
STATE UNIVERSITY OF NEW YORK AT STONY BROOK

CEAS Technical Report 604

TRANSFINITE RANDOM WALKS
BASED ON ELECTRICAL NETWORKS: II

A.H.Zemanian

This work was supported by the National Science Foundation under
Grant MIP 8822774

June 4, 1991



PREFACE

This report encompasses a prior research report'", which examined trans-

finite random walks on I-networks, the first rank of transfiniteness for net-

works. In this work, transfinite random walks on v-networks, where v is any

natural number, are also examined.

'"A.H.Zemanian, Transfinite Random Walks Based on Electrical Net-

works, SUNY - Stony Brook, CEAS Report 601, April 7, 1991.



TRANSFINITE RANDOM WALKS BASED ON
ELECTRICAL NETWORKS

A. H. Zemanian

Abstract - The idea of a transfinite graph was recently established [A.H.Zemanian,

Transfinite Graphs and Electrical Networks, Trans. Amer. Math, Soc., in press]. This is a

graph that extends "beyond infinity" in a manner roughly analogous to the extension of the

natural numbers to the transfinite ordinals. As a result, there is the possibility of random

walks on a transfinite network, walks that may pass beyond infinity through "v-nodes"

that represent connections at infinite extremities of the transfinite network. This concept

is first explored for a certain kind of transfinite network of the first rank (i.e., for a certain

kind of I-network) having at most a finite number of I-nodes. Those random walks on

I-networks that succeed in passing through I-nodes without consecutively reencountering

any I-node are "roving I-walks". It is shown that random roving I-walks comprise an

irreducible reversible Markov chain whose state space is the finite set of I-nodes. A finite

electrical network is synthesized whose random walks in the ordinary sense correspond to

random roving I-walks. These ideas are then extended recursively to random roving walks

on certain transfinite networks of higher ranks v, where v is any natural number. The

definitions and proofs of this paper are based upon the electrical analogue for random

walks.

1 Introduction

So far, the theory of random walks on connected, count ably infinite graphs has been re-

stricted to walks on graphs of the "usual kind", usual in the sense that between any two

nodes there is a finite path. An undoubtedly incomplete list of references on this subject is
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[1] - [7], [12] - [23].

How about random walks on the recently devised idea of a transfinite graph [25]? Con-

ceptually, such a graph is constructed by connecting together infinite graphs of the usual

kind at their infinite extremities. The result is called a "I-graph" to distinguish it from the

usual infinite graph, which is now called a "O-graph". A I-graph may have pairs of nodes

that are connected only through "paths" that pass through infinite extremities. As a special

case, a I-graph may also be defined simply by specifying some "connections at infinity" for

a single O-graph. When specifying these connections, we are in fact distinguishing between

different infinite extremities of a O-graph and may therefore ask such questions as: "What

is the probability that a random walk starting at some node may reach 'one part of infinity'

before it reaches 'another part of infinity'?" "What is the probability of it then 'passing

through that part of infinity' and reaching a node transfinitely far away before it returns to

the starting node?"

Answering these and other such question is the objective of this paper. Moreover, we

do so for a hierarchy of transfinite graphs obtained by connecting together an infinity of

I-graphs at their extremities to obtain a "2-graph", then doing the same with 2-graphs to

get a "3-graph, and so forth. In this way, we recursively generate "v-graphs", where v may

be any natural number.

Let us sketch out how we extend random walks to transfinite graphs. Infinite extremities

of a O-graph, where connections to other O-graphs may be made, are called "I-nodes", and

ordinary nodes are now called "O-nodes". A positive number, called a "conductance", is

assigned to each branch, rendering the graph into a transfinite electrical network. (For

this reason, we shall always say "network" instead of "graph".) For infinite networks of

the usual kind, transition probabilities between ordinary nodes are certain O-node voltages,

and they can be determined by connecting pure voltage sources to the boundaries of finite

subnetworks [15]. To obtain transition probabilities from O-nodes to I-nodes, we expand the

finite subnetworks indefinitely and take limits. To obtain the transition probabilities from 1-

nodes to O-nodes, we interchange the connections of voltage sources and determine certain

O-node voltages. The consistency of these definitions is verified. Finally, the transition
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prob~biliti~s b~twMn I-nod~s ~r~ obtain~d by combining thes~ procedures. To empower

all this, we have to extend the maximum principle to the node (both O-nodeand I-node)

voltages of a transfinite network. A more severe difficulty arises from the fact that a

pure voltage source cannot in general be connected between the I-nodes of a transfinite

network, in contrast to a pure current source [24]. The reason is that the infinity of paths

between I-nodes may prevent some I-nodes from having different voltages (Le., may in effect

"short" those I-nodes). To avoid this possibility and other similar problems, we restrict our

transfinite networks appropriately, one condition being that there be only a finite number of

I-nodes. In summary, our approach is to define transition probabilities by extending some

established formulas for the usual kind of infinite network. The resulting random walks

that succeed in passing through I-nodes are "transient", and walks that do not return to

any I-node without first passing through a different I-node are "roving I-walks". Such

walks comprise an irreducible reversible finite Markov chain. The latter in turn leads to a

"surrogate network", a finite O-network whose random walks (in the usual sense) correspond

to the roving I-walks on the original transfinite network.

As for random walks on transfinite networks of higher ranks, the existence and proper-

ties of such walks can be established recursively. For example, our prior results concerning

random walks on I-networks having only finitely many I-nodes can be taken as local behav-

ior for a 2-network with only a finite number of 2-nodes. More generally, the local behavior

of a v-network can be based upon random walks in a (v - I)-network so long as v is a

successor ordinal. We insure the latter requirement by restricting v to the natural numbers.

When v is a limit ordinal, a more complicated construction will be needed.

The definitions and proofs of this paper are based upon the electrical analogue for

irreducible reversible Markov chains [4], [12, pages 303-310]. Moreover, the paper is written

as a sequel to [25]. We freely use the definitions of that work, which are rather extensive. A

repetition ofthem here does not seem warranted. Please refer to that work for an explication

of our terminology.

A particular kind of O-graph we shall employ is Halin's finitely chainlike structure [9],

[10]. It can be defined as follows: A graph (Le., a O-graph) M is called finitely chainlike
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or synonymously m-times chainlike, where m is any positive natural number, if it is locally

finite and can be partitioned into a sequence of finite subgraphs Mp:

00

M = UMp,
p=o

(1)

where each branch of M belongs to one and only one Mp and in addition

Mp-l n Mp = Vp, p = 1,2,3,. . . , (2)

where Vp is a finite set of nodes satisfying the following three conditions:

(a) The cardinality m of each Vp does not depend upon p.

(b) For every p ~ 2, Vp shares no nodes in common with U~:~ Mq.

(c) In each Mp (p ~ 1) there are m pairwise disjoint paths from the nodes in Vp to the

nodes in Vp+1.

Upon taking the union for all p of all the disjoint paths of condition (c ), we obtain m

disjoint one-ended paths. We call each of them a spine, and the set of all of them a full

set of spines. Neither a spine nor a full set of spines need be unique because the paths of

condition (b) may not be unique.

2 A Special Kind of 1-Network

Consider a count ably infinite, locally finite, connected network of the usual kind with-

out parallel branches or self-loops, each branch of which has a positive number-called a

conductance-assigned to it. Let Wbe a random walker that wanders form node to node in

accordance with the following transition probabilities. For any node no with the adjacent

nodes nl,. . ., nK, the probability that W will proceed from no to an adjacent node nk in

one step is by definition 9k/ ~f::l 9[, where 9/ is the conductance of the branch incident

to no and n/. As Nash-Williams [15] has pointed out, the resulting random walk can be

analyzed by treating the network as an electrical network with a I-volt voltage source con-

nected between various nodes. For example, the aforementioned transition probability can
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be obtained electricallyby maintaining nk at 1 volt and all the other nodes adjacent to no

at 0 volt. The resulting node voltage at no is equal to 9k/ L~l 9/.

On the other hand, to obtain a random walk on a I-network, we need to ascertain how

'l1can wander through a I-node. The above formula for determining transition probabilities

is unavailable for a I-node because I-nodes need not have incident branches. Nonetheless, if

the I-network is sufficiently restricted, probabilities for transitions between any two nodes-

whether they be O-nodes or I-nodes-can be obtained electrically.

Let Nl be a I-connected I-network with no infinite O-nodes, no I-nodes that embrace

O-nodes, no self-loops, and no parallel branches. By definition of a I-network, Nl has

a countable infinity of branches and at least one I-node. Moreover, since no O-node is

embraced by a I-node, the I-connectedness of Nl implies that every O-section has at least

one O-tip.

If K is any reduction of Nl with respect to any subset of branches, we can identify each

O-tip tf in K with the unique O-tip t in Nl that contains tf as a subset, and tf ~ t is an

injection. We say that K has or possesses t as a O-tip if there is at least one representative

of t that lies entirely in K. In this sense, every O-tip of K is a O-tip of Nl.

Let Bf be any finite set of branches in Nl, and let N} = Nl \B f denote the reduction

of Nl induced by all branches of Nl that are not in Bf. Since the removal of Bf disrupts

at most a finite part of anyone-ended path, we have that Nl and N} possess exactly the

same O-tips.

The idea of an "end" introduced by Halin [8] can also be defined for I-networks in terms

of O-tips. Two O-tips of Nl will be called end-equivalent if, for every choice of Bj, the

two O-tips have representatives lying in the same O-section of N}. This is an equivalence

relationship-, and the corresponding equivalence classes will be called the ends (later on, the

0-ends) of Nl. Clearly, the 0-tips in an end belong to a single O-section of N\ we say that

the end belongs to that O-section. On the other hand, since there are no embraced O-nodes,

every O-section has at least one end and may have more than one end. As an immediate

consequence of all this, we can state

Lemma 2.1. Nl and N} have the same O-tips and the same ends.
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Given an end d of N1, assume that a particular finite set 13f of branches can be so

chosen that within N} = Nl \B f the O-section Sd that possesses d as an end has no other

end. Then, Sd will be called a spur (later on, a O-spur) for the end d, and d will be said to

have Sd as a spur. If an end has a spur, it will have an infinity of spurs; indeed, another

spur can be obtained by appending to Bf any branch of Sd.

Lemma 2.2. Assume that Nl has only finitely many ends. Then, a finite set Bf of

branches can be so chosen that every end of Nl belongs to a O-section of Nl \B f having

no other end (i.e., each such O-section is a spur for that end) and the spurs are mutually

disjoint.

Proof. We shall construct a spur for an arbitrary end d by reducing the O-section S to

which d belongs. If S has only one end, then it is already a spur for d. So, assume S has at

least two ends d1 and d2. By the definition of an end, there is a finite set Bf of branches

such that d1 and d2 belong to different O-sections of S\Bf. Thus for each pair of ends of

S-say, the kth pair-such a finite set Bfk can be chosen. Since Nl and therefore S possess

only finitely many ends, the union uBfk is again a finite set. Moreover, each end d of S

belongs to a O-section Sd of S\ u B fk, and Sd has no other end. Thus, Sd is a spur for d.

These spurs are mutually disjoint. 0

We now gather together the assumptions that we impose on the I-network Nl. These

assumptions enable a transfinite random walk that visits all the I-nodes of Nl.

Conditions 2.3.

(a) Nl is a i-connected i-network with no infinite O-nodes, no self-loops, no parallel

branches, and no i-nodes that embrace O-nodes. Nl has at least two i-nodes.

(b) Nl has only finitely many ends.

(c) Each end is embraced by some i-node (i. e., all the O-tips in that end are members of a

single i-node).

(d) Every branch bj ofNl has assigned to it a positive number gj called the branch conduc-

tance; rj =g;l is calledthe branchresistance. Every branch also has an orientation.

6



(e) Every end has a spur that is finitely chainlike and possesses a full set of spines, each

of which is perceptible(i.e., the sum of the resistancesof all branchesin each spine is

finite) .

The kind of network we are considering is partially illustrated in Figure 1, which shows

a O-section, and in Figure 2, which shows two adjacent O-sections. The crosshatched areas

represent regions where branches occur, and the heavy lines represent I-nodes nl. Each

protrusion of the crosshatched areas can be a spur, and where it touches a heavy line is

where an end exists. The heavy dots (other than no in Figure 1) represent the nodes of

certain sets "Vk,Pk" for the finitely chainlike structures of some spurs.

Lemma 2.4. Under Conditions 2.3, the following statements hold.

(i) Every spur has the properties indicated in Conditions 2.3(e).

(ii) Everyone-ended O-path lies within a spur.

(iii) Between every two nodes (O-nodes or 1-nodes) of Nl there is a perceptible 1-path that

terminates at those nodes.

(iv) Nl has only finitely many O-sections and i-nodes.

Proof. (i) Given any spur S, let d be the end for that spur. Let S' be the spur for

d indicated in Conditions 2.3(e). Sand S' differ by no more than a finite set of branches.

Hence, S can be assigned a finitely chainlike structure with perceptible spines just by

choosing its initial finite subnetwork Mo appropriately.

(ii) Choose a 8f in accordance with Lemma 2.2 to obtain one spur for each end. Since

each spur is finitely chainlike, anyone-ended O-path po can enter and leave a spur only a

finite number of times. Since the chosen Bf produces only finitely many spurs (Condition

2.3(b)), po must eventually remain within a single spur. But then we can expand that spur,

if necessary, by appending a finite number of branches to obtain a spur that contains all of

po.

(iii) If nl and n2 are two 0-nodes lying in the same O-section of Nl, they are connected

by a finite O-path po. But then, {nl,pO,n2} is the asserted I-path. So, assume that
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nl and n2 are either O-nodesor I-nodes that are infinitely distant from each other. The

I-connectedness of NI implies that there is a finite I-path

P I - { P o I P o I P o
}- nI, l,x2' 2,"',xm' m,n2 (3)

connecting nl and n2. Since there are no embraced nodes, each O-path P£ (k = 2,..., m-I)

is endless; on the other hand, Pf and P~ can be either endless or one-ended, the latter

occurring when nl or n2 is a O-node. Therefore, every O-path in (3) is either a one-ended

O-path or the union of two one-ended O-paths. But, every O-path lies in a spur according

to (ii). By virtue of (i), we can replace each of these one-ended O-paths pO by one that

eventually follows a perceptible spine in order to reach the same end that pO reaches. These

replacements yield a new I-path that is perceptible and terminates at nl and n2.

(iv) Since every O-section has at least one end and there are only finitely many ends

(Condition 2.3(b »), there are only finitely many O-sections. Finally, all the I-nodes comprise

a partition of all O-tips, and so too do all the ends. That there are only finitely many I-nodes

now follows from Condition 2.3(c). 0

Let us now define what we mean by "shorting nodes together". To short a finite number

of O-nodes of NI means the following: Replace those O-nodes by a single O-node and take a

branch to be incident to the new O-node if and only if that branch is incident to one of the

original O-nodes; then remove any branch that becomes a self-loop, and combine parallel

branches by adding their conductances. As for I-nodes, first note that NI has only a finite

number of them according to Lemma 2.4(iv). To short any number of I-nodes of Nl, just

take their union, that is, those I-nodes are replaced by a single I-node consisting of all

the O-tips in the original I-nodes. As with the original I-nodes, the new I-node will not

embrace a O-node. Finally, to short a finite collection of both I-nodes and O-nodes, create

a new I-node consisting of all the O-tips in those I-nodes and also consisting of the O-node

obtained by shorting the original O-nodes; incident branches are defined as before, self loops

are removed, and parallel branches are combined. In this last case, the resulting I-node will

embrace a O-node.

If N satisfies Conditions 2.3, it continues to do so after finitely many of its I-nodes are

shorted. The same is true after finitely many of its O-nodes are shorted.
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3 Excitations at I-N odes

A pure current source can always be connected between two nodes, whether they be O-nodes

or 1-nodes, so long as a perceptible path exists between those nodes [24]. This is so for our

1-network N1 according to Lemma 2.4(iii). On the other hand, a sufficient condition for the

connection of a pure voltage source to two nodes is that one of them be a finite O-node [24].

However, a pure voltage source cannot in general be connected to two 1-nodes. The reason

is that the 1-network, having possibly an infinity of conductive paths between the 1-nodes,

may in effect act as a short between the 1-nodes and may thereby prevent their voltages

from being different. However, for 1-networks that satisfy Conditions 2.3, this problem

does not arise. To establish this fact, we shall show that the resistance matrix relating any

pure current sources applied at the 1-nodes to the resulting voltages between the 1-nodes is

nonsingular. Hence, any set of voltage differences between the 1-nodes is possible and can

be obtained by imposing them as pure voltage sources.

If a voltage source e (current source h) is connected to nodes na and nb, we shall say

that the source is connected from na to nb if e is measured as a potential rise from na to nb

(respectively, if h is measured as a current directed from na to nb)' Append to N1 a pure

voltage source eo by connecting it from node na to node nb of N1. This entails the shorting

of nodes. Denote the resulting network by N~. At this point, we shall also require that at

least one ofthe nodes na and nb be a O-node. Later on, this condition will be relaxed: Both

na and nb will be allowed to be 1-nodes.

Let us recall the fundamental theorem [25, Theorem 10.2] for voltage-current regimes in

a form suitable for N~. (That this theorem continues to hold with the appended pure voltage

source eo is shown by transferring the source through its incident O-node [24, Sections VII

and XII].) Let bo denote the branch for eo; orient bo from na to nb. Also, let b1,b2,' ..

be all the other branches-those of Nl. As before, Tj denotes the branch resistance of bj;

thus, TO= 0 and Tj = g;1 > O. If i = (io, iI, i2"") is a branch-current vector for N~, we

let if = (il,i2'''') be the corresponding branch-current vector for Nl. Under Kirchhoff's

current law applied to one end of eo, a knowledge of if uniquely determines io and thereby

1.
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I is the Hilbert space of all branch-current vectors i ;;;; (io, iI, i2, .. .)for N~ such that

L:~1 i;rj < 00 and with io determined from iI, i2,' .. as stated. The inner product for I is

(i, s) = L:~1 rjijsj. A O-loopcurrent (or 1-100pcurrent) in N~ is a current flow of constant

value around a O-loop (respectively, 1-loop) in N~ with zero branch currents outside the

loop. A 1-loop current is called proper if it is not a O-loop current. Under Conditions 2.3,

a 1-basic current is a countable superposition of proper 1-loop currents such that no more

than a finite number of the 1-loop currents flow through any O-node. 1(0 is the span of all

O-loop currents and 1-basic currents in I, ~nd I( is the closure of 1(0 in I. I( too is a Hilbert

space.

Here is the desired version of the fundamental theorem.

Theorem 3.1. Let a single pure voltage source eo be connected to two nodes of Nl, at

least one of which is a O-node. Then, there is a unique current vector i E I( for N~ such

that, for every s E 1(,
00

eoSo = L rjijsj
j=l

Now, consider any 1-node nl in N~-possibly a 1-node that embraces a O-node of the

(4)

source branch boo Choose a spur for every end embraced by nl. By Lemma 2.4(i), every such

spur has a finitely chainlike structure. Since there are only finitely many ends (Condition

2.3(b)), we can take the union of those spurs to obtain another cha.inlike structure M =

U~oMp with the O-node sets Vp = Mp-l nMp. We assign any branch having both of its

nodes in Vp to Mp. Every branch of Mp-l (p> 2) having one node in Vp and one node not

in Vp will be called a cut-branch at Vp. The set C of them will be called a cut for nl at Vp.

We say that C isolates nl within Nl from all other 1-nodes. C is a finite set of branches.

Every 1-path that embraces nl and a node of Mo must embrace at least one cut-branch at

Vp. Thus, within M the removal of a cut for nl disconnects nl from Mo. A branch of C is

said to be oriented away from (toward) nl if it is oriented away from (toward) Vp.

An extension of Kirchhoff's current law to the cut C-along with bo if bo is incident to

nl-a.sserts that

L:!:ij = 0 (5)

where the summation is for the branches in C and for bo as well if bo is incident to nl, ij is
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the current in those branches, and the plus (minus) sign is used ifthe branch's orientation

is away from (toward) n1.

Lemma 3.2. Kirchhoff's current law (5) holds whenever i E K.

Proof. Any O-loop or I-loop can embrace branches of C at most finitely often. Hence,

each O-loop current or I-loop current enters the summation of (5) an even number of times,

half with plus signs and the other half with minus signs. Hence, its contribution to that

summation is zero. The same is true for any I-basic current because such a current is a

countable superposition of I-loop currents, only finitely many of which flow through the

branches of C and booNow, KO is the span of all O-loop and I-basic currents. Thus, for any

i E KO, (5) holds. Finally, we can choose a sequence from KO convergent toward i E K and

can argue as in the proof of [25, Theorem 11.1] to conclude the proof. 0

Now, let nl (k = 1,. .., K) denote the I-nodes of N1. Any pure current source can be

connected between any two I-nodes because those I-nodes are connected by a perceptible 1-

path (Lemma 2.4(iii)). Furthermore, any set of pure current sources connected between the

I-nodes can be represented by a set of K -1 current sources connected from n~ to n1,' .., nk'

Let hk be the value of the current source from n~ to nl, and set h = (h2,..., hK). This

creates a unique voltage-current regime in N1 in accordance with [24]. It follows from

Lemma 2.4(iii) that every nl possesses a unique node voltage ul with respect to n~ [25,

Section 14]. (n~ is assigned the zero node voltage). Set u = (u1, . . ., Uk)' Thus, N1 as seen

from its I-nodes is a (K -I)-port with a common ground ni and has a (K - 1) X (K - 1)

resistance matrix Z. In short, u = Zh. If Z is invertible, then h = Z-1U, and this signifies

that any set of K - 1 pure voltage sources can be connected from n~ to nl (k = 2,..., K)

to get an h. It is the connection of pure voltage sources to the I-nodes that will determine

the transition probabilities for Wwandering between I-nodes.

Lemma 3.3. Z is positive-definite and therefore nonsingular.

Proof. Let h = (h2, . . ., hK) be an arbitrary vector of K - 1 current sources connected

as above. For the kth I-node nL let C be a cut for nl as above. According to Lemma

3.2, the net current flowing through the branches of C away from nl is hk. Therefore,

there exists at least one branch of C carrying a current no less than hk /c, where c is the
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cardinality of the finite set C. The power dissipated in that branch is no less than wkht,

where Wk= Tmin/c2 > 0 and Tminis the smallest of the resistances for the branches of C.

Now, let (.,.) denote the inner product for (K -I)-dimensional Euclidean space. Then,

(u, h) = (Zh, h) is both the power generated by the applied current sources and the power

dissipated within N1. The latter can be seen by transferring the pure current sources into

N1 along perceptible I-paths and then invoking [25, Corollary 10.3 and Theorem 13.2]. So,

K

(Zh,h) ~ LWkhZ ~ wllhll2
k=2

where W = min( W2, . . .,WK) > O. Thus, Z is positive definite. 0

Finally, we wish to extend Theorem 3.1 to the I-network N~ obtained by appending

a pure voltage source eo to two I-nodes of N1. We can do this by inserting a positive

resistance p in series with eo, thereby rendering bo into a resistive branch, and then letting

p -+ 0+. Let N~ denote the I-network with the resistive source branch connected to two 1-

nodes. For N~ the fundamental theorem reads exactly as before except that the summation

in (4) and for the inner product for I is over j = 0,1,2, . ". Thus, (4) is replaced by

00

eoso = pigSo + L Tjijsj
j=l

(6)

where iP denotes the unique branch-current vector for N~.

By Lemma 3.3, eo - pig = zig, where z is the positive resistance of N1 as seen from the

two I-nodes to which bo is connected. If >. is another value for the resistance in bo,

eo eo
0.p .,\ - +

~o - ~o - p + z >.+ z

as p, >. -+ 0+ independently. From (6) we have

00

'" ( 'p .,\ ) (
\ .,\ 'P

) (
'p .,\

)L..,;Tj ~j - ~j Sj = /\~o - P~o So = z ~o- ~o So.
j=l

Upon setting Sj = ij - iJ for all j, we get

00

IliP - i'\112 = L Tj(ij - iJ)2 = z(ig - i~)2 -+ 0
j=l
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as p, >.-+ 0+. Hence, {iP: p > O}is a Cauchy directed function in K. Therefore, there is

an i E K to which the directed function converges in K. Upon passing to the limit in (6)

and invoking the bicontinuity of the inner product, we get (4) again.

There is no other i E K that satisfies (4) for all s E K. Indeed, from (4) we have

I:~1 Tj(ij - ij )Sj = eoso - eoSo = O. By setting Sj =ij - ij, we get ij = ij for all j. All

this establishes

Theorem 3.4. Theorem 3.1 continues to hold for N~ even when the pure voltage source

is connected to two 1-nodes of N1.

Henceforth, we take it that voltage-current regimes produced by pure voltage sources

are those dictated by Theorems 3.1 and 3.4. Because N1 is a linear network, these theorems

determine through superposition a unique voltage-current regime when finitely many pure

voltage sources are connected to O-nodes and I-nodes of N1.

4 Node Voltages

We shall eventually argue that node voltages in a I-network excited by a I-volt voltage

source correspond to certain transition probabilities. For this purpose, we show in this

section that node voltages are bounded by 0 and 1 when the negative terminal of the I-volt

source is assigned a node voltage of 0 volt. This is in fact an extension of the maximum

principal for node voltages to I-networks.

In the following, a "O-section" will always mean a O-section with respect to N1, not with

respect to N~. Henceforth, we take it that the single source exciting N~ is a I-volt source.

Also, if n is a node, u will denote its node voltage-and u will have the same subscripts and

superscripts as n. Let ng (and ne) denote the node of N~ to which the negative (respectively,

positive) terminal of the I-volt source is incident. We call ng ground and set Ug = O. Let

no be any other node of N~, either a O-nodeor a I-node. By Lemma 2.4(iii) there exists at

least one perceptible I-path P starting at no, ending at ng, and remaining within N1 (thus

avoiding the source branch bo). P may in fact represent a O-path if no and ng are in the
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sa.meO-sectionof Nl. We Msignto no the node volta.ge:

Uo = L :i:Vj (7)
p

where :Lp denotes a summation over the branch indices for the perceptible I-path P, the

Vj are the branch voltages for P as dictated by Theorem 3.1 or Theorem 3.4, and the

plus (minus) sign is chosen if a branch orientation agrees (disagrees) with a tracing of P

from no to ng. According to [25, Section 14], the series (7) converges absolutely, and Uo is

independent of the choice of the perceptible I-path P.

Lemma 4.1. The node voltages in N~ along anyone-ended O-path po (whether percep-

tible or not) converge to the voltage U1 of the 1-node n1 that po meets.

Proof. By Lemma 2.4(i) and (ii), po lies within a spur M, which is finitely chainlike

with perceptible spines. Thus, n1 is the I-node that embraces the end of M. Since every

spine is perceptible, the O-node voltages along any spine of M converge to the I-node voltage

u1 for n1.

Now, let Mp and Vp be the finite subnetworks and the O-node sets of the chainlike

structure of M (see (1) and (2)). There are only finitely many spines-all disjoint, and the

spines contain all the nodes of all the Vp. Let u~ax (or u~in) be the maximum (respec-

tively, minimum) node voltage for the nodes of Vp. It follows that limp.-oo u~ax = U1 and

liIDp.-oo u~in = u1.

Given any natural number q, po eventually remains within U~g Mp. Moreover, we can

choose q so large that ng and ne are excluded from U~g Mg. Since for p ~ q each Mp is a

finite, resistive, sourceless subnetwork, its node voltages all lie between the maximum and

minimum of the node voltages for the Vp U Vp+!' Consequently, the node voltages along po

also converge to u1. D

The supposition that there is a node voltage larger than one in N~ leads to a contradic-

tion. The next lemma, which invokes this hypothesis, is but a step toward obtaining that

contradiction. We say that a I-node and a O-section are incident if the I-node contains a

Q-tip of the O-section.

Lemma 4.2. Suppose there is a O-node or 1-node no in N~ with a voltage larger than

one. Let S be a O-section that either contains no or is incident to no. Two and only two
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possibilities arise:

(i) The O-node voltages in S are all the same and larger than one (and therefore by Lemma

4.1 all the voltages for the 1-nodes incident to S have the same value as well).

(ii) All the O-node voltages in S are strictly less than the largest of the voltages for the

1-nodes incident to S; that largest 1-node voltage is also larger than one.

Proof. If there is a I-node with voltage larger than one, then by Lemma 4.1 there

is a O-node in S with voltage larger than one. If (i) does not hold, then at least some of

the O-node voltages for S differ. It follows that there are two O-nodes no and n~ in S with

voltages satisfying Uo > u~ and Uo> 1. We may trace some O-path in S from no to n~

to find the first O-node nl whose voltage Ul is no less than Uo and is strictly larger than

that of the next O-node in the path. By Kirchhoff's current law there is another O-node n2

adjacent to nl with U2 > Ul. By the same law applied to n2, there is a third O-node n3

adjacent to n2 with U3 > U2. Continuing in this way, we find a one-ended O-path po whose

successive node voltages are strictly increasing. By Lemma 4.1, the I-node that contains

the O-tip having po as a representative has a node voltage strictly larger than Uo. Since all

this is true for every no with Uo> 1, (ii) follows. 0

Since there are only finitely many O-sections, we have shown that, under the supposition

of Lemma 4.2, there is a I-node nmax with a voltage Umax that is larger than one and no

less than any other O-node voltage or I-node voltage in N~. Now, we can trace a path from

nmax to the positive terminal of the I-volt source to find a I-node na with voltage Umax

and incident to a O-section all of whose O-node voltages are strictly less than Umax.

Now consider all the O-sections to which na is incident. By Lemma 4.2, there may be

some such O-sections having all their O-node voltages equal to Umax. As far as the flow

of current is concerned, they can be ignored. All the other O-sections will have O-node

voltages strictly less than Umax. Choose a spur for every end of those latter O-sections that

is embraced by na. By Lemma 2.4(i), every such spur has a finitely chainlike structure.

Since there are only finitely many ends (Conditions 2.3(b)), we can take the union of those

spurs to obtain another finitely chainlike structure M = U~o Mp with the O-nodesets Vp'
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As before, we assign any branch having both of its nodes in Vp to Mp. A cut-branch at Vp

is again any branch of Mp-1 (p > 1) having one node in Vp and one node not in Vp.

Since the O-node voltages along each spine of M are strictly less than Umaxand converge

to Umaxand since there are only finitely many spines in M, we can choose two sets Vp and

Vq with p < q such that the least node voltage for Vp is larger than one and in addition the

largest node voltage for Vp is strictly less than the least node voltage for Vq. So, consider

next the finite subnetwork Mp,q = ur:~ Mk. Mp,q is sourceless. We can generate the same

voltage-current regime in Mp,q as it has as a reduced network of N~ by connecting pure

voltage sources as follows. Let np,1 be a O-node of Vp with the largest node voltage Up,1for

Vp. Let np,k be any other O-node of Vp and let Up,k be its voltage. Connect a pure voltage

source of value Up,1- Up,k from np,k to np,1 (positive terminal at np,1)' Do this for all np,ko

Similarly, connect a pure voltage source from a node nq,1 of Vq with the least node voltage

Uq,1 for Vq to each of the other nodes of Vq to establish their node voltages at the values

they have in N~. Finally, connect a pure voltage source ep,q of value Uq,1- Up,1 > 0 from

np,l to nq,l' Mp,q with these appended sources is a connected finite network.

Let us now examine the cut-branches for Vq; we orient them away from Vq. Set i = Lq ij,

where Lq denotes a summation over the branch indices for those cut-branches. Apply

Kirchhoff's current law and superposition. The sum i will be zero when each appended

voltage source is acting alone (all other appended sources set equal to zero) and has both of

its nodes in Vp or both of its nodes in Vq. However, for epq acting alone, i will be positive.

Thus, by superposition, for the voltage-current regime in N~, the net current i = Lq ij in

the cut-branches for Vq will be positive (Le., will represent a net flow in those branches

away from Vq). This is a result of the supposition of Lemma 4.2.

But, this contradicts Kirchhoff's current law (Lemma 3.2). Indeed, the I-volt source

that excites N~ is not incident to na. Hence, Lemma 3.2 dictates that i = O. Consequently,

no node voltage in N~ can be larger than one.

With just minor modifications, our arguments can be reapplied to show that no node

voltage can be less than zero. We have established

Theorem 4.3. Under Conditions 2.3, every O-node voltage and 1-node voltage in N~
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is no less than zero and no greater than one.

Let 0:be the rank of ne and f3 be the rank of ng. In the following,no is another node

of rank,. Each of these ranks are either 0 or 1.

Corollary 4.4.

(i) Let there be a JL-pathplJ., where JL= max(f3,,), that terminates at no and ng and does

not embrace ne. Then, Uo< 1.

(ii) Let there be a JL-pathplJ., where JL= max( 0:,,), that terminates at no and ne and does

not embrace ng. Then, Uo> O.

Proof. Under the hypothesis of (i), suppose Uo= 1. Exactly two cases arise:

Case 1. plJ. embraces two adjacent O-nodes na and nb with Ua = 1 and Ub < 1. But

then, by Kirchhoff's current law for O-nodes, there must be another O-node nl adjacent to

na with Ul > 1, in violation of Theorem 4.3.

Case 2. plJ. embraces a I-node na with Ua= 1, and na is incident to a O-section S that

contains at least one O-node with a voltage less than one. Whether or not S contains ne, the

maximum principle for node voltages in a O-network ensures that every end of S embraced

by na has a spur all of whose O-node voltages are strictly less than one. By virtue of Lemma

4.1, we can again argue that Kirchhoff's current law (Lemma 3.2) will be violated at a cut

that isolates na from all other I-nodes.

Thus, Uo < 1, as asserted by (i). (ii) is established similarly. 0

5 Transfinite Walks

We turn now to the idea of a walk on a I-network that satisfies Conditions 2.3. We wish to

define matters is such a fashion that those walks may "pass through infinity" via I-nodes.

First we define walks on a O-section. A O-walk on Nl is a conventional kind of walk

contained within a O-section S of Nl. It is an alternating sequence of O-nodes n~ and

branches bm:

Wo = {"" n~, bm,n~+l' bm+b"'} (8)
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such that each branch is incident to the two nodes adjacent to it in the sequence. O-nodes

and branches may repeat in (6.1). However, n~ and n~+1 are different O-nodes for every

m because N1 contains no self-loops; to express this fact, we shall say that every O-walk

roves. Since (8) is a sequence, the indices m are restricted to the integers. WO may be

finite, one-ended, or endless; in the first two cases each terminal element is a O-node, and

we say that WO starts at (stops at) its terminal O-node on the left (respectively, right).

Moreover, WO reaches each of its O-nodes and passes through each of its O-nodes other than

its terminal nodes. WO is nontrivial if it has at least one branch. We say that WO embraces

itself and all its elements.

If WO is one-ended or endless, we denote one-ended portions of WO by

W~oo,m = {.. .,bm-2,n~-1,bm-bn~.J

and

W~,oo = {n~, bm,n~+1'bm+b" .}.

Let d be an end of S, and let M = U~o Mp be a finitely chainlike representation for a spur

M for d. We say that WO starts at d if, given any integer q ~ 0, there is an m such that

W~oo,m remains within U~q Mp; we also say that WO starts at the I-node that embraces

d. Similarly, we say that WO stops at d and also stops at the I-node that embraces d, if,

given any integer q ~ 0, there is an m such that W~,oo remains within U~q Mp. In both

cases, we also say that WO reaches d and the said I-node. Any O-walkthat reaches a I-node

will be called transient. This use of the adjective "transient" differs from customary usage;

indeed, we are now applying it to a deterministic walk rather than to a random walk.

According to these definitions, a O-walkmay keep expanding within a O-section S without

reaching any I-node (Le., without being transient). Consider for example a O-walk WO that

satisfies the following condition: Given a finitely chainlike structure M = U~o Mp for all

of S, there is a positive integer k such that, for every choice of the positive integers m and q

with q > k, the one-ended portion W~,oo of WO meets both Mk and Mq-and therefore all

the intervening Mk+b' . ., Mq-1 as well. In other words, WO keeps getting into ever-larger

portions of S but also keeps returning to Mk. Thus, no matter how large we choose m,
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w~,oo will definitely return to Mk before it reaches any I-node. We might call such a

deterministic walk "recurrent"; this kind of O-walkwill not arise as an embraced O-walk

when we examine transfinite random walks that reach I-nodes.

Consider now a (finite, one-ended, or endless) alternating sequence of the form

1
{

I WOI W o
}W = "',nm, m,nm+I' m+I"" (9)

where each W~ is a nontrivial O-walk and each n~ is a I-node-except possibly when (9)

terminates on the left and/or on the right, in which case the terminal element is either a

O-node or a I-node. (We shall drop the superscript 1 whenever a node is allowed to be of

either rank.) Again terms may repeat in (9); in fact, consecutive I-nodes n~ and n~+1

may be the same-in contrast to the situation for (8). As before, since this is a sequence,

m is restricted to the integers.

Definition 5.1. WI, as given by (9), is called a I-walk if, for every m, Wz. starts at nm

and stops at nm+1' Also, WI is said to perform a one-step transition from the I-node n~

to the I-node n~+1' Finally, WI is said to rove if, for every m, n~ and n~+1 are different

I-nodes.

Since we have not allowed any I-node to embrace a O-node, a O-walkWz. can start from

or stop at a I-node adjacent to Wz. in (9) only if it starts or stops at an end embraced by

that I-node. In the event that WI is finite or one-ended, we also say that WI starts at (stops

at) its terminal element on the left (respectively, right). As with other entities, we say that

a I-walk embraces itself, all its elements, and all elements embraced by its elements. Also,

WI is said to pass through each of its embraced branches, O-nodes, and I-nodes other than

its terminal nodes. Furthermore, WI is nontrivial if (9) contains at least three elements.

By these definitions, every O-walk in a I-walk is transient unless it is the last O-walk and

stops at a O-node; in fact, every O-walk is also transient-in-reverse because it starts at a

I-node-except possibly when it is the first O-walk.

6 Random O-Walks

We now discuss a random O-walk, which may reach a I-node incident to the O-section S to

which the O-walk is confined. Our definitions will generalize the customary random walk
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on the usual kind of infinite network because we will establish comparative probabilities of

reaching different I-nodes through a limiting process. The random O-walkmay be discussed

in terms of an entity -q;that wanders through O-nodes and possibly reaches a I-node. Ter-

minology that we shall define for random walks is also used for -q;as the agent performing

that walk.

Let no be a O-node and let nk (k = 1,. . ., L) be its adjacent O-nodes. Let 90,k =9k,0 be

the conductance ofthe branch connecting no and nk. The standard rule for the probability

PO,kthat -q;starting at no will reach nk in one step is PO,k=90,k/ Er=1 90,1.This probability

can also be obtained from node voltages as follows. Let nk be held at 1 volt and let all

the other nl (1 = 1,..., Lj 1 :F k) be held at 0 volt. Then, the node voltage at no is PO,k

according to Kirchhoff's laws and Ohm's law. This governs the wandering of -q;within any

O-section S of N1, That wandering is described by a Markov chain whose infinite state

space consists of the O-nodes of S [12, Chapter 9, Section 10].

Under Conditions 2.3, it is possible for -q;to reach any I-node nl incident to the O-section

S by following a one-ended O-walk. We wish to determine the probability of it reaching nl

before it reaches any other I-node incident to S, given that it starts at the O-node no and

does reach some I-node and given that S has two or more incident I-nodes.

Choose a spur for each end of S that is embraced by nl in such a way that the spurs are

mutually disjoint (Lemma 2.2). Then, choose a finitely chainlike representation U~o Mk,p

for the union of those spurs. As before, Vk,p = Mk,p-1 nMk,p, but now all the nodes of Vk,p

lie in Sj Vk,p separates nl from Mk,O within S but not from any part of any other O-section

incident to nl. Perform this construction of a finitely chainlike representation for the set

of ends of S embraced by each I-node nf (l = 1,. .., K) that is incident to S, maintaining

disjoint spurs throughout. Then, within S and for any choices of the positive integers

PI,'" ,PK, U~l Vl,plseparates all the ends of S from a finite subnetwork F(PI,'" ,PK) of S

(see Figure 1) that is maximal in the sense that the nodes of U~l Vl,PIare in F(PI' . . . ,PK).

Let us assume that the O-node no is in F(Pb'" ,PK) too. As has been shown by Nash-

Williams [15, Corollary 4A], the probability of -q;reaching any node of Vk,Pkbefore it reaches

any node of U{Vl,PI: 1 = 1,...,Kjl:F k}, given that -q;starts at no, is equal to the node
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voltage VO,k(Pb'" ,PK) at no (as determined by Kirchhoff's and Ohm's laws) when the

nodes of Vk,Pkare held at 1 volt and the other said nodes are held at 0 volt.

By virtue of Lemma 3.4, another node voltage UO,kcan be obtained at no by holding nl

at 1 volt and all other I-nodes incident to S at 0 volt.

Lemma 6.1. VO,k(Pb'" ,PK) converges to UO,kas the Pb'" ,PK tend to infinity inde-

pendently.

Proof. For each I = 1, . . . , K, let nl,PlIidenote the ith node of VI,ppand let UI,PI,idenote

the corresponding node voltage resulting from 1 volt at nl and 0 volt at all the other I-nodes

incident to S. Then, by superposition, VO,k(Pb'.. ,Pk) - UO,kis the voltage at no resulting

from 1 - Uk,Pk,iimposed at the ith node of Vk,Pkfor every i and -UI,plIi imposed at the ith

node of VI,PI for every i and every I -:J k. Now, 1 - Uk,Pk,i and UI,p/,i are nonnegative by

virtue of Theorem 4.3. By the maximum principal for node voltages in a finite network,

- max UI . < Vo k(Pl
... PK) - U o k < max (I - Uk

.
)

iil"lk ,P/,t - , " , - i ,Pk,t

where the maximum on the right-hand side is taken over all node indices i for Vk,Pkand the

maximum on the left-hand side is taken over all node indices i for all VI,PIother than Vk,Pk'

Recall that the V's are finite sets whose cardinalities are constant with respect to the p's.

By Lemma 4.1, maxi Uk,Pk,i-+ 1 as Pk -+ 00 and maxijl"lk UI,PI,i-+ 0 as PI -+ 00 when I -:Jk.

0

In the following we shall use a notation like

Prob(snbrn2, bn31 A)

to indicate the probability that \[f, after starting from node nl, reaches node n2 before

reaching node n3, given the restriction A. The ranks of these nodes may differ. Moreover,

n2 and n3 may be replaced by sets of nodes.

We take Lemma 6.1 as the basis for the following definition of a comparative transition

probability for \[f starting at a O-node no of a O-section S and reaching a I-node nk incident

to S before reaching any of the other I-nodes n~ (l = 1,. .., L; I -:Jk) incident to S. We let

Nl denote the set of those other I-nodes. (Actually, we should also establish that 'Ii truly
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can reach any such I-node; this will be shown shortly by showing that, under Conditions

2.3, every O-section5 is "transient".)

Definition 6.2. Let the O-section S have at least two incident I-nodes. Given that W

starts at a O-node no in S and reaches some I-node, the probability that W will reach nl

before reaching any node of Nl:

Prob(sno,rnl, bN; I w reaches some I-node) (10)

is defined to be the node voltage Uoat no when nl is held at 1 volt and all the n} E Ni are

held at 0 volt.

In short, this definition arises as a limiting case of the aforementioned Nash-Williams

result .

Variations of Lemma 6.1 can be established in the same way and lead to definitions of

other comparative transitions probabilities. For example, we can compare transitions to

I-nodes with transitions to O-nodes as in the next definition. In this case, the O-section 5

may have just one incident I-node.

Definition 6.3. Let Ngbe any finite set of O-nodes in 5, let no be another O-node in

5 with no fj.Ng,and let Nl be the set of alII-nodes incident to S. Given that Wstarts at

no, the probability that W will reach any I-node incident to 5 before reaching any node of

N o.
g'

Probesno, rNel, b~) (11)

is defined to be the voltage Uoat no obtained when all the I-nodes of Nel are held at 1 volt

and all the nodes of Ngare held at 0 volt.

With this latter definition in hand we can examine the transiency of any O-section. In

particular, 5 is called transient if, given that Wstarts at any arbitrarily chosen O-node ng in

5, there is a positive probability that Wwill reach a I-node incident to 5 before returning

to ng.

Theorem 6.4. Under Conditions 2.3, every O-section 5 of Nl is transient.

Proof. Let ng be chosen arbitrarily as a O-node of 5. W starting at ng perforce reaches

a O-node adjacent to ng in one step. Now, hold all the I-nodes incident to 5 at 1 volt and
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hold ng at 0 volt by connecting a I-volt sourcefrom ng to a short among all those I-nodes.

Then, by Definition 6.3, S will be transient if at least one O-nodeadjacent to ng has a

positive voltage.

Suppose all such adjacent nodes have zero voltages. (By Theorem 4.3, they cannot

have negative voltages.) Set s = i, the current regime produced by the I-volt source in

accordance with Theorem 3.1. By Kirchhoff's current law applied at ng and Ohm's law,

So = io = 0 in (4), and therefore L~l TjiJ = O. Hence, ij = 0 for all j. This means that

there can be no voltage difference between ng and the said I-no des-in contradiction to the

facts that ng is at 0 volt and those I-nodes are all at I-volt. 0

Finally, we note that the "recurrent" O-walk cited in Section 5 has zero probability of

reaching any I-node before returning to any O-node of the finite subnetwork Mk used in

that section. This is why such O-walks do not occur in the random I-walks that will be

discussed in the next section.

7 Random I-Walks

So far, we have examined random O-walks that may stop at a I-node. To obtain random

I-walks that pass through I-nodes and wander in general from one O-section to another, we

have to first define how a random O-walkmay start at a I-node.

Let nl be any I-node of Nl, choose a spur for every end embraced by nl-making those

spurs mutually disjoint, and then choose a finitely chainlike representation M = U~oMp

for the union of those spurs. Within M, Vp separates nl from Mo, and, for q > p, Vq

separates nl from Vp. Now, however, Vp and Vq will lie in many O-sections whenever nl is

incident to many O-sections. For the next definition we assume that M has two or more

spines, and thus Vp has two or more nodes. Also, Vp\np,k denotes the set of all nodes in Vp

other than the node np,k.

Definition 7.1. Given that 'If starts at na and reaches a node of Vp, the probability:

P( n5; np,k) = PTob( sn5, rnp,k, b Vp \ np,k I 'If reaches Vp) (12)

that 'If reaches the node np,k of Vp before it reaches any of the other nodes np,l (1 =
1,.", m; 1=I k) of Vp is defined to be the node voltage ul(p, k) at nl when np,k is held at 1
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volt and every np,l (1 i= k) is held at 0 volt. Similarly,given that Wstarts at a node nq,i of

Vq (q > p) and reaches a node of Vp, the probability:

P(nq,i;np,k) = Prob(snq,i,rnp,k,bVp\np,kI 'IfreachesVp) (13)

that 'If reaches np,k before reaching any other node np,l of Vp is defined to be the node

voltage Uq,i(p,k) at nq,i when np,k is held at 1 volt and every np,l (1# k) is held at 0 volt.

The second sentence of this definition is needed because nq,i resides in an infinite net-

work exterior to Vp-in contrast to the Nash-Williams result which holds for finite interior

networks.

Definition 7.1 assigns comparative probabilities for transitions from n1 to the nodes of

any Vp. Since 'If, when proceeding from n1 to a node np,k of Vp, must first meet at least

one node of Vq, where q > P, we should now prove the consistency of our definition in the

following sense: The comparative probability for the transitions from n1 to np,k is the same

as that obtained by combining the comparative probabilities for transitions from n1 to the

various nodes of Vq with the comparative probabilities for transitions from the nodes of Vq

to np,k. More specifically, by conditionaLprobabilities, we should have for q > P

P(n\ np,k) = P(nq,l; np,k)P(n1;nq,d + ... + P(nq,m;np,k)P(n\ nq,m) (14)

if Definition 7.1 is to be consistent. This equation can be established electrically by using

the conditions in Definition 7.1 as follows.

Let 1k denote the vector of m real numbers with 1 as the kth entry and 0 for all other

entries. Let up = (Up,l,"', up,m) where Up,k is the node voltage at np,k, and similarly

for Uq = (Uq,l,...,Uq,m). As before, let u1(p,k) be the voltage at n1 when up = 1k, and

let u1(q,k) be the voltage at n1 when Uq = 1k. Now, let uq(p,k) be in particular the

vector of node voltages for Vq when up = 1k, and let Uq,i(p,k) be the ith component of

Uq(p,k). Since Vq separates Vp from n1, the voltage u1(p, k) is the same as the voltage

induced at n1 by imposing Uq(p,k) as the vector of node voltages for Vq. But, Uq(p, k) =

Uq,l(P,k )11 + . . . + Uq,m(P,k )lm, and so by superposition

U1(p,k) = Uq,l(P,k)u1(q, 1) +... + Uq,m(P,k)U1(q, m). (15)
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Now,by Definition7.1, ul(p,k) = P(nl;np,k), ul(q,k) = P(nl;nq,k), and Uq,i(p,k)=

P(nq,i; np,k)' Thus, (14) is justified by (15), and Definition 7.1 has the stated consistency.

A similar use of conditional probabilities and electrical-network manipulations shows

that Definition 7.1 is consistent for transitions from Vp to Vq through Vn where p < n < q.

With regard to walks that start at nl, we have so far restricted ourselves to those that

do reach Vp. The next natural question is: What is the probability that q" after starting at

nl, will reach Vp before returning to nl? The answer is zero. Indeed, that q, starts from nl

means that q, reaches a node nq,k of Vq for some q > p. The probability that q, then returns

to nl before reaching Vp is, according to Definition 6.3, the voltage Uq,kat nq,k when nl is

held at 1 volt and all nodes of Vp are held at 0 volt. But, Uq,k~ 1 as q ~ 00 according to

Lemma 4.1. In other words, only a vanishingly small proportion of the I-walks that start at

nl reach Vp without first returning to nl, whatever be p. In this sense, nl is not a transient

node. It follows of course that the probability that q" given that it starts at nl, will reach

another I-node before returning to nl is zero.

This does not mean however that there are no random I-walks that, starting from some

I-node, penetrate a O-section and continue on to reach another I-node. It simply means

that we are dealing with the exceptional case among all the random I-walks that start at

nl when we examine those that reach Vp for any given p. Thus, we are free to compare

transition probabilities for those I-walks that do penetrate a O-section from an incident

I-node.

We can for example compare transition probabilities for I-walks that rove (Definition

5.1), that is, for I-walks that, after starting from a I-node nij, reach another I-node before

returning to nij. As our last task in this section, we shall show that a random roving I-walk

is a Markov chain with a finite state space consisting of the I-nodes of Nl.

For this purpose, consider now a I-node nA and all its incident O-sections Sa (a =

1,..., A). This is illustrated in Figure 2 wherein we have taken A = 2. Let nL..', nk

be the I-nodes incident to those O-sections Sa other than nij; we say that those I-nodes

are adjacent to nij. Choose a spur for every end of the Sa that is embraced by an nl

(k = 1,..., K). Those spurs can be chosen so small that they are disjoint from all the
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other spurs; do so. Let U~o Mk,p now be a finitely chainlike representation for the union

ofthe spurs for the ends of the Sa that are embraced by the single I-node nl. Once again,

Vk,p = Mk,p-1 U Mk,p (p> 0).

Let us choose a positive integer Pk for each k = 1,..., K. The nodes of Uf=1Vk,Pklie

in all the O-sections incident to na and separate na from all the nl. (See Figure 2.) As a

direct extension of Definition 7.1, we can assign comparative probabilities for transitions

from na to the various Vk,Pk' In particular, given that W starts at nl:,and reaches a node

of Uf=1 Vk,Pk' the probability that Wreaches any node of Vk,Pkbefore it reaches any node

of U{VI,PI : 1 = 1,..., K; 1 ¥ k} is equal to the node voltage VO,k(Pb." ,PK) at na when

the nodes of Vk,Pk are held at 1 volt and the nodes of all the VI,PI(l ¥ k) are held at 0

volt. As before, by virtue of Lemma 3.4, another node voltage UO,kis obtained at na by

holding nl at 1 volt and the other I-nodes n~ (l ¥ k) adjacent to nl:, at 0 volt. We can

repeat the proof of Lemma 6.1, substituting nl:,for no, all the O-sections Sa incident to nl:,

for the single O-section S, and the I-nodes adjacent to nl:, for the I-nodes incident to S.

The proof proceeds exactly as before, the only difference being that we need a maximum

principal for the node voltages in a I-network. This is provided by Theorem 4.3. All this

leads to the conclusion that VO,k(P1'..', PK) converges to UO,kas the P1,' . . ,PK tend to

infinity independently. Hence, we are led to the following definition, wherein Nl denotes

all the I-nodes adjacent to nl:,other t,han nl.

Definition 7.2. Assume there are two or more I-nodes adjacent to the I-node na. For

any random roving I-walk, the probability:

P(n5;nl) = Prob(sn5,rnl,bN; IWroves) (16)

that W, starting from nl:"reaches an adjacent I-node nl before it reaches any of the other

adjacent 1-node n~ (1¥ 0, k) is defined to be the node voltage at na when n1is held at 1

volt and all the I-nodes of Nl are held at 0 volt.

Lemma 7.3. Under the conditions of Definition 7.2, 0 < P( nl:,;nl) < 1.

Proof. This follows directly from Corollary 4.4. For instance, to conclude that P( nl:,;nl) <

1, choose the I-path p1 of that corollary to be p1 = {nl:"po,n~}, where n~ is the I-node

obtained by shorting the nodes of Nl and po is an endless O-path that reaches nl:,and n~.
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If n6 has only one adjacent I-node nl, P( n6; nl) is set equal to one.

This then defines the one-step transition probabilities for a random roving I-walk from

any I-node n6 to its adjacent I-nodes. Obviously the probability that a I-walk will go in

one step from n6 to a I-node that is not adjacent to n6 is zero. Moreover, by definition of a

roving I-walk, the probability of a transition from n6 to n6 in one step is zero too. Finally,

to show that we have a Markov chain, we have to show that these probabilities for one-step

transitions from any given I-node sum to one. By superposition, this sum is equal to the

voltage u6 at n6 when all the I-nodes adjacent to n6 are held at 1 volt and all other I-nodes

and O-nodes are left floating (Le., no source connections to them). But then, all branch

currents in the O-sections incident to n6 are zero, and therefore U6= 1 too, as required.

Theorem 7.4. A random roving i-walk Wl for a network Nl that satisfies Conditions

2.3 is a Markov chain with a state space consisting of the i-nodes nt of Nl and with the

following one-step transition probabilities: Pk,k = 0; Pk,l = 0 if nt and n~ are not adjacent;

Pk,l is given by Definition 7.2 if nt and n~ are adjacent.

By definition the following two conditions have also been imposed: Any O-walk WO

embraced by Wl follows the customary rules of transition for a random walk on the 0-

section to which WO is confined. The transition in (9) from one O-walk W~ to the next

O-walk W~+1 through the I-node n~+1 is governed by Definitions 6.2, 6.3, and 7.1.

8 Reversibility and the Surrogate Network

Theorem 8.1. The Markov chain of Theorem 7.4 is irreducible and reversible.

Proof. The case where Nl has just two I-nodes is trivial. So, let Nl have more than

two I-nodes.

For any two adjacent I-nodes nl and n~, the probability that a roving I-walk will pass

from nl to n~ in one step is positive (Lemma 7.3). The irreducibility [11] of the Markov

chain now follows from the I-connectedness of Nl.

As for reversibility, we start by recalling the definition of a cycle-adapted for I-nodes.

This is a finite sequence C = (nl, n~,. . ., n~,n~+1= nD of I-nodesnt, whereall I-nodes
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are distinct except for the first and last, there are at least three I-nodes (Le., c > 2); and

consecutive I-nodes in C are adjacent in NI. A Markov chain is reversible if, for every cycle

C, the product I1k=1Pk,k+1 of transition probabilities Pk,k+1from nl to nl+1 remains the

same when every Pk,k+1 is replaced by Pk+I,k [11, Section 1.5]. Thus, we need only show

that

PI,2P2,3'" Pe,l = PI,e'" P3,2P2,1. (17)

According to Definition 7.2, Pk,k+1 is obtained by holding nl+1 at 1 volt, by holding all

the I-nodes adjacent to nl other than nl+1 at 0 volt, and setting Pk,k+1= uk, where ul is

the resulting voltage at nl. For this situation, Uk will remain unchanged when still other

I-node voltages are arbitrarily specified.

To simplify notation, let us denote nl by mo and nl+1 by mI. Also, let m2,"', mK

denote all the I-nodes different from nl and nl+1 but adjacent to either nl or nl+1 or

both. Since the cycle has at least three I-nodes, we have K ~ 2. Now, consider the

K-port obtained from NI by choosing mk, mo as the pair of terminals for the kth port

(k = 1,..., K) with mo being the common ground for all ports. To obtain the required

node voltages for measuring Pk,k+l, we externally connect a I-volt source to ml from all of

the m2,' .. mK, with mo left floating (Le., mo has no external connections). The resulting

voltage Uo at mo is Pk,k+1'

With respect to mo, the voltage at ml is 1 - Uo and the voltage at mk (k = 2,..., K)

is -Uo. Moreover, with ik denoting the current entering mk (k = 1,..', K), the sum

il +...+ iK is zero. (Apply Kirchhoff's current law at mI') Furthermore, the port currents

and voltages are related by i =Y u, where i = (il, . . ., iK), u = (1- uo,-Uo, . . ., -uo), and

Y = [Ya,b]is a K X K matrix of real numbers that is positive-definite(Lemma 3.3). Hence,

Y is symmetric. Upon expanding i = Yu and adding the ik, we get

KKK

0 = il + . . .+ iK = L Ya,1 - Uo L L Ya,b'
a=1 . a=lb=1

Therefore,

2:~=1 Ya,1

Pkk+1 = Uo = "K ,,~ Yab., ~a=l~b-1 ,
(18)
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Upon setting Gk = I:~=1I:f:l Ya,b,we can rewrite (18) as

K

GkPk,kH = L:Ya,l'
a=1

(19)

Now, L~=1 Ya,l is the sum i1+... + iK when u = (1,0,...,0); that is, L~=1Ya,1is the sum

of the currents entering mI, m2,"', mK from external connections when I-volt sources are

connected to ml from all of the mo, m2,"', mK.

By reversing the roles of mo and mI, we have by the same analysis that Gk+lPk+l,k is

the sum io+ i2+. . .+ iK ofthe currents entering mo, m2, , . ., mK from external connections

when I-volt sources are connected to mo from all of the mI, m2,"', mK. With respect to

the ground node mo, we now have Ul = '" = UK = -1, and therefore i1 = - L~1 Y1,a'

Moreover,under this latter connection, the sum -i1 - i2 - .., - iK of the currents leaving

mI, m2, . . 'mK is equal to the current io entering mo. Hence, -i1 = io+ i2+. . .+ iK. Thus,

K

Gk+lPkH,k= -i1 = L: Y1,a'
a=l

(20)

Since the matrix Y is. symmetric, we have Y1,a = Ya,I' So, by (19) and (20),

Gk+1PkH,k = GkPk,k+1' (21)

Finally, we may now write

G2 G3 G1
PI2 F23 "'P 1 = -F 21 -P32",-P1 = P21P32",P1

" c, G1' G2' G c ,c " ,c

This verifies (17) and completes the proof. 0

Because the Markov chain is irreducible and reversible, we can synthesize a finite 0-

network Nh o whose O-nodes correspond bijectively to the I-nodes of N1 and whose random

O-walks are governed by the same transition matrix as that for the random roving I-walks

of Nl, Nh-..o acts as a surrogate for Nl. A realization for it can be obtained by connecting

a conductance 9k,l = 9l,k between the O-nodes n~ and n? in Nh-"o, where 9k,l is given as

follows: Let nl t-+ n~ denote the bijection from the I-nodes of N1 to the O-nodes of N1"""O.

If nl and nt are not adjacent in Nl, set gk,l = O. If nl and nt are adjacent in Nl, relabel

nl as mo, nt as mI, and let m2,' . ., mK be the other I-nodes that are adjacent to either
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mo or ml or both. Then, with our prior notation, set Gk = 2:~=12:f:l Ya,b' Also, set

G = L:kGk, where this latter sum is over all indices for all the I-nodes of Nl. Finally, set

9k,1 = Pk,IGk/G. By (21), 9k,1= 91,k. This yields the surrogate network [4, page 43].

9 A Special Kind of lI-N etwork

Let us turn now to random walks on v-networks, where v is any positive natural number.

Our theory for transfinite random walks of the higher ranks is constructed recursively and

is much like that for random I-walks. However, modifications and extensions are needed

throughout the development. Because ofthis, we will be specific about our definitions, lem-

mas, and theorems but will explicate our proofs only when the arguments involve significant

deviations or expansions from the foregoing.

Let I" be any natural number, and let Kil be a given I"-network with the branch set B.

Let B1 and B2 be two subsets of B, and let K1 and K2 be the reduction of Kil induced

by B1 and B2 respectively. Then, the union K1 U K2 is the reduction of Kil induced by

B1 U B2. Also, the intersection K1 n K2 is the reduction of Kil induced by B1 n B2. If

Bo, B1,' .. is a partition of B, we say that Kil is partitioned into Ko, K1,..., where each Kp

is the reduction of Kil induced by Bp. Thus, we may write Kil = UpKp.

Furthermore, let a reduction Kr of Kil have a tip or node (of whatever rank) that is

embraced by a node no (also of some unspecified rank) of KIl; then, Kr and no are said to

be incident. If Kr and Lr are are two reductions of KIl, then Kr 0 Lr will denote the set

of all nodes of Kil that are incident to both Kr and Lr.

As with I-networks, a critical construct in our development is an extension to I"-networks

of Halin's finitely chainlike structure for O-networks. Now, let I" 2: 1. A I"-network MIL will

be called finitely I"-chainlike if it can be partitioned into a sequence {M~}~o of reductions

M~ of MIL:
00

MIL = UM~
p=o

where each M~ is of rank I" and has finitely many (I" - 1)-sections and where every (I" - 1)-

(22)

section of MIL appears in its entirety in one and only one of the Mj:; it is also required
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that

M~0 M~-l = V:' p = 1,2,..., (23)

where each V; is a finite set of J.L-nodesin MJ.t and that the following three conditions be

fulfilled.

(a) The cardinality mJ.tof each V; does not depend upon p.

(b) For every p ~ 2, M~0 u:~~ M~ = 0.

(c) In each M; (p ~ 1) there are mJ.tpairwise totally disjoint J.L-pathsfrom the J.L-nodesin

V; to the J.L-nodesin V:+!'

Once again the union for all p of all the totally disjoint J.L-pathsof condition (c) yields

mJ.ttotally disjoint, one-ended J.L-paths,which we will call spines or J.L-spines,and the set of

all mJ.t of them will be called a full set of J.L-spines for the finitely J.L-chainlike structure.

A significant difference between this definition of a finitely J.L-chainlike structure for a

J.L-networkand Halin's definition corresponding to a O-network is that J.L-sectionsnow take

on the role played previously by branches. This distinction will remain in force throughout

our development of random v-walks on a v-network NV.

As before, we require that there be no infinite O-nodes, no self-loops, and no parallel

branches in NV. Now, let v be a natural number no less than 2. For every J.L= 1,. . . ,v, we

also require that no J.L-nodeof NV embrace a node of lower rank. Moreover, we shall require

that NV be v-connected. As a result, every (J.L- 1)-section will have at least one incident

J.L-nodeand will be J.L-connectedto other parts of NV through its incident J.L-nodes.

Lemma 9.1. Under the just-stated conditions on NV, let v ~ 2. Assume in addition

that, for every J.L= 0,..., v - 2, each J.L-sectionhas finitely many incident (J.L+ 1)-nodes.

Then, there are infinitely many J.L-sections in every (J.L+ 1)-section for each J.L= 0, . . . , v - 2.

Proof. By definition of a v-network [25], NV has at least one v-node and therefore at

least one (v -I)-tip. This in turn implies that there is at least one one-ended (v - I)-path

and therefore an infinity of (v-I)-nodes. Our conclusion for J.L= v-2 now follows from the

assumption that each (v - 2)-section is incident to finitely many (v -I)-nodes and from the

fact that every (v -I)-node must be incident to at least one (v - 2)-section. Our conclusion
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for all lower values of J.lis established by repeating this argument for J.l= v - 3, ..., 0 in

turn with Nil replaced by a (J.L+ 2)-section. 0

Now, let 1 :$ J.L< v. We say that Nil possesses a J.L-tip tll- and that tll- is in Nil if Nil

has a (J.L+ 1)-node that contains tll-; a similar wording is used for any reduction of Nil. Let

K be any reduction of Nil and let the rank of K be J.L+ 1. Hence, K possesses at least

one J.L+ I-node and therefore at least one J.L-tip1'1l-.There is a unique J.L-tiptll-in Nil that

contains 1'1l-as a subset. In fact, 1'1l-1-+tll-is an injection from all the J.L-tips of K to some or

all of the J.L-tips of Nil. Because of this, we say that K possesses tll- as a J.L-tipif there is a

representative of tll-that lies entirely within K.

For 1 :$ J.L< v again, let S'J-l denote any finite set of (J.L- 1)-sections in Nil and let

Nj = NII\S'J-l denote the reduction of Nil induced by all branches of Nil that are not in

the members of S'J-l. Since the deletion of the branches in the members of S'J-l removes

only a finite part of anyone-ended J.L-path,Nil and Nj possess exactly the same J.L-tips.

As the next step, we extend the definition of an end. With 1 :$ J.L< v still, two J.L-

tips of Nil will be called J.L-end-equivalentif, for every choice of S'J-l, the two J.L-tipshave

representatives lying in the same J.L-sectionof Nj. The corresponding equivalence classes of

J.L-tipswill be called J.L-endsof Nil. Since all J.L-tipsin a given J.L-endmust belong to a single

J.L-section of Nil, we say that the J.L-endbelongs to that J.L-section. Because every J.L-section of

Nil has at least one incident (J.L+ 1)-node and therefore at least one J.L-tip, every J.L-section

has at least one J.L-end.As with Lemma 2.1, we have

Lemma 9.2. Under the stated assumptions on Nil, Nil and Nj = NII\S'J-l have the

same J.L-tipsand the same J.L-ends.

Let a J.L-enddll-of Nil be such that an S'J-l can be so chosen that, within Nj = NII\S'J-l,

the J.L-sectionS~ that possess dll-as a J.L-endhas no other J.L-end.In this case, S~ is called

a J.L-spurfor dll-,and dll-will be said to possess S~ as a J.L-spur.As before, we can alter S~

and still have a J.L-spurfor the given dll-by removing or perhaps appending (J.L- 1)-sections.

Some obvious modifications of the proof of Lemma 2.2 establishes the following under our

stated assumptions on Nil.

Lemma 9.3. Assume that a J.L-section SIl- of Nil has only finitely many J.L-ends. Then,

32



a finite set 8'1-1 of (p,- 1)-sections can be so chosen that every J.L-endof 51' is the one and

only J.L-endof some J.L-section5~ of NV\Sj-1 (i.e., each such J.L-sectionis a J.L-spurfor its

J.L-end)and the J.L-spursare mutually disjoint (i.e., mutually not J.L-connected).

Let us now gather together all the assumptions we impose upon the v-network NV

throughout the remainder of this work.

Conditions 9.4. Let J.Land v be natural numbers with v ~ 1 and J.L= 0,. . . ,v - 1.

(a) NV is a v-connected v-network having no infinite O-nodes, no self-loops, and no parallel

branches. For every J.L,no (J.L+ 1)-node embraces a node of lower rank. NV has at

least two v-nodes.

(b) NV has only finitely many (v - 1)-ends, and for each J.L every J.L-section has only finitely

many J.L-ends.

(c) Each J.L-endis embraced by some (J.L + 1)-node (i.e., all the J.L-tipsin that J.L-end are

members of a single (J.L+ I)-node), and every (J.L+ I)-node embraces only finitely many

J.L-ends.

(d) Every branch bj of NV has assigned to it a positive number 9, called the branch con-

ductance; Tj =9;1 is called the branch resistance. Every branch has an orientation.

(e) Every J.L-endhas a J.L-spur that is finitely J.L-chainlike and possesses a full set of J.L-spines,

each of which is perceptible.

The proof of Lemma 2.4 extends directly to yield the following. Here, a O-spur is a spur

as defined in Section 2, and similarly for a O-end.

Lemma 9.5. Under Conditions 9.4, the following is true.

(i) Every J.L-spurhas the properties indicated in Condition 9.4 (e).

(ii) Everyone-ended J.L-pathlies within a J.L-spur.

(iii) Between every two nodes of NV there is a perceptible v-path that terminates at those

nodes, whatever be the ranks of those nodes.
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(iv) Nil has only finitely many (v - 1)-sections and v-nodes. Moreover,for each JL,every

J.L-sectionis incident to only finitely many (J.L+ 1)-nodes, and every (J.L+ 1)-node is

incident to only finitely many J.L-sections.

We have already defined in Section 2 what we mean by shorting together finitely many

O-nodes. As for the shorting of a finite number of J.L-nodes,where J.Lis fixed, positive, and

possibly equal to v, just take their union to create a new J.L-nodeand thereby a new v-

network. Note that the new v-network also satisfies Conditions 9.4. As for the shorting of

finitely many nodes of various ranks, first short all the nodes of the same rank, doing this

for every rank; then the resulting node of highest rank is taken to embrace the resulting

node of next highest rank, which in turn is taken to embrace the resulting node of third

highest rank, and so forth.

10 Excitations at Nodes of Arbitrary Ranks

The objective of this section is to establish that a pure voltage source can be connected

to any two nodes of Nil, whatever be the ranks of those nodes. We start with a resistive

voltage source. Let bo denote a source br(\,nch consisting of a pure voltage source eo in series

with a positive resistance p. Let us append bo to Nil by connecting bo to any two nodes

(of any ranks) of Nil. (We now index the branches of Nil by j = 1,2, ) The resulting

network will be denoted by N~. As with O-sections, a "J.L-section"of whatever rank J.Lwill

always be understood to be a J.L-sectionwith respect to Nil, not with respect to N~. The

spaces KO and K are defined for N~ as in [25, section 10], and so too for q-loop currents

and q-basic currents. That paper has established

Theorem 10.1. Let the resistive-voltage-source branch bo be connected to any two nodes

of N~. Then, there is a unique current vector iP = (ig,ii, i~, . . .) E K such that
00

eoso = pigso+ L Tjijsj
j=l

(24)

fOT every s E K.

The next step is to extend Kirchhoff's current law to a "cut" in N~ that "isolates" a node

nIL+! of rank J.L+ 1 ~ v. We allow nlL+l to be one of the nodes to which the source branch
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bo is connected. By Condition 9.4(c), nJ'+l embraces only finitely many Jl-ends. Choose

a /l-spur for every /l-end embraced by nJ'+1(Lemma 9.3). From the finitely /l-chainlike

structure of the union of those spurs, we can select a finite set VpJ' = M
pJ' 0 MJ.I 1 of" " P,,-

/l-nodes. Noweach /l-node in V#"embracesonly finitely many (/l-I)-ends, and therefore is

incident to only finitely many (/l - 1)-sections. By the definition of the finitely /l-chainlike

structure (see Section 9), each of the latter (/l - 1)-sections lies entirely within either M~"

or M~rl (not in both). If there is any (/l - I)-section that is incident only to /l-nodes in

V#", we assign that (/l- I)-section to M~". Thus, any (/l- I)-section S~-l in M~rl that

is incident to one or more /l-nodes in V#" is also incident to some /l-nodes of M~,,-l that

are not in V#,,' Consider all of the (/l - I)-sections like S~-l. Choose a (/l - 1)-spur for

everyone of their (/l- 1)-ends that is embraced by a /l-node of V#". The union of all those

(/l-1 )-spurs is finitely chainlike. Therefore, we can choose a finite set V#,,-_llof (/l-1 )-nodes

from that chainlike structure, and then consider all (/l - 2)-sections Sr-2 in M~:!1-1 each

of which is incident to at least one node of VpJ.l-l and to at least one node not in VpJ.l-l.,,-I ,,-I

Continuing in this way toward lower ranks, we finally reach a finite set V~o = M~o 0 M~o-l

of O-nodes which separates nJ.l+1from all other (J.l+ I)-nodes in the following way: If pJ.l+1

is a (/l + 1)-path in Nil that meets nJ.l+1and any other (/l + 1)-node, then pJ.l+1embraces a

O-node of V~o' (In a similar sense, we will say later on that V~oseparates nJ.l+1from nodes

of other ranks.)

All the branches of M~o-l that have one node in V~oand one node not in V~ocomprise

a finite set C. We call C a cut for nJ.l+1at V~o'and refer to the branches of C as cut-branches

at V~o' We also say that, within Nil, C isolates nJ.l+1from all other (/l + 1)-nodes. Again

a cut-branch is said to be oriented away from (toward) nJ.l+1if it is oriented away from

(toward) its node in V~o' Kirchhoff's current law for C is again expressed by (5), except

that nl is now replaced by nJ.l+1.To be specific, for N~, that law states that

L:: :!:ij = 0, (25)

where the summation is for the branches in C and for bo as well if bo is incident to nJ.l+l,ij is

the current in those branches, and the plus (minus) sign is used if the branch's orientation

is away from (toward) nJ.l+1. With obvious modifications to its proof, Lemma 3.2 extends
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to the present case of a v-network N~:

Lemma 10.2. Kirchhoff's current law (25) holds whenever i E K.

Lemma 3.3 also extends directly. In particular, we can produce a unique voltage-current

regime within Nil by connecting finitely many pure current sources h2"'" hK from any

node nl in Nil to K - 1 other nodes n2,"', nK. The ranks of these nodes may differ.

The resulting vector u = (U2,"', UK) of node voltages at the latter nodes measured with

respect to nl (i.e., Ul = 0) is related to the vector h = (h2,. . . ,hK) by u = Zh, whereZ is

a (K - 1) x (K - 1) real matrix. In the same way as before, we can prove

Lemma 10.3. Z is positive-definite and therefore nonsingular.

This implies that pure voltage sources can be connected from nl to n2,. . ., nk to produce

a unique voltage-current regime within Nil.

Furthermore, the voltage-current regime produced by a single pure voltage source eo

connected between any two nodes can be approached by connecting a resistive voltage

source, as in Theorem 10.1, and then letting p -+ O. Exactly as in Section 3, the following

generalization of Theorem 3.4 can be obtained. (Here, the same branch numbering system

as that for Theorem 10.1 is used. Also, in the limit the inner product for I becomes

(i, s) = I:~l ijsj, and io is determined from the other branch currents by Kirchhoff's

curent law.)

Theorem 10.4. Let a pure voltage source eo be connected to any two nodes of Nil of

arbitrary and possibly differing ranks. Then, for the resulting network N~, there is a unique

i E K such that, for every s E K,

00

eoso = 2: rjijsj.
j=l

(26)

11 N ode Voltages in N~

From now on, N~ will denote Nil with a single pure I-volt voltage source connected to

any two nodes of Nil. The negative terminal of the I-volt source will always be assigned

the zero node voltage. As was the case for I-networks, we will need the fact that every

node voltage in N~ is bounded between zero and one. We shall establish this through an
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inductive argument that extends the results of Section 4 to higher ranks. In doing so, we

will obtain a maximum principle for node voltages in a v-network.

Let 0 ~ p < v, and let SIl be a p-section in NlI. SIl will be called sourceless if no node

(of whatever rank ~ p) in SIl is incident to the source branch bo of N~. (A sourceless SIl

may have bo incident to one of its incident (p + 1)-nodes.) Consider the following. Part (a)

is a transfinite generalization of the maximum principle for node voltages.

Properties 11.1.

(a) There exist exactly two possibilities for all node voltages in any sourceless p-section SIl.

(al) All the p-nodes in SIl have the same voltage.

(a2) The p-node voltages in SIl are strictly less (and strictly larger) than the largest

(respectively, least) voltage for the (p + 1)-nodes that are incident to SIl.

(b) The p-node voltages along anyone-ended p-path pll in SIl (whether or not pll is

perceptible) converge to the voltage of the (p + 1)-node that pll meets.

Note that these properties are fulfilled for p = 0 according to Lemmas 4.1 and the

classical maximum principle for node voltages in the usual kind of network. We now use

strong induction. Assume that Properties 11.1 hold for all ranks up to and including any

chosen p, where p ~ v - 2. We argue that they also hold for p replaced by p + 1. If

possibility (a1) is not fulfilled by some sourceless (p + 1)-section SIl+1, then any arbitrarily

chosen (p + 1)-node n~+1 in SIl+1 will have a voltage u~+1 different from that of some other

(p + l)-node n~+1 in SIl+1. We can choose a (p + l)-path in SIl+1 that terminates at n~+1

and n~+1 and trace along it to find a (p + 1)-node (possibly n~+1 itself) with the same

voltage as n~+1 but adjacent to a (p + 1)-node with a different voltage. Let Sf be the

union of all p-sections, each of which is incident to both of the latter two (p + 1)-nodes.

According to Lemma 9.5(iv), there are only finitely many p-sections in the union Sf. Then,

by the assumed Properties 11.1, all the p-node voltages in Sf are strictly less than the

largest voltage ui+1 for the (p + l)-nodes incident to Sf (Le., incident to a p-section of

St). Let ni+1 be a (p + l)-node incident to Sf with the largest voltage ui+1. (Possibly,

ni+1 = n~+1.) We have ui+1 ~ u~+1.
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Suppose all the (Ii + 1)-nodes adjacent to ni+1 have voltages no larger than ui+1. Ignore

the JL-sections incident to ni+1 with constant JL-node voltages; all their currents are zero.

With regard to the remaining JL-sections incident to ni+1, from the finitely JL-chainlike

structure for a union of JL-spurs for all the JL-endsembraced by nt+1, choose a Vi: and a

Vt (q > p), where Vt separates Vi: from nt+1. Next, consider the network between Vi:

and Vt. It has (JL- 1)-spurs for its (JL- 1)-ends embraced by the nodes of Vt-1, and the

union of those spurs has a (JL- l)-chainlike structure. Choose a Vt-1 from it. Thus, Vt-1

separates Vi: from V: and therefore from nr+1. Repeating this procedure for still lower

ranks, we finally obtain a V~, where V~ separates Vi: from nt+1. Moreover, these choices

can be so made that the largest JL-nodevoltage for Vi: is strictly less than the least O-node

voltage in V~. The latter requirement can be fulfilled by virtue of (a2) and (b) of Properties

11.1 and our strong-induction hypothesis. Therefore, we can connect pure voltage sources

to the nodes of Vi: U V~ as in our argument for Theorem 4.3 to derive a contradiction to

Kirchhoff's current law as applied to a cut at V~ for ni+1. This shows that adjacent to

nl'+1 there is a ( II.+ I )-node nl'+1 with ul'+1 > ul'+1 We choose nl'+1 such that ul'+1 is the1 r- 2 2 l' 2 2

largest voltage for all (JL+ I)-nodes adjacent to nt+1.

Repeating this argument, we can find another (JL+ I)-node n~+1 with the following

Properties' nl'+1 is adJ'acent to nl'+1 but not to nl'+1. ul'+1 > ul'+1. ul'+1 is the largest'3 2 1'3 2'3

voltage for all (JL+ 1)-nodes adjacent to n~+1.

Further repetitions lead to an infinite sequence {n~+1HO=1of (JL+ 1)-nodes wherein

two (JL+ I)-nodes are adjacent in the sequence if and only if they are adjacent in N/.'.

Moreover, u~+1 < u~ti for every k. It followsthat we can find a (JL+ I)-path pl'+1 having

nt+1, n~+1, ... as its consecutive (JL+ 1)-nodes. pl'+1 is a representative of a (JL+ 1)-

tip embraced by some (JL+ 2)-node nb+2 incident to 51'+1, the sourceless (JL+ 1)-section

with which we started. Now, the (JL+ 1)-node voltages along pl'+1 are strictly increasing.

Moreover, pl'+1 meets infinitely often various nodes of U~o Vi:+1 for a finitely (JL+ 1)-

chainlike structure for a union of (JL+ 1)-spurs (chosen according to Condition 9.4(e» for

all (JL+ 1)-ends embraced by nb+2. The voltages for the nodes of U~o Vi:+1 comprise a

directed function and converge to ub+2because every spine is perceptible and there are only
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finitely many spines. Consequently, the (J.L+ 1)-node voltages along pl-'+l converge to U!;+2.

Thus, ug+2 > ui+1 ~ u~+l. Since n~+1 was chosen arbitrarily in SI-'+1,we can conclude

that every (Ji + 1)-node voltage for SI-'+1is strictly less than the largest of the voltages for

the finitely many (Ji+ 2)-nodes incident to SI-'+1.

A similar argument shows that, if part (a1) of Properties 11.1 is not fulfilled by SI-'+1,

then every (Ji+ 1)-node voltage for SI-'+1is strictly larger than the least of the voltages for

the finitely many (Ji + 2)-nodes incident to SI-'+1. This establishes part (a) of Properties

11.1 for Ji replaced by Ji+ 1.

As for part (b), let Ji ::; II - 2 again and let pl-'+l be a one-ended (Ji+ 1)-path in SIl+1.

By Lemma 9.5(i) and (ii), pl-'+1lies in a (Ji+ I)-spur, which is finitely (Ji + l)-chainlike in

accordance with Condition 9.4(e). Let nl-'+2be the (Ji+ 2)-node that pl-'+1meets. Now

consider any M~+1 in that chainlike structure. By our preceding argument, all the voltages

for the (Ji + I)-nodes in M~+1 are no larger (no less) than the largest (respectively, least)

(Ji+ 1)-node voltage for V:;+1u v:.tf. Since there are only finitely many spines and they are

all perceptible, these largest and least voltages converge to the voltage at nll+2 as p -+ 00.

Thus, part (b) holds for Ji replaced by Ji+ 1. We have established inductively

Theorem 11.2. Under Conditions 9.4, Properties 11.1 are fulfilled by any sourceless

Ji-section 81-' with any rank Ji = 0, . . ., II - 1.

Corollary 11.3. If SI-' is a sourceless Ji-section with 0 ::; Ji < II and if Sil has only one

incident (Ji + 1)-node, then all the node voltages for Sil are the same, namely, the voltage

of the incident (Ji + 1)-node.

We can draw a stronger conclusion regarding convergence of voltages along one-ended

paths even when there are finitely many sources appended to SIl, both of the voltage and

current types and both pure and resistive.

Lemma 11.4. If no more than finitely many sources are appended to nodes of SIl, part

(b) of Properties 11.1 remains true for every Ji < II.

Proof. In the prior inductive proof of part (b), pll+l can be restricted to a (Ji+ 1)-spur

which is sourceless. Then, every M~+1 is sourceless and the prior argument can be applied

again. 0
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Let us now return to N~, that is, to NV with a single source-a pure I-volt source-

appended to two nodes of arbitrary ranks; the negative terminal of the source is assigned

the zero node voltage. The next objective is another extension to N~ of the maximum

principle for node voltages. We start with a lemma, which will be used later on to construct

a contradiction.

Lemma 11.5. Let S~ be a J.L-sectionwith 0 ~ J.L < v and let it contain one or both

of the source nodes. Assume there is a J.L-noden~ in S~ with u~ > 1. Then, there is a

(J.L+ I)-node ni+1 incident to S~ such th~t ui+1 > 1, ui+1 is no less than the voltages at

all the (J.L+ 1)-nodes incident to S~, and ui+1 is strictly larger than the voltages at all the

J.L-nodes within S~.

Proof. We argue inductively. For J.L= 0 this lemma follows from Lemma 4.2 for the

case where the O-section So contains both ng and a source node and therefore has differing

O-node voltages. Now, assuming the lemma is true for all ranks up to and including some

chosen rank J.L~ v - 2, we shall prove that it is true for the (J.L+ 1)-section S~+1 that

contains S~.

Let there be a (J.L+ 1)-node n!;+1in S~+1 with u!;+1> 1. It follows that there will be two

adJ"acent ( II. + I )-nodes n~+l and n~+l in S~+l with U~+l > U~+l > 1 and u~+l > u~+l Letr- a b a -0 a b'

Sf+1 denote the finite union of all the J.L-sectionsthat are incident to both n~+1 and n~+1.

Then, by Lemma 11.4 in conjunction either with our inductive hypothesis (if a J.L-sectionof

Sf contains a source node) or with Theorem 11.2 (if a J.L-sectionof Sf is sourceless), there

exists a (J.L+ 1)-node incident to Sf such that ui+1 is no less than the voltages at the finitely

many (J.L+ 1)-nodes incident to Sf and ui+1 is strictly larger than the voltages at all the

J-l-nodesin Sf. Thus, ui+1 ~ u~+1 ~ u!;+1> 1.

Using Lemma 11.4 again, we now proceed exactly as in the argument that led to Theorem

11.2 to conclude that, if Kirchhoff's current law is not to be violated at a cut that isolates

ni+1 from all other (J-l+ 1)-nodes and from the source nodes, there must be a (J-l+ 1)-node

n~+l adJ'acent to n~+1 such that the followin g hold" u~+1 > u~+l > u~+l > l' u~+1 is2 1 '2 1 -0 '2

no less than all the voltages at the finitely many (J-l+ I)-nodes adjacent to ni+1; u~+1 is

strictly greater than the voltages at all J-l-nodeswithin the J-l-sectionsincident to ni+1.
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A repetition of the last paragraph shows that, if Kirchhoff's current law is not to be

violated at a cut that isolates n~+1from all other (JL+ I)-nodes and from the source nodes,

there must be another (JL+ I)-node n~+1 adjacent to n~+1 such that the stated conditions

are again satisfied with ni+1 replaced by n~+1 and n~+1 replaced by n~+1.

Continuingin this way,wefind a sequenceni+1, n~+l,n~+1,. . .of consecutively adjacent

(JL+ 1)-nodes in SJ.l+1with 1 < u~+1 ::;u~+1 ::;ui+1 < u~+1 < u~+1 < . ... It followsthat

these are the (JL+ I)-nodes along a (JL+ I)-path pJ.l+1that meets a (JL+ 2)-node n~+2

incident to SJ.I+1and whose voltages converge to u~+2 (Lemma 11.4 again). Since this is so

whatever be the node n~+1 with which we started, we can furthermore conclude that there

is a (JL+ 2)-node ni+2 incident to SJ.I+1such that the conclusion of Lemma 11.5 is fulfilled

when JLis replaced by JL+ 1. This completes the inductive proof. 0

Theorem 11.6. The voltage at every node (of any rank) in N~ is no less than zero and

no greater than one.

Proof. Suppose there is a node with a voltage larger than one. We can apply Theorem

11.2 and Lemma 11.5 recursively to conclude that there is a v-node no in N~ with the

following two properties: Uo > 1; Uo is no less than all the voltages at all the nodes of all

ranks in N~. By tracing a v-path from no to a source node, we can find a v-node nl such

that ul = Uo and nl is incident to a (v - I)-section whose nodes of all ranks less than

v have voltages strictly less than ui' ,(invoke Lemma 11.5 again). However, this implies a

contradiction to Kirchhoff's current law at a cut that isolates no from all the other v-nodes

and also from the source nodes. Hence, our supposition is false.

A similar argument involving a modification of Lemma 11.5 establishes that there is no

node with a negative voltage. (Alternatively, we can obtain this second conclusion from the

first one by reversing the source's polarity and adding 1 to all node voltages. This merely

reverses all branch currents.) 0

As before, n~ denotes the source node at I-volt and n~ denotes the source node at 0

volt, a and ;3 being their ranks.

Corollary 11.7.

(i) Let nJ be a ,-node for which there is JL-pathpJ.I, where JL~ max(;3,,), that terminates
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at nJ and n~ and does not embrace n~. Then, uJ < 1.

(ii) Let nri bea ,-node for which there is a fL-path pJ1.,where fL ~ max( 0,,), that terminates

at nri and n~ and does not embrace n~. Then, uri > O.

Proof. Under the hypothesis of (i), suppose uJ = 1. Let us trace pl/ from nJ to n~

and examine the node voltages. They must eventually fall below one. By virtue of Lemma

11.4 and Theorems 11.2 and 11.6, exactly two cases arise.

Case 1: pJ1.embraces two adjacent A-nodes n~ and nt with u~ = 1 and ut < 1, and

the (A- 1)-sections to which n~ and nt are both incident are sourceless. As in the proof of

Lemma 11.5 (with fL+ 1 replaced by A), we can find a A-node n~ with u~ > u~= 1. But,

u~ > 1 contradicts Theorem 11.6.

Case 2: pJ1.embraces a A-node n~ that is incident to at least one sourceless (A- 1)-spur

whose (A - 1)-nodes have voltages strictly less than one. Since all node voltages are no

larger than one (Theorem 11.6), this violates Kirchhoff's current law at a cut that isolates

n~ from all other A-nodes and from the source nodes.

Hence, uri < 1. A similar argument works for (ii). 0

12 JL-Walks

With the results of Sections 9 through 11 in hand, we can extend our discussion of random

roving I-walks to walks on the transfinite network Nl/ quite directly. In this section, fL ~ v.

Having defined O-walks and I-walks, we may now define fL-walks recursively. We take it

that, for Ji ~ 2, (Ji - I)-walks have already been defined as the alternating sequence

WJ1.-1 - {... J1.-1WJ1.-2 J1.-1WJ1.-2 .. .}- ,nm' m ,nm+1' m+1'

of (fL - 1)-nodes n~-l, nontrivial (fL - 2)-walks W~-2, and possibly a terminal element

on the left and/or on the right. A terminal element is required to be an 1]-node where

0 ~ 1] ~ fL - 1. In this way, WJ1.-1may be finite, one-ended, or endless. WJ1.-1 is called

nontrivial if it has at least one (Ji - 2)-walk. When denoting a terminal node, we will drop

the superscript if that node's rank is arbitrary and unspecified. (Shortly, we shall complete

our recursive definition of a fL-walkby stating all the conditions that a fL-walkmust fulfill.)
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One-ended portions of a one-ended or endless WJi-l are denoted by

WJi-l - {... WJi-2 1'-1 WJi-2 Ji-l }-oo,m - , m-2,nm-l, m-l,nm

and

W Ji-l { 1'-1 W Ji-2 1'-1 W Ji-2 }m,oo = nm , m ,nm+l' m+l'"''

Let dJi-l denote a (J..L- I)-end. Choose a finitely (J..L- 1)-chainlike representation MJi-l =

U~o M~-1 for a (J..L- 1)-spur for dJi-l. We say that WJi-l starts at dJi-l and also starts at

the J..L-nodethat embraces dJi-l if, given any integer q ~ 0, there is an m such that W~~~m

remains within U~q M~-I. Under the same definition but with W~~~m replaced by W~~~,

we say that WJi-l stops at dJi-l and also stops at the J..L-nodethat embraces dJi-l. Also,

WJi-l is called transient if it stops at a J..L-nodeand transient-in-reverse if it starts at a

J..L-node.

Now let WI' be a (finite, one-ended, or endless) alternating sequence of the form

W I' { I-' W Ji-l I' W I-'-1
}= .",nm, m ,nm+l' m+l'." (27)

where m is restricted to the integers, every W~-1 is a nontrivial (J..L- 1)-walk, and every n~

is a J..L-node-with a possible exception arising if WI-' terminates on the left and/or on the

right. In the latter case, the terminal element is a node, and its rank may be any integer

from 0 to J..L.Terms in (27) may repeat. For example, consecutive J.l-nodesmay be the same.

(The latter was also allowed when J.l= 1, but could not occur when J.l= 0 because of the

absence of self-loops.)

We need to define terminal behavior when (27) is one-ended or finite and terminates at

a node of rank less than J.l.In particular, consider the one-way infinite sequence

W I' - { 17 uTI-'-1 I-' W I-'-1
}- no, HO , nl' 1 ,... (28)

where 0 ~ TJ < J.l. This will signify that there is a finite sequence of A-walks, where

A = TJ,..., J.l,of the form:

vv.170 { 17 UT17-1 17 W 17-1 17 }no, H 0 , nl , 1 ,n2' . . .

vv.17+10 {
17 UT17 17+1 W 17 17+1

}no, H 0 , nl , 1 , n2 , . . .
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TV;J.t-l0 { ~ TXTJ.t-2 J.t-l W J.t-2 J.t-l
}nO' rr 0 , nl , 1 , n2 , . ..

WJ.t { ~ TXTJ.t-l J.t W J.t-l J.t }no, H 0 , nl , 1 , n2 , .. .

where W<i-1 starts at nci, W~-l stops at n~, and finally W~-l for m > 0 starts at n~ and

stops at n~+1' In this case, we shall say that (28) starts at n6. A similar definition is used

when (27) terminates on the right at an 1]-node n~, in which case we say that (27) stops at

n~.

Definition 12.1. WJ.t, as given by (27), is called a p-walk if, for every m, W~-l starts

at the node on its left and stops at the node on its right. Also, WJ.t is said to perform a

one-step p-transition from n~ to n~+1'

One consequence of this definition is that WJ.tis confined to some p-section. Also, since

no node embraces a node oflower rank according to Condition 9.4(a), a (p -I)-walk W~-l

in (27) can start or stop at a p-node adjacent to W~-l in (27) only if it starts or stops at a

(p - 1)-end embraced by that p-node. We use the words "to reach" and "to pass through"

as before. WJ.twill be called nontrivial if (27) has at least one (p - I)-walk. Also, WJ.t is

said to embrace itself, all of its elements, all elements embraced by its elements, all elements

embraced by the elements embraced by its elements, and so forth. By these definitions, for

any 1]< p every 1]-walkembraced by WJ.t must be both transient and transient-in-reverse

unless it is respectively the last or first 1]-walkembraced by WJ.t.

Definition 12.2. The p-walk WJ.t (and q; too) is said to rove if, for every 1]-walk W~

embraced by WJ.t (1] ~ p), every two consecutive 1]-nodesin W~ are different.

Henceforth, we always assume that q; roves whatever be the rank p ~ v.

13 Random /1-Walks

We will now discuss how q; may wander in Nil by passing through nodes of various ranks.

Transitions between and through nodes of ranks 0 and 1 have already been discussed in
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Sections 6 and 7.

In accordance with our recursive approach, we now take it that random roving 1]-walks

have been defined for 1] = 1,..., p.,where 1 :::;p. < v. This means in particular that

appropriate generalizations of Definitions 6.2, 6.3, 7.1, and 7.2 have been established for

each 1]less than p.. These are stated in Definition 13.1 below (for p. instead of 1]). In effect,

the behavior of a random roving 1]-walk that is transient and also transient-in-reverse is

taken as the local behavior of a random. roving (1]+ I)-walk. Those definitions are then

used to establish random roving (p. + I)-walks.

As always, SILwill denote a p.-section in NV, where p. < v.

Definition 13.1.

(a) Let SILhave two or more incident (p.+ 1)-nodes. Let n~H be a (p.+ 1)-node incident to

SIL and let NtH be the set of all the other (p. + 1)-nodes incident to SIL. Given that

W starts at a p.-node nb of SILand reaches some (p.+ 1)-node (Le., WILis transient),

the probability that W will reach n~H before reaching some node of Nt+1:

Prob (snlL rnIL+l b ArIL+l IWIL is transient )0' k , .IVg (29)

is defined as the voltage at nb when n~H is held at 1 volt and all the nodes of NtH

are held at 0 volt.

(b) Now, SILis allowed to have just one incident (p. + I)-node. Let Nt be any finite set

of p.-nodes in SIL. Let nb be another p.-node in SILwith nb rt Nt. Let NtH be

the (finite) set of all (p. + I)-nodes incident to SIL. Given that W starts at nb, the

probability that W will reach some node of NtH before reaching some node of Nt:

Prob (snlL rNIL+l b ArIL)0' e , .IVg (30)

is defined as the voltage at nb when all the nodes of NtH are held at 1 volt and all

the nodes of Nt are held at 0 volt.

(c) Let nbH be a (p. + I)-node. Choose a p.-spur for every p.-end embraced by nbH,

making those p.-spurs mutually disjoint (apply Lemma 9.3 to every p.-section incident
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to n:;+1). Then, choose a finite p-chainlike representation U~o M~ for the union of

those p-spurs. For p ~ 1, set V;: = M~ 0 M~-l' Assume that V;: has two or more

nodes, and let V;:\n~,k denote the set of all nodes in V;: other than n~,k E V;:. Given

that "iIfstarts at nri+1and reaches a node of V;:, the probability that "iIfwill reach the

node n~,k E V;: before it reaches any of the other nodes in V;::

Prob(snb+1,rn~,k' bV;:\n~,k I "iIfreaches V;:) (31)

is defined as the voltage at nb+1 when n~,k is held at 1 volt and all the other nodes

of V;: are held at 0 volt.

(d) Assume that there are two or more (p + I)-nodes adjacent to the (f-L+ I)-node nb+1.

Let n~+1 be a (p + 1)-node adjacent to nb+1 and let Nt+1 be the set of all the other

(f-L+I)-nodes adjacent to nb+1. Given that "iIfstarts at nb+1 (remember that "iIfroves),

the probability that "iIfwill reach n~+1 before it reaches some node of Nt+1:

Prob (snll+1 rnll+l bN Il+l )0 , k , 9 (32)

is defined as the voltage at nb+1 when n~+1 is held at 1 volt and all the nodes of

Nt+1 are held at 0 volt.

(e) Let n~ be a f-L-nodein Sil and let nb+1 be incident to Sil. Let Nt+1 denote the set

of all (p + 1)-nodes adjacent to .nri+1, Given that "iIfstarts at nri+1 (and roves), the

probability that "iIfreaches some node of Nt+1 before reaching n~:

Prob (snll+1 rNIl+1 bnll )0 , e , 9 (33)

is defined as the voltage at nb+1 when all the nodes of Nt+1 are held at 1 volt and

n~ is held at 0 volt.

Parts (a), (b), (c), and (d) of this description generalize respectively Definitions 6.2,6.3,

7.1, and 7.2. Part (e) represents an new situation that we shall encounter. Also, part (d)

generalizes the standard rule for one-step transitions for random O-walks.

To justify Definition 13.1(a) as a limiting case of the Nash-Williams rule, choose a p-spur

for every f-L-endof Sil with each f-L-spurdisjoint from the other p-spurs (Lemma 9.3). Only
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finitely many such JL-spurs are needed. Now, consider any single n~+1 of the (J.l+ I)-nodes

that are incident to St-I. The union of the J.l-spurs for the J.l-endsof St-Ithat are embraced by

n~+1 is finitely J.l-chainlike (Lemma 9.5(e)), and so we can choose a chainlike representation

U~O M~,p for that union, wherein the spines are all perceptible. Then, for any given J.l-node

n!; in St-I, a Pk can be chosen such that n!; is not in U~Pk Mtpk. Let Vt,Pk = Mtk 0 M~k-l j

this is finite set of JL-nodes that within St-Iseparates n~+1 from n!;. With ni+1 (1 = 1,. . ., K)

denoting all of the (J.l+ 1)-nodes incident to St-I,perform this construction for each union

of J.l-spurs for the J.l-ends of St-Iembraced by an niH. The Vi p are mutually disjoint, and, I

together they separate n!; from all the (J.l+ 1)-nodes; in fact, they separate the (J.l+ 1)-nodes

from the reduced J.l-networkFt-I(Pl,. . .,PK) induced by all branches in St-Ithat are not in

U~l U~PI Mi,PI. Ft-I(Pl,... ,PK) has only finitely many J.l-nodes.

Now, in accordance with our recursive construction, we also take it that there is a finite

surrogate O-network Ft-I"""'O(pI.. . .,PK) whose O-nodes correspond bijectively to the J.l-nodes

of Ft-I(PI . . ., PK) and whose O-walksare governed by the same probability transition matrix

as that which governs the random roving J.l-walks on Ft-I(pI. . . ., PK). Thus, by applying the

Nash-Williams rule, we can determine the probability vb,k(Pl, . . . ,PK) of q; reaching any

node of vt p before it reaches any node of U1EL Vip ' where L = {I: 1= 1,..., Kj 1 -I k}., k , I

(Hold the nodes of vt p at 1 volt, hold the nodes of U1EL V1t-l at 0 volt, and measure, k ,PI

the voltage vb,k(PI ,PK) at n!;.) Finally, exactly as in the proof of Lemma 6.1 but

using Theorem 11.6 in place of Theorem 4.3 and Theorem 11.2 (for Property 11.1 (b)) in

place of Lemma 4.1, we can show that, as the PI ,PK tend to infinity independently,

Vbk(PI... .,PK) converges to ub k' the voltage indicated in Definition 13.1(a). This then is, ,

the justification of that definition as a limiting case of the Nash-Williams rule extended to

J.l-networks.

In much the same way, Definition 13.1(b) can be justified.

Definition 13.1(c) indicates how a random J.l-walkmay start at a (J.l+ 1)-node nt-l+1.

Just as in Section 7, it can be shown that this definition yields a consistent set of prob-

abilities when the comparative probabilities for transitions from nt-l+1to the nodes of VI:

are first obtained directly from the definition and are then obtained by using conditional
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probabilities to combine probabilities for transitions from n~+1 to the nodes of V: (q > p)

with probabilities for transitions from the nodes of V: to the nodes of Vt. The latter tran-

sition probabilities are defined as in Definition 7.1 (except that O-nodes are now replaced

by p-nodes.).

Furthermore, for P fixed and given that q; starts from n~+1and reaches a node of Vt, the

probability that q; then reaches a node of Vt before returning to n~+1 vanishes as q - 00.

In other words, we are again dealing with the exceptional case when discussing random

roving (p + 1)-walks: Such walks comprise but a vanishingly small proportion of all random

(p + I)-walks whose consecutive nodes in (27) are allowed to the same.

Definition 13.1(d) states comparative probabilities for q; passing from a (p + I)-node

n:;+1 to any of its adjacent (p + I)-nodes n~+1(k = 1,..., K). To obtain it, we again

proceed as in Section 7. Consider the p-ends of all the p-sections incident to n:;+1 other

than the p-ends embraced by n:;+l. Choose mutually disjoint p-spurs for those p-ends.

Next, for each k, choose a (p+ l)-chainlike structure u~o M~,p for the union ofthe p-spurs

corresponding to n~+1.Set Vr,p= M~,p (:)M~,p-l' Finally, choose a natural number Pk for

each k. Then, Uf=l Vr,Pkis a set of p-nodes that separates n:;+1from all of the n~+1. As a

direct extension of Definition 13.1(c), we take the voltage at n:;+1,when the nodes of Vr p, k

are held at 1 volt and the nodes of UzeLVi , where L = {l: l = 1,..., K; l =1=k}, are held,PI

at 0 volt, as the probability that q; will reach a node of Vr p before it reaches a node of, k

any Vip . Arguing as in the proof of Lemma 6.1 but using now the maximum principle of, I

Theorem 11.6, we can show that these comparative transition probabilities converge as the

PI,. .. ,PK tend to infinity independently. Thus, Definition 13.1(d) also arises as a limiting

case of a prior definition.

Finally, Definition 13.1(e) is obtained in the same way as Definition 13.1(d). Using the

same Vr,Pk as in the preceding paragraph, we now examine the voltage at n:;+1 whenn~

is held at 0 volt and either the nodes of Vr p or n~+l is held at 1 volt for every k. Upon, k

sending PI,... ,PK to infinity, we obtain this definition as a limiting case again.
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14 Transience

A J.L-sectionis called transient if, given that q; starts at any arbitrarily chosen O-node nO9

in 51' and then roves, there is a positive probability that q; will reach some (J.L+ 1)-node

incident to 51' before returning to n~.

Let 5-1 denote the reduced network induced by the branches incident to n~. We shall

say that a O-node is incident to 5-1 if it is adjacent to n~. Also, for each 1]= 1,..., J.L+ 1,

let 517-1be the 1]-section in which n~ resides. Let Pi+! denote a three-term (J.L+ 1)-path

{n~, Pt, nj+!}j thus, nj+! is incident to 51', and Pi+! does not contain any other (J.L+ 1)-

node. Finally, for 1]= 1,. .., J.L,let n'} be the first 1]-nodeembraced by Pi+! and let n~ be

the first node after n~ embraced by Pi+!. (Figure 3 illustrates some of this.)

Lemma 14.1. Pi+! can be so chosen that, for each 1] = 0,..., J.L+ 1, every 1]-node

embraced by Pi+1 other than n'} is not incident to 517-1.

Proof. Because there are only finitely many J.L-nodesincident to 51'-1, there is a three-

term (J.L+ 1)-path Pi+! = {n'f, Pt, n'f+1} that starts at some J.L-noden'f incident to 51'-1,

stops at some (J.L+ I)-node n'f+! incident to 51', and embraces no other J.L-nodeincident

to 51'-1. For a similar reason, there is a three-term J.L-pathPi = {nr1, Pt-\ n'f} that

starts at some node n'f-1 incident to 51'-2, stops at the chosen n'f, and embraces no other

(J.L- 1)-node incident to 51'-1. In this fashion, we can continue selecting three-term 1]-paths

PJ = {nr1, PJt\nj} for 1]= J.L,..., 1, where PJ embraces no other (1]- I)-node incident

to 517-1;also, n'} is the 1]-nodepreviously chosen when selecting Pl+!. As the last selection,

we choose the O-path P7 = {n~, b,nn, where n~ is the previously chosen O-node adjacent

to n~.

We now construct the (J.L+ I)-path Pi+! as follows: Append P7 as the initial O-path

to PJ to get a I-path Pl- Append Pl as the initial I-path to PJ to get a 2-path P?,

Continuing in this way, we finally append Pi to Pi+! to get the (J.L+ I)-path Pi+! that

we seek. 0

Theorem 14.2. Under Conditions 9.4, if q; roves, then every J.L-sectionof every rank

J.Lis transient.

Proof. With n~ chosen arbitrarily, choose a (J.L+ 1)-path Pi+! in accordance with
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Lemma 14.1. There is a positive probability that 'If, after starting from n~ will reach n~

before reaching any other O-node adjacent to n~. The path PJ (specified in the proof of

Lemma 14.1) embraces n~ and n} and does not embrace n~. So, by Definition 13.1(b) and

Lemma 11.7(ii), there is a positive probability that q, will reach some I-node incident to So

before returning to n~:

Prob(sn~,rNi,bn~) > 0,

whereNt now denotes the set of alII-nodes incident to So. If there is more than one I-node

incident to So, we invoke Definition 13.1(a): Since PJ does not embrace any I-node incident

to SOother than n}, Lemma 11.7(ii) implies that there is a positive probability that q, will

reach n} before reaching any other I-node incident to So:

Prob(sn~,rn},bNi\n} Iq,reachesNi) > 0

Thus, with positive probability q, will reach n} before returning to n~.

This argument can be continued inductively. (See Figure 3. The dots represent nodes

and the closed curves represent sections-of various ranks.) Let us assume the following

for any TJsuch that 1 ~ TJ~ J.L:Given that q, starts at n~ and roves, there is a positive

probability that q, reaches n'} before returning to n~. Let Ng",-l be the set of all (TJ- 1)-

nodes incident to the (TJ- 2)-section S",-2 that contains n~. (If TJ= 1, Ng",-lis replaced

by n~.) Also, let n~ be the next TJ-nodeafter n'} that is embraced by PiH. Thus, there

is a three-term TJ-path PJa embraced by PiH that terminates at n'} and n~ and does not

embrace any node of Ng"'-l. Let Ne'" denote the set of all TJ-nodes adjacent to n'}. By

Definition 13.1(e) (we can view the nodes of Ng"'-l as being shorted at this point) and by

Corollary 11.7(ii), there is a positive probability:

Prob(snj,rNi,bNg"'-l) > 0

that q, will reach some TJ-nodeadjacent to nj before reaching any node of Ng"'-l and therefore

before returning to n~.

Note that PJa also does not embrace any other TJ-nodeadjacent to n'}. Hence, we can

combine Definition 13.1(d) and Corollary 11.7(ii) to conclude that

Prob(sn'},rn~,bNi\n~) > o.
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Therefore, with positive probability 'ITreaches n~ before returning to n~.

Next, let N: (N;+1) be the set of all 7]-nodes (respectively, (7]+ I)-nodes) incident

to 871-1 (respectively, 871). Pi+1 embraces an 7]-path Pdf that terminates at n~, reaches

n'}+1 E .N'g71+1,and does not embrace any node of N;. Hence, by Definition 13.1(b) and

Corollary 1l.7(ii) again, there is a positive probability:

Prob (sn71 r.N.71+1 b.N.71) > 0a' 9 , 9

that 'ITwill reach some node of Ng71+1before reaching any node of N; and therefore before

reaching n~.

Now, note that Pdf also does not reach any node of .N'g71+1other than n'}+1. So, by

Definition 13.1(a) and Corollary 11.7(ii) once again,

Prob (sn71 rn71+1 b.N.71+1\ n71+1I 'ITreaches .N.71+1) > 0a' f ' 9 f g'

Therefore, there is a positive probability that 'ITwill reach n'}+1 before returning to n~.

Hence, by induction the last statement is true for n'}+1 replaced by nj+l. Thus, SJ.I is

transient. 0

Theorem 14.3. Under Condition g.4, if 'ITroves, then, for any two nodes n~ and n~

of whatever ranks a and j3, there is a positive probability that 'IT,after leaving n~, will reach

n~ before returning to n~.

Proof. There is a finite JL-path PC with JL~ max( a, j3) that terminates at n~ and n~.

With regard to a tracing of PC from n~ to nf, if a < JL,let ni be the last JL-node in PC

that is incident to the (JL- I)-section that contains n~; also, if j3 < JL,let n~ be the first

JL-nodein PC that is incident to the (JL- I)-section that contains nf, Proceeding as in the

proof of Lemma 14.1, we replace the JL-path embraced by PC that terminates at n~ and

ni by a JL-path P::1with the same terminations and fulfilling the conclusion of that lemma

for 7] = a + 1,..., JL, where n~ takes the role of n~. That is, P::1 does not embrace any

7]-node that is incident to the (TJ- 1)-section containing n~ other than a single TJ-node. In

the same way, we replace the JL-path embraced by PC that terminates at n~ and nf by a

JL-path P~ with the same terminations and fulfilling similar conditions. Finally, if ni and
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n~ are distinct, let Fiz be a j.L-pathembraced by FC that terminates at those nodes. Any

of the paths P:1, Piz, and P:bmay be trivial if a = J.L,ni = n~, and j3= J.Lrespectively.

By the proof of Theorem 14.2, there is a positive probability that -q;,after starting from

n~ will reach ni before returning to n~.

Now, let ni, n~,. . ., n~ be the consecutiveJ.L-nodesin Piz. By the definition of ni, the

J.L-pathPi2 embraced by Piz that terminates at ni and n~ does not embrace any nodes

of the (J.L- I)-section that contains n~. So, by Definition 13.1(e) and Corollary 11.7(ii),

there is a positive probability that -q;will reach a J.L-nodeadjacent to ni before reaching

any (J.L- 1)-node incident to the (J.L- 2)-section containing n~ and therefore before reaching

n~. Also, by Definition 13.1(d) and Corollary 11.7(ii), -q;will reach n~ before reaching any

other J.L-nodeadjacent to ni, will reach n~ before reaching any other J.L-nodeadjacent to

n~, and so forth. Thus, with positive probability, -q;will reach n~ before returning to n~.

Finally, we argue that, with positive probability, -q;,after starting from n~, will reach n~

before returning to n~. Let n~, n~-l,. .., n~ = n~ be the last nodes of ranks J.L,J.L- 1,. .., j3

in P:b. As in the construction of Definition 13.1(c), we can choose a set V;-l of (J.L- 1)-

nodes that isolates n~ from all other J.L-nodesand from n~-l as well. Moreover, we can

modify P:b, if need be, so that it embraces only one node of V;-l; let that node be ni-1.

Thus, there is a (J.L- 1)-path that terminates at ni-l, reaches n~, and does not embrace

any other node of V;-l. So, by Definition 13.1(c), Corollary 11.7(ii), and the fact that -q;

roves, there is a positive probability that -q;will reach ni-1 before returning to n~.

Next, note that the embraced (J.L- I)-nodes in P:b lying between ni-1 and n~-l are

only finite in number. Upon repeatedly applying Definition 13.1(d) and Corollary 11.7(ii)

to those (J.L- 1)-nodes, we conclude that with positive probability -q;will reach n~-l before

returning to n~.

The same argument works for transitions from n~-l to n~-2, from n~-2 to n~-3, and

so forth down to n~. This completes the proof. 0
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15 Markov Chains and the Surrogate Network

Our final conclusions about the random roving JL-walkson any JL-section SJ.tof N'" follow

from arguments virtually the same as those given in Section 8. Two obvious statements

are: (i) The probability of a one-step JL-transition between to nonadjacent JL-nodesis zero.

(ii) Since q; roves, the probability of a one-step JL-transition from a JL-nodeback to itself is

zero. Finally, by superposition of the sources specified in Definition 13.1(d), we also have:

(iii) The probabilities for one-step JL-transitions from a JL-nodeto its adjacent JL-nodessum

to one. These results yield

Theorem 15.1. Under Definition 13.1, the random roving JL-walks on any JL-section

SJ.t of N'" comprise a Markov chain with a countable state space consisting of the JL-nodes of

SJ.t and having the following transition probabilities: Pk,k = 0; Pk,l = 0 if n~ and nr are not

adjacent; Pk,l is given by Definition 13.1 (d) when n~ and nr are adjacent. When JL= v,
the state spaceconsists of the finitely many v-nodes of N"'.

Theorem 15.2. The Markov chain of Theorem 15.1 is irreducible and reversible.

Proof. Consider the Markov chain for the random roving JL-walkson a JL-section SJ.tof

N"'. Its irreducibility follows from Theorem 14.3. Its reversibility can be proven exactly as

in the proof of Theorem 8.1 by substituting Definition 13.1(d) for Definition 7.2 and Lemma

10.3 for Lemma 3.3. 0

As a result of this last theorem, a finite "surrogate" O-network N"'t-+ocan be derived

exactly as in Section 8. The random O-walkson N"'t-+oare governed by the same transition

matrix as that for the random roving v-walks on N"'. Similarly, for JL < v an infinite

"surrogate" O-network NJ.tt-+oexists for the random roving JL-walkson any JL-section SJ.tof

N"'.
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