at the market

nodes. A nodal analysis yields a system of linear algebraic equations

in the unknown vki' with the known terms being linearly homogeneous

in the fki. If every conductance in the network is positive, then

the network's structure insures that the determinant of coefficients

for ou~system of equations is dominated by its diagonal elements

and is therefore nonzero. Thus, the equations can be solved for

the vki~ which in turn immediately determine the uki as the

commodity flows through the consumers 8 one-ports. All this

shows that the solutions for the vki and uki are linearly

homogeneous in the fko. Consequently, upon substituting these
. J.

solutions into (8.2), we obtain an expre~on of the form

,I
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n

,) Tkifkii=1
= 0 , k = 1, ... , m, (8.3)

where the Tki are constants depending upon the various equilibrium
,J ...,d

values Pki and Qki and the conductance values in the incremental

market networks.

Equations (S.3) are preciselythe restrictionsthat would
- .

be imposed by m ideal transformers with n coils each, whosepoils

are connected in series with the commodity-flow sources fki

[14; pp. 9-11]. These connections are illustrated in the incremental

market network of Figure 11 for the case of 2 market locations and

3 commodities.

Now, a shift in demand at one or more markets produces

nonzero values fki for the commodity-flow sources, which must

satisfy the transformer conditions (8.3) according to our

. approximation to Postulate E. The resulting transients and final~

equilibrium values can be determined by making a standard

electrical-network analysis of the transformer-coupled market

network.

VIII. Conclusions

Electrical network theory can be used for the incremental

dynamic analysis of spatially distributed markets. In addition

to providing a means of calculating the price and commodity-flow

variations in a particular.market system for one or more commoditiesj

it provides a variety of results that can be adapted to the general

theory of market networks. Thus. for example, a theorem concerning

nonlinear resistive networks provides an existence and uniqueness

theorem for a set of market prices under static equilibrium.

Also, the powerful concept of passivity is related to the
. I

beh~v2or of producers, consumers, and shippersJ
I

This in turn leads
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to bounds on the transient responses of market prices to variations

in demand or supply. Above all, this paper introduces a method

of analysis which.should be fruitful in extending the theory of

interconnected spatially distributed markets.

Finally, we mention that value-added taxes, sales taxes, tariffs,

and various kinds of subsidies can be represented by appropriate

price sources inserted at various points of our market networks.

The burdens and benefits they place upon the different groups of

producers, consumers, and shippers can then be determined by

analyzing the resulting network. This will be the subject of a

subsequent paper.

.
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