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PREFACE

This report encompasses a prior research report*, which examined trans-
finite random walks on 1-networks, the first rank of transfiniteness for net-
works. In this work, transfinite random walks on v-networks, where v is any

natural number, are also examined.

*A.H.Zemanian, Transfinite Random Walks Based on Electrical Net-

works, SUNY - Stony Brook, CEAS Report 601, April 7, 1991.



TRANSFINITE RANDOM WALKS BASED ON
ELECTRICAL NETWORKS

A. H. Zemanian

Abstract — The idea of a transfinite graph was recently established [A.H.Zemanian,
Transfinite Graphs and Electrical Networks, Trans. Amer. Math, Soc., in press]. This is a
graph that extends “beyond infinity” in a manner roughly analogous to the extension of the
natural numbers to the transfinite ordinals. As a result, there is the possibility of random
walks on a transfinite network, walks that may pass beyond infinity through “v-nodes”
that represent connections at infinite extremities of the transfinite network. This concept
is first explored for a certain kind of transfinite network of the first rank (i.e., for a certain
kind of 1-network) having at most a finite number of 1-nodes. Those random walks on
1-networks that succeed in passing through 1-nodes without consecutively reencountering
any 1-node are “roving 1-walks”. It is shown that random roving 1-walks comprise an
irreducible reversible Markov chain whose state space is the finite set of 1-nodes. A finite
electrical network is synthesized whose random walks in the ordinary sense correspond to
random roving 1-walks. These ideas are then extended recursively to random roving walks
on certain transfinite networks of higher ranks v, where v is any natural number. The
definitions and proofs of this paper are based upon the electrical analogue for random

walks.

1 Introduction

So far, the theory of random walks on connected, countably infinite graphs has been re-
stricted to walks on graphs of the “usual kind”, usual in the sense that between any two

nodes there is a finite path. An undoubtedly incomplete list of references on this subject is



[1]- [7], [12] - [23].

How about random walks on the recently devised idea of a transfinite graph [25]? Con-
ceptually, such a graph is constructed by connecting together infinite graphs of the usual
kind at their infinite extremities. The result is called a “1-graph” to distinguish it from the
usual infinite graph, which is now called a “0-graph”. A 1-graph may have pairs of nodes
that are connected only through “paths” that pass through infinite extremities. As a special
case, a 1-graph may also be defined simply by specifying some “connections at infinity” for
a single 0-graph. When specifying these connections, we are in fact distinguishing between
different infinite extremities of a 0-graph and may therefore ask such questions as: “What
is the probability that a random walk starting at some node may reach ‘one part of infinity’
before it reaches ‘another part of infinity’?” “What is the probability of it then ‘passing
through that part of infinity’ and reaching a node transfinitely far away before it returns to
the starting node?”

Answering these and other such question is the objective of this paper. Moreover, we
do so for a hierarchy of transfinite graphs obtained by connecting together an infinity of
1-graphs at their extremities to obtain a “2-graph”, then doing the same with 2-graphs to
get a “3-graph, and so forth. In this way, we recursively generate “v-graphs”, where v may
be any natural number.

Let us sketch out how we extend random walks to transfinite graphs. Infinite extremities
of a 0-graph, where connections to other 0-graphs may be made, are called “l1-nodes”, and
ordinary nodes are now called “0-nodes”. A positive number, called a “conductance”, is
assigned to each branch, rendering the graph into a transfinite electrical network. (For
this reason, we shall always say “network” instead of “graph”.) For infinite networks of
the usual kind, transition probabilities between ordinary nodes are certain 0-node voltages,
and they can be determined by connecting pure voltage sources to the boundaries of finite
subnetworks [15]. To obtain transition probabilities from 0-nodes to 1-nodes, we expand the
finite subnetworks indefinitely and take limits. To obtain the transition probabilities from 1-
nodes to 0-nodes, we interchange the connections of voltage sources and determine certain

0-node voltages. The consistency of these definitions is verified. Finally, the transition



probabilities between 1-nodes are obtained by combining these procedures. To empower
all this, we have to extend the maximum principle to the node (both 0-node and 1-node)
voltages of a transfinite network. A more severe difficulty arises from the fact that a
pure voltage source cannot in general be connected between the 1-nodes of a transfinite
network, in contrast to a pure current source [24]. The reason is that the infinity of paths
between 1-nodes may prevent some 1-nodes from having different voltages (i.e., may in effect
“short” those 1-nodes). To avoid this possibility and other similar problems, we restrict our
transfinite networks appropriately, one condition being that there be only a finite number of
1-nodes. In summary, our approach is to define transition probabilities by extending some
established formulas for the usual kind of infinite network. The resulting random walks
that succeed in passing through 1-nodes are “transient”, and walks that do not return to
any 1-node without first passing through a different 1-node are “roving 1-walks”. Such
walks comprise an irreducible reversible finite Markov chain. The latter in turn leads to a
“surrogate network”, a finite 0-network whose random walks (in the usual sense) correspond
to the roving 1-walks on the original transfinite network.

As for random walks on transfinite networks of higher ranks, the existence and proper-
ties of such walks can be established recursively. For example, our prior results concerning
random walks on 1-networks having only finitely many 1-nodes can be taken as local behav-
ior for a 2-network with only a finite number of 2-nodes. More generally, the local behavior
of a v-network can be based upon random walks in a (v — 1)-network so long as v is a
successor ordinal. We insure the latter requirement by restricting v to the natural numbers.
When v is a limit ordinal, a more complicated construction will be needed.

The definitions and proofs of this paper are based upon the electrical analogue for
irreducible reversible Markov chains [4], [12, pages 303-310]. Moreover, the paper is written
as a sequel to [25]. We freely use the definitions of that work, which are rather extensive. A
repetition of them here does not seem warranted. Please refer to that work for an explication
of our terminology.

A particular kind of 0-graph we shall employ is Halin’s finitely chainlike structure [9],
[10]. It can be defined as follows: A graph (i.e., a 0-graph) M is called finitely chainlike



or synonymously m-times chainlike, where m is any positive natural number, if it is locally

finite and can be partitioned into a sequence of finite subgraphs M,:
=]
M= JM,, (1)
p=0

where each branch of M belongs to one and only one M, and in addition
M,_;NM, =V,, p=1,23,---, (2)
where V, is a finite set of nodes satisfying the following three conditions:
(a) The cardinality m of each V, does not depend upon p.
(b) For every p > 2, V, shares no nodes in common with Ug;g M,.

(c) In each M, (p > 1) there are m pairwise disjoint paths from the nodes in V, to the

nodes in Vpii.

Upon taking the union for all p of all the disjoint paths of condition (c ), we obtain m
disjoint one-ended pafhs. We call each of them a spine, and the set of all of them a full
set of spines. Neither a spine nor a full set of spines need be unique because the paths of

condition (b) may not be unique.

2 A Special Kind of 1-Network

Consider a countably infinite, locally finite, connected network of the usual kind with-
out parallel branches or self-loops, each branch of which has a positive number—called a
conductance—assigned to it. Let ¥ be a random walker that wanders form node to node in
accordance with the following transition probabilities. For any node ng with the adjacent
nodes ny,---,nk, the probability that ¥ will proceed from ng to an adjacent node nj in
one step is by definition gi/ K, g1, where g; is the conductance of the branch incident
to ng and n;. As Nash-Williams [15] has pointed out, the resulting random walk can be
analyzed by treating the network as an electrical network with a 1-volt voltage source con-

nected between various nodes. For example, the aforementioned transition probability can



be obtained electrically by maintaining ni at 1 volt and all the other nodes adjacent to ng
at 0 volt. The resulting node voltage at ng is equal to g/ =K , g;.

On the other hand, to obtain a random walk on a 1-network, we need to ascertain how
VU can wander through a 1-node. The above formula for determining transition probabilities
is unavailable for a 1-node because 1-nodes need not have incident branches. Nonetheless, if
the 1-network is sufficiently restricted, probabilities for transitions between any two nodes—
whether they be 0-nodes or 1-nodes—can be obtained electrically.

Let N? be a 1-connected 1-network with no infinite 0-nodes, no 1-nodes that embrace
0-nodes, no self-loops, and no parallel branches. By definition of a 1-network, N! has
a countable infinity of branches and at least one 1-node. Moreover, since no 0-node is
embraced by a 1-node, the 1-connectedness of N! implies that every 0-section has at least
one 0-tip.

If K is any reduction of N1 with respect to any subset of branches, we can identify each
0-tip ¢ in K with the unique O-tip ¢ in N! that contains ¢’ as a subset, and ¢’ + ¢ is an
injection. We say that K has or possessest as a 0-tip if there is at least one representative
of t that lies entirely in K. In this sense, every 0-tip of K is a 0-tip of N1,

Let By be any finite set of branches in N, and let N} = N1\B; denote the reduction
of N induced by all branches of N! that are not in By. Since the removal of By disrupts
at most a finite part of any one-ended path, we have that N! and N} possess exactly the
same 0-tips.

The idea of an “end” introduced by Halin [8] can also be defined for 1-networks in terms
of 0-tips. Two 0-tips of N will be called end-equivalent if, for every choice of By, the
two 0-tips have representatives lying in the same 0-section of N}. This is an equivalence
relationship, and the corresponding equivalence classes will be called the ends (later on, the
0-ends) of N1. Clearly, the 0-tips in an end belong to a single O-section of N1; we say that
the end belongs to that 0-section. On the other hand, since there are no embraced 0-nodes,
every 0O-section has at least one end and may have more than one end. As an immediate
consequence of all this, we can state

Lemma 2.1. N! and N} have the same 0-tips and the same ends.



Given an end d of N, assume that a particular finite set By of branches can be s0
chosen that within N} = N'\B; the O-section Sy that possesses d as an end has no other
end. Then, S; will be called a spur (later on, a 0-spur) for the end d, and d will be said to
have S; as a spur. If an end has a spur, it will have an infinity of spurs; indeed, another
spur can be obtained by appending to By any branch of S;.

Lemma 2.2. Assume that N! has only finitely many ends. Then, a finite set By of
branches can be so chosen that every end of N belongs to a 0-section of N'\B; having
no other end (i.e., each such 0-section is a spur for that end) and the spurs are mutually
disjoint.

Proof. We shall construct a spur for an arbitrary end d by reducing the 0-section S to
which d belongs. If S has only one end, then it is already a spur for d. So, assume S has at
least two ends d; and do. By the definition of an end, there is a finite set By of branches
such that d; and d; belong to different 0-sections of S\By. Thus for each pair of ends of
S—say, the kth pair—such a finite set B can be chosen. Since N and therefore S possess
only finitely many ends, the union UByyj is again a finite set. Moreover, each end d of S
belongs to a 0-section Sy of S\ U By, and Sy has no other end. Thus, Sy is a spur for d.
These spurs are mutually disjoint. O

We now gather together the assumptions that we impose on the 1-network N1. These
assumptions enable a transfinite random walk that visits all the 1-nodes of N™.

Conditions 2.3.

(a) N is a I-connected 1-network with no infinite 0-nodes, no self-loops, no parallel

branches, and no 1-nodes that embrace 0-nodes. N has at least two 1-nodes.
(b) N1 has only finitely many ends.

(c¢) Each end is embraced by some I-node (i.e., all the O-tips in that end are members of a

single 1-node).

(d) Every branchb; of N has assigned to it a positive number g; called the branch conduc-

tance; t; = gj_l is called the branch resistance. Every branch also has an orientation.



(e) Every end has a spur that is finitely chainlike and possesses a full set of spines, each
of which is perceptible (i.e., the sum of the resistances of all branches in each spine is

finite).

The kind of network we are considering is partially illustrated in Figure 1, which shows
a 0-section, and in Figure 2, which shows two adjacent 0-sections. The crosshatched areas
represent regions where branches occur, and the heavy lines represent 1-nodes nj. Each
protrusion of the crosshatched areas can be a spur, and where it touches a heavy line is
where an end exists. The heavy dots (other than ng in Figure 1) represent the nodes of
certain sets “Vi,,” for the finitely chainlike structures of some spurs.

Lemma 2.4. Under Conditions 2.3, the following statements hold.
(i) Every spur has the properties indicated in Conditions 2.3(e).
(ii) Every one-ended 0-path lies within a spur.

(iii) Between every two nodes (0-nodes or I-nodes) of N there is a perceptible 1-path that

terminates at those nodes.
(iv) N! has only finitely many 0-sections and 1-nodes.

Proof. (i) Given any spur S, let d be the end for that spur. Let S’ be the spur for
d indicated in Conditions 2.3(e). S and S’ differ by no more than a finite set of branches.
Hence, S can be assigned a finitely chainlike structure with perceptible spines just by
choosing its initial finite subnetwork Mo appropriately.

(ii) Choose a B; in accordance with Lemma 2.2 to obtain one spur for each end. Since
each spur is finitely chainlike, any one-ended 0-path PO can enter and leave a spur only a
finite number of times. Since the chosen B; produces only finitely many spurs (Condition
2.3(b)), P? must eventually remain within a single spur. But then we can expand that spur,
if necessary, by appending a finite number of branches to obtain a spur that contains all of
B,

(iii) If n; and ny are two 0-nodes lying in the same 0-section of N1, they are connected

by a finite 0-path P°. But then, {ny, P% ny} is the asserted 1-path. So, assume that
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ny and n, are either 0-nodes or 1-nodes that are infinitely distant from each other. The

1-connectedness of N! implies that there is a finite 1-path
Pl = {nl,PP,m%,Pg,---,zL,Pi,nz} (3)

connecting n; and ny. Since there are no embraced nodes, each 0-path P? (k = 2,---,m—1)
is endless; on the other hand, P? and P2 can be either endless or one-ended, the latter
occurring when n; or ny is a 0-node. Therefore, every 0-path in (3) is either a one-ended
0-path or the union of two one-ended 0-paths. But, every 0-path lies in a spur according
to (ii). By virtue of (i), we can replace each of these one-ended 0-paths P° by one that
eventually follows a perceptible spine in order to reach the same end that P° reaches. These
replacements yield a new 1-path that is perceptible and terminates at n; and n..

(iv) Since every 0-section has at least one end and there are only finitely many ends
(Condition 2.3(b)), there are only finitely many 0-sections. Finally, all the 1-nodes comprise
a partition of all 0-tips, and so too do all the ends. That there are only finitely many 1-nodes
now follows from Condition 2.3(c). O

Let us now define what we mean by “shorting nodes together”. To short a finite number
of 0-nodes of N! means the following: Replace those 0-nodes by a single 0-node and take a
branch to be incident to the new 0-node if and only if that branch is incident to one of the
original 0-nodes; then remove any branch that becomes a self-loop, and combine parallel
branches by adding their conductances. As for 1-nodes, first note that N has only a finite
number of them according to Lemma 2.4(iv). To short any number of 1-nodes of N, just
take their union, that is, those 1-nodes are replaced by a single 1-node comnsisting of all
the 0-tips in the original 1-nodes. As with the original 1-nodes, the new 1-node will not
embrace a 0-node. Finally, to short a finite collection of both 1-nodes and 0-nodes, create
a new 1-node consisting of all the 0-tips in those 1-nodes and also consisting of the 0-node
obtained by shorting the original 0-nodes; incident branches are defined as before, self loops
are removed, and parallel branches are combined. In this last case, the resulting 1-node will
embrace a 0-node.

If N satisfies Conditions 2.3, it continues to do so after finitely many of its 1-nodes are

shorted. The same is true after finitely many of its 0-nodes are shorted.



3 Excitations at 1-Nodes

A pure current source can always be connected between two nodes, whether they be 0-nodes
or 1-nodes, so long as a perceptible path exists between those nodes [24]. This is so for our
1-network N1 according to Lemma 2.4(iii). On the other hand, a sufficient condition for the
connection of a pure voltage source to two nodes is that one of them be a finite 0-node [24].
However, a pure voltage source cannot in general be connected to two 1-nodes. The reason
is that the 1-network, having possibly an infinity of conductive paths between the 1-nodes,
may in effect act as a short between the 1-nodes and may thereby prevent their voltages
from being different. However, for 1-networks that satisfy Conditions 2.3, this problem
does not arise. To establish this fact, we shall show that the resistance matrix relating any
pure current sources applied at the 1-nodes to the resulting voltages between the 1-nodes is
nonsingular. Hence, any set of voltage differences between the 1-nodes is possible and can
be obtained by imposing them as pure voltage sources.

If a voltage source e (current source k) is connected to nodes n, and n;, we shall say
that the source is connected from n, to n; if e is measured as a potential rise from n, to ny
(respectively, if h is measured as a current directed from 7, to n;). Append to N' a pure
voltage source eg by connecting it from node n, to node n; of N!. This entails the shorting
of nodes. Denote the resulting network by N1. At this point, we shall also require that at
least one of the nodes n, and n; be a 0-node. Later on, this condition will be relaxed: Both
ne and np will be allowed to be 1-nodes.

Let us recall the fundamental theorem [25, Theorem 10.2] for voltage-current regimes in
a form suitable for N1. (That this theorem continues to hold with the appended pure voltage
source eg is shown by transferring the source through its incident 0-node [24, Sections VII
and XII).) Let by denote the branch for eg; orient by from n, to n;. Also, let by, by, --
be all the other branches—those of N1. As before, r; denotes the branch resistance of b;;
thus, rg = 0 and r; = g;l > 0. If i = (4o, 41,42, --) is a branch-current vector for NI, we
let i’ = (iy,1,---) be the corresponding branch-current vector for N*. Under Kirchhoff’s
current law applied to one end of eg, a knowledge of i’ uniquely determines 7o and thereby

i.



Z is the Hilbert space of all branch-current vectors i = (g, 11,92, ) for N such‘ that
Y%, 42r; < oo and with ip determined from 41,12, - - - as stated. The inner product for 7 is
(i,s) = 332, rjij8;. A 0-loop current (or 1-loop current) in N¢ is a current flow of constant
value around a 0-loop (respectively, 1-loop) in N} with zero branch currents outside the
loop. A 1-loop current is called proper if it is not a 0-loop current. Under Conditions 2.3,
a 1-basic current is a countable superposition of proper 1-loop currents such that no more
than a finite number of the 1-loop currents flow through any 0-node. K° is the span of all
0-loop currents and 1-basic currents in Z, and K is the closure of K° in Z. K too is a Hilbert
space.

Here is the desired version of the fundamental theorem.

Theorem 3.1. Let a single pure voltage source eg be connected to two nodes of N1, at
least one of which is a 0-node. Then, there is a unique current vector i € K for N1 such

that, for every s € K,
[ o]
€pSp = ijijs_;.‘ (4)
=1

Now, consider any 1-node n! in N1—possibly a 1-node that embraces a 0-node of the
source branch bg. Choose a spur for every end embraced by n!. By Lemma 2.4(i), every such
spur has a finitely chainlike structure. Since there are only finitely many ends (Condition
2.3(b)), we can take the union of those spurs to obtain another chainlike structure M =
Upzo M, with the O-node sets ¥, = M,_; N M,,. We assign any branch having both of its
nodes in V, to M,. Every branch of M,_; (p > 2) having one node in V, and one node not
in V, will be called a cut-branch at V,. The set C of them will be called a cut for n! at V.
We say that C isolates n! within N from all other 1-nodes. C is a finite set of branches.
Every 1-path that embraces n! and a node of My must embrace at least one cut-branch at
V,. Thus, within M the removal of a cut for n! disconnects n! from Mg. A branch of C is
said to be oriented away from (toward) n! if it is oriented away from (toward) V,.

An extension of Kirchhoff’s current law to the cut C—along with bg if bg is incident to

nl—asserts that
Nk == (5)

where the summation is for the branches in C and for bg as well if by is incident to nl, i; is
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the current in those branches, and the plus (minus) sign is used if the branch’s orientation
is away from (toward) n'.

Lemma 3.2. Kirchhoff’s current law (5) holds whenever i € K.

Proof. Any 0-loop or 1-loop can embrace branches of C at most finitely often. Hence,
each 0-loop current or 1-loop current enters the summation of (5) an even number of times,
half with plus signs and the other half with minus signs. Hence, its contribution to that
summation is zero. The same is true for any 1-basic current because such a current is a
countable superposition of 1-loop currents, only finitely many of which flow through the
branches of C and bg. Now, K is the span of all 0-loop and 1-basic currents. Thus, for any
i € KO, (5) holds. Finally, we can choose a sequence from K° convergent toward i € K and
can argue as in the proof of [25, Theorem 11.1] to conclude the proof. O

Now, let n} (k = 1,--, K) denote the 1-nodes of N'. Any pure current source can be
connected between any two 1-nodes because those 1-nodes are connected by a perceptible 1-
path (Lemma 2.4(iii)). Furthermore, any set of pure current sources connected between the
1-nodes can be represented by a set of K —1 current sources connected from n} tonl,---, nk.
Let hj be the value of the current source from n} to n}, and set h = (hy, -+, hg). This
creates a unique voltage-current regime in N! in accordance with [24]. It follows from
Lemma 2.4(iii) that every n} possesses a unique node voltage u} with respect to nj [25,
Section 14]. (n} is assigned the zero node voltage). Set u = (u},---,uk). Thus, N! as seen
from its 1-nodes is a (K — 1)-port with a common ground nj and has a (K — 1) x (K — 1)
resistance matrix Z. In short, u = Zh. If Z is invertible, then h = Z~1u, and this signifies
that any set of K — 1 pure voltage sources can be connected from n} to n} (k=2,---,K)
to get an h. It is the connection of pure voltage sources to the 1-nodes that will determine
the transition probabilities for ¥ wandering between 1-nodes.

Lemma 3.3. Z is positive-definite and therefore nonsingular.

Proof. Let h = (hy,- -, hk) be an arbitrary vector of K — 1 current sources connected
as above. For the kth 1-node n}, let C be a cut for n} as above. According to Lemma
3.2, the net current flowing through the branches of C away from n} is hx. Therefore,

there exists at least one branch of C carrying a current no less than hi/c, where c is the

L1



cardinality of the finite set C. The power dissipated in that branch is no less than o::khz,
where Wi = Tpin/c? > 0 and Ty,in is the smallest of the resistances for the branches of C.
Now, let (-, -) denote the inner product for (K — 1)-dimensional Euclidean space. Then,
(u,h) = (Zh, h) is both the power generated by the applied current sources and the power
dissipated within N!. The latter can be seen by transferring the pure current sources into

N! along perceptible 1-paths and then invoking [25, Corollary 10.3 and Theorem 13.2]. So,

K
(Zh,h) > S wih? > w|h|?
k=2

where w = min(ws,---,wg) > 0. Thus, Z is positive definite. O
Finally, we wish to extend Theorem 3.1 to the 1-network N} obtained by appending
a pure voltage source ey to two 1-nodes of N1. We can do this by inserting a positive
resistance p in series with e, thereby rendering bo into a resistive branch, and then letting
p — 0+. Let N denote the 1-network with the resistive source branch connected to two 1-
nodes. For N} the fundamental theorem reads exactly as before except that the summation
in (4) and for the inner product for Z is over = 0,1,2,---. Thus, (4) is replaced by
00
e0so = pifso + erifsj- (6)
j=1
where i denotes the unique branch-current vector for N.
By Lemma 3.3, eg — pi§ = zi§, where z is the positive resistance of N! as seen from the

two 1-nodes to which bg is connected. If A is another value for the resistance in bg,

P

€0 €o
i? — 3 - 0

— 10 =

L p-i—z._/\-}-z

as p, A — 0+ independently. From (6) we have

er(if g g‘;)sj = (A} — pif)so = 2(if — i3)so.

=1

. 2w . -A -
Upon setting s; = 1;-’ — i3 for all j, we get

o0
i =P = D ormi(e - i3)? = 2(i§ —43)* — 0
j=1
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as p,A — 0+. Hence, {i’: p > 0} is a Cauchy directed function in K. Therefore, there is
an i € K to which the directed function converges in K. Upon passing to the limit in (6)
and invoking the bicontinuity of the inner product, we get (4) again.

There is no other i € K that satisfies (4) for all s € K. Indeed, from (4) we have
%2, 1;(ij — 1;)8; = €0so — €gso = 0. By setting s; = i; — 1;, we get i; = i; for all j. All
this establishes

Theorem 3.4. Theorem 3.1 continues to hold for N} even when the pure voltage source
is connected to two 1-nodes of N1.

Henceforth, we take it that voltage-current regimes produced by pure voltage sources
are those dictated by Theorems 3.1 and 3.4. Because N! is a linear network, these theorems
determine through superposition a unique voltage-current regime when finitely many pure

voltage sources are connected to 0-nodes and 1-nodes of N*.

4 Node Voltages

We shall eventually argue that node voltages in a 1-network excited by a 1-volt voltage
source correspond to certain transition probabilities. For this purpose, we show in this
section that node voltages are bounded by 0 and 1 when the negative terminal of the 1-volt
source is assigned a node voltage of 0 volt. This is in fact an extension of the maximum
principal for node voltages to 1-networks.

In the following, a “0-section” will always mean a 0-section with respect to N1, not with
respect to N1. Henceforth, we take it that the single source exciting N is a 1-volt source.
Also, if n is a node, u will denote its node voltage—and u will have the same subscripts and
superscripts as n. Let ny (and n.) denote the node of N to which the negative (respectively,
positive) terminal of the 1-volt source is incident. We call n, ground and set u, = 0. Let
ng be any other node of N1, either a 0-node or a 1-node. By Lemma 2.4(iii) there exists at
least one perceptible 1-path P starting at ng, ending at ny, and remaining within N? (thus

avoiding the source branch bp). P may in fact represent a 0-path if ng and n, are in the
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same O-section of N1. We assign to no the node voltage:

u = D Ev; (7)
P

where )" p denotes a summation over the branch indices for the perceptible 1-path P, the
v; are the branch voltages for P as dictated by Theorem 3.1 or Theorem 3.4, and the
plus (minus) sign is chosen if a branch orientation agrees (disagrees) with a tracing of P
from ng to ng. According to [25, Section 14], the series (7) converges absolutely, and uo is
independent of the choice of the perceptible 1-path P.

Lemma 4.1. The node voltages in N1 along any one-ended 0-path P° (whether percep-
tible or not) converge to the voltage u! of the 1-node n' that P° meets.

Proof. By Lemma 2.4(i) and (ii), P° lies within a spur M, which is finitely chainlike
with perceptible spines. Thus, n! is the 1-node that embraces the end of M. Since every
spine is perceptible, the 0-node voltages along any spine of M converge to the 1-node voltage
u! for nl.

Now, let M, and V, be the finite subnetworks and the 0-node sets of the chainlike
structure of M (see (1) and (2)). There are only finitely many spines—all disjoint, and the
spines contain all the nodes of all the V,. Let u*** (or u?“‘} be the maximum (respec-
tively, minimum) node voltage for the nodes of V,. It follows that lim,_o u**® = u! and

P
limy: sauf® =gl

Given any natural number ¢, P° eventually remains within | J;=, M,. Moreover, we can
choose g so large that ny and n. are excluded from (J;2, M,. Since for p > g each M, is a
finite, resistive, sourceless subnetwork, its node voltages all lie between the maximum and
minimum of the node voltages for the V, UV,4+1. Consequently, the node voltages along P°
also converge to u!. O

The supposition that there is a node voltage larger than one in NI leads to a contradic-
tion. The next lemma, which invokes this hypothesis, is but a step toward obtaining that
contradiction. We say that a 1-node and a 0-section are incident if the 1-node contains a
0-tip of the 0-section.

Lemma 4.2. Suppose there is a 0-node or 1-node ng in N} with a voltage larger than

one. Let S be a 0-section that either contains ng or is incident to ng. Two and only two

14



possibilities arise:

(i) The 0-node voltages in S are all the same and larger than one (and therefore by Lemma

4.1 all the voltages for the 1-nodes incident to S have the same value as well).

(ii) All the 0-node voltages in S are strictly less than the largest of the voltages for the

1-nodes incident to S; that largest 1-node voltage is also larger than one.

Proof. If there is a 1-node with voltage larger than one, then by Lemma 4.1 there
is a 0-node in S with voltage larger than one. If (i) does not hold, then at least some of
the 0-node voltages for S differ. It follows that there are two 0-nodes no and ng in S with
voltages satisfying up > uf and uo > 1. We may trace some 0-path in S from no to ng
to find the first 0-node n; whose voltage u; is no less than up and is strictly larger than
that of the next 0-node in the path. By Kirchhoff’s current law there is another 0-node n;
adjacent to my with ug > u;. By the same law applied to 7y, there is a third 0-node ng
adjacent to ny with uz > u,. Continuing in this way, we find a one-ended 0-path PO whose
successive node voltages are strictly increasing. By Lemma 4.1, the 1-node that contains
the 0-tip having P° as a representative has a node voltage strictly larger than uo. Since all
this is true for every ng with ug > 1, (ii) follows. O

Since there are only finitely many 0-sections, we have shown that, under the supposition
of Lemma 4.2, there is a 1-node npe, With a voltage umq, that is larger than one and no
less than any other 0-node voltage or 1-node voltage in N1. Now, we can trace a path from
Nmaz tO the positive terminal of the 1-volt source to find a 1-node n, with voltage Umar
and incident to a 0-section all of whose 0-node voltages are strictly less than umaz-

Now consider all the 0-sections to which n, is incident. By Lemma 4.2, there may be
some such O-sections having all their 0-node voltages equal to umqr. As far as the flow
of current is concerned, they can be ignored. All the other O-sections will have 0-node
voltages strictly less than ma.. Choose a spur for every end of those latter 0-sections that
is embraced by n,. By Lemma 2.4(i), every such spur has a finitely chainlike structure.
Since there are only finitely many ends (Conditions 2.3(b)), we can take the union of those

spurs to obtain another finitely chainlike structure M = (J;2o M, with the 0-node sets V.
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As before, we assign any branch having both of its nodes in V, to M. A cut-branch at Vp
is again any branch of M,_; (p > 1) having one node in V, and one node not in V,.

Since the 0-node voltages along each spine of M are strictly less than %,,,, and converge
t0 Umas and since there are only finitely many spines in M, we can choose two sets V, and
V, with p < g such that the least node voltage for V, is larger than one and in addition the
largest node voltage for V), is strictly less than the least node voltage for V,. So, consider

g-1

next the finite subnetwork M, , = e

M. M, , is sourceless. We can generate the same
voltage-current regime in M, ; as it has as a reduced network of NI by connecting pure
voltage sources as follows. Let n,; be a 0-node of V, with the largest node voltage u,; for
Vp. Let ny ;. be any other 0-node of V, and let u, x be its voltage. Connect a pure voltage
source of value u, 1 — upx from n,x to n,; (positive terminal at n, ;). Do this for all n, .
Similarly, connect a pure voltage source from a node ny; of V, with the least node voltage
ug,1 for V, to each of the other nodes of V, to establish their node voltages at the values
they have in N!. Finally, connect a pure voltage source e, , of value u;; — up; > 0 from
np1 to ng1. Mp, with these appended sources is a connected finite network.

Let us now examine the cut-branches for V,; we orient them away from V,. Set i = 3~ 15,
where 3~ denotes a summation over the branch indices for those cut-branches. Apply
Kirchhoff’s current law and superposition. The sum i will be zero when each appended
voltage source is acting alone (all other appended sources set equal to zero) and has both of
its nodes in V, or both of its nodes i1.1 V,. However, for e,, acting alone, 7 will be positive.
Thus, by superposition, for the voltage-current regime in NI, the net current ¢ = > g tj in
the cut-branches for V, will be positive (i.e., will represent a net flow in those branches
away from V,). This is a result of the supposition of Lemma 4.2.

But, this contradicts Kirchhoff’s current law (Lemma 3.2). Indeed, the 1-volt source
that excites N is not incident to n,. Hence, Lemma 3.2 dictates that : = 0. Consequently,
no node voltage in N} can be larger than one.

With just minor modifications, our arguments can be reapplied to show that no node

voltage can be less than zero. We have established

Theorem 4.3. Under Conditions 2.3, every 0-node voltage and I1-node voltage in N
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is no less than zero and no greater than one.
Let a be the rank of n, and 3 be the rank of n,. In the following, ng is another node
of rank v. Each of these ranks are either 0 or 1.

Corollary 4.4.

(i) Let there be a p-path P*, where p = max(f,7), that terminates at no and n, and does

not embrace n.. Then, ug < 1.

(ii) Let there be a p-path P*, where p = max(a,~), that terminates at no and n. and does

not embrace ny. Then, ug > 0.

Proof. Under the hypothesis of (i), suppose ug = 1. Exactly two cases arise:

Case 1. P* embraces two adjacent 0-nodes n, and np with u, = 1 and u, < 1. But
then, by Kirchhoff’s current law for 0-nodes, there must be another 0-node n; adjacent to
n, with 47 > 1, in violation of Theorem 4.3.

Case 2. P* embraces a 1-node n, with u, = 1, and n, is incident to a 0-section S that
contains at least one 0-node with a voltage less than one. Whether or not § contains n., the
maximum principle for node voltages in a 0-network ensures that every end of S embraced
by n, has a spur all of whose 0-node voltages are strictly less than one. By virtue of Lemma
4.1, we can again argue that Kirchhoff’s current law (Lemma 3.2) will be violated at a cut
that isolates n, from all other 1-nodes.

Thus, ug < 1, as asserted by (i). (ii) is established similarly. O

5 Transfinite Walks

We turn now to the idea of a walk on a 1-network that satisfies Conditions 2.3. We wish to
define matters is such a fashion that those walks may “pass through infinity” via 1-nodes.

First we define walks on a 0-section. A 0-walk on N! is a conventional kind of walk
contained within a O-section S of N1. It is an alternating sequence of 0-nodes nd, and
branches b,,:

wo = {“'!n?nﬂbman:}n+1$bm+1""]' (8)
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such that each branch is incident to the two nodes adjacent to it in the sequence. 0-nodes
and branches may repeat in (6.1). However, n and nQ, , are different 0-nodes for every
m because N! contains no self-loops; to express this fact, we shall say that every 0-walk
roves. Since (8) is a sequence, the indices m are restricted to the integers. W©° may be
finite, one-ended, or endless; in the first two cases each terminal element is a 0-node, and
we say that WO starts at (stops at) its terminal 0-node on the left (respectively, right).
Moreover, W0 reaches each of its 0-nodes and passes through each of its 0-nodes other than
its terminal nodes. W° is nontrivial if it has at least one branch. We say that W° embraces
itself and all its elements.

If W0 is one-ended or endless, we denote one-ended portions of W©° by

0 - 0 0
W—oo,m = {“'ﬁbm—%nm_labm—hnm}

and
0 0 0
Wm,oo = {nm$bm1nm+11bm+11 o }

Let d be an end of S, and let M = (J;2o M, be a finitely chainlike representation for a spur
M for d. We say that WO starts at d if, given any integer ¢ > 0, there is an m such that
WEw'm remains within (J;2, Mp; we also say that WP starts at the 1-node that embraces
d. Similarly, we say that WO stops at d and also stops at the 1-node that embraces d, if,
given any integer ¢ > 0, there is an m such that W2  remains within (J;2, M,. In both
cases, we also say that W° reachesd and the said 1-node. Any 0-walk that reaches a 1-node
will be called transient. This use of the adjective “transient” differs from customary usage;
indeed, we are now applying it to a deterministic walk rather than to a random walk.
According to these definitions, a 0-walk may keep expanding within a 0-section S without
reaching any 1-node (i.e., without being transient). Consider for example a 0-walk W© that
satisfies the following condition: Given a finitely chainlike structure M = | J;2, M, for all
of S, there is a positive integer k such that, for every choice of the positive integers m and ¢
with ¢ > k, the one-ended portion W2 , of W? meets both M and M,—and therefore all

the intervening My41, -+, My_1 as well. In other words, W? keeps getting into ever-larger

portions of S but also keeps returning to M. Thus, no matter how large we choose m,
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Wy o Wwill definitely return to My before it reaches any 1-node. We might call such a
deterministic walk “recurrent”; this kind of 0-walk will not arise as an embraced 0-walk
when we examine transfinite random walks that reach 1-nodes.

Consider now a (finite, one-ended, or endless) alternating sequence of the form
1
Wh = {-osnm, Wy gy, Wings -} (9)

where each W2 is a nontrivial 0-walk and each n}, is a 1-node—except possibly when (9)
terminates on the left and/or on the right, in which case the terminal element is either a
0-node or a 1-node. (We shall drop the superscript 1 whenever a node is allowed to be of
either rank.) Again terms may repeat in (9); in fact, consecutive 1-nodes n}, and nl .,
may be the same—in contrast to the situation for (8). As before, since this is a sequence,
m is restricted to the integers.

Definition 5.1. W1, as given by (9), is called a 1-walk if, for every m, W2 starts at n,,
and stops at nm41. Also, W1 is said to perform a one-step transition from the 1-node ng,
to the 1-node nl,,,. Finally, W! is said to rove if, for every m, ny, and ng, ., are different
1-nodes.

Since we have not allowed any 1-node to embrace a 0-node, a 0-walk W), can start from
or stop at a 1-node adjacent to W2 in (9) only if it starts or stops at an end embraced by
that 1-node. In the event that W1 is finite or one-ended, we also say that W starts at (stops
at) its terminal element on the left (respectively, right). As with other entities, we say that
a 1-walk embraces itself, all its elements, and all elements embraced by its elements. Also,
W1 is said to pass through each of its embraced branches, 0-nodes, and 1-nodes other than
its terminal nodes. Furthermore, W1 is nontrivial if (9) contains at least three elements.
By these definitions, every 0-walk in a 1-walk is transient unless it is the last 0-walk and
stops at a 0-node; in fact, every 0-walk is also transient-in-reverse because it starts at a

1-node—except possibly when it is the first 0-walk.

6 Random 0-Walks

We now discuss a random 0-walk, which may reach a 1-node incident to the 0-section S to

which the 0-walk is confined. Our definitions will generalize the customary random walk
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on the usual kind of infinite network because we will establish comparative probabilities of
reaching different 1-nodes through a limiting process. The random 0-walk may be discussed
in terms of an entity ¥ that wanders through 0-nodes and possibly reaches a 1-node. Ter-
minology that we shall define for random walks is also used for ¥ as the agent performing
that walk.

Let ng be a 0-node and let nx (k =1,---, L) be its adjacent 0-nodes. Let go x = gx,0 be
the conductance of the branch connecting ng and ng. The standard rule for the probability
Po k. that ¥ starting at ng will reach nj in one step is Pox = gox/ 2{;1 go,i- This probability
can also be obtained from node voltages as follows. Let n; be held at 1 volt and let all
the other n; (I = 1,---,L;l # k) be held at 0 volt. Then, the node voltage at ng is Po
according to Kirchhoff’s laws and Ohm’s law. This governs the wandering of ¥ within any
0-section S of N!. That wandering is described by a Markov chain whose infinite state
space consists of the 0-nodes of S [12, Chapter 9, Section 10].

Under Conditions 2.3, it is possible for ¥ to reach any 1-node n}. incident to the 0-section
S by following a one-ended 0-walk. We wish to determine the probability of it reaching n}
before it reaches any other 1-node incident to S, given that it starts at the 0-node np and
does reach some 1-node and given that S has two or more incident 1-nodes.

Choose a spur for each end of S that is embraced by n}. in such a way that the spurs are
mutually disjoint (Lemma 2.2). Then, choose a finitely chainlike representation JpZo Mk
for the union of those spurs. As before, Vi, = Mg ,_1 N Mg, but now all the nodes of Vi,
lie in S; Vg, separates nj, from My o within S but not from any part of any other 0-section
incident to n}. Perform this construction of a finitely chainlike representation for the set
of ends of S embraced by each 1-node n} (I = 1,---, K) that is incident to S, maintaining
disjoint spurs throughout. Then, within S and for any choices of the positive integers
P1,- 5 PKy UK Vip, Separates all the ends of S from a finite subnetwork F(py, - -+, pk) of S
(see Figure 1) that is maximal in the sense that the nodes of UK, Vi, arein F(py,---,pK).
Let us assume that the 0-node ng is in F(p;,--+,px) too. As has been shown by Nash-
Williams [15, Corollary 4A], the probability of ¥ reaching any node of Vi ;,, before it reaches

any node of U{V;p,: I = 1,---,K;l # k}, given that ¥ starts at no, is equal to the node
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voltage vok(p1,- -, PK) at ng (as determined by Kirchhoff’s and Ohm’s laws) whex-1 the
nodes of Vg, are held at 1 volt and the other said nodes are held at 0 volt.

By virtue of Lemma 3.4, another node voltage ug  can be obtained at 7o by holding n}
at 1 volt and all other 1-nodes incident to S at 0 volt.

Lemma 6.1. v x(p1, - ,PK) converges to up as the py,---,px tend to infinity inde-
pendently.

Proof. Foreach! =1,..., K,let n;,, ; denote the ith node of V;,, and let u;, ; denote
the corresponding node voltage resulting from 1 volt at n}, and 0 volt at all the other 1-nodes
incident to S. Then, by superposition, v x(p1,: -, Pk) — to,k is the voltage at ng resulting
from 1 — ugp, ; imposed at the ith node of Vi p, for every : and —u;p,,; imposed at the sth
node of Vi, for every i and every | # k. Now, 1 — ugyp, ; and w;p,; are nonnegative by
virtue of Theorem 4.3. By the maximum principal for node voltages in a finite network,

—maxu; < vok(P1s -+ PK) — Yok < max(1l— ukp,,i)
where the maximum on the right-hand side is taken over all node indices ¢ for Vi ,, and the
maximum on the left-hand side is taken over all node indices ¢ for all V;;, other than Vi, .
Recall that the V’s are finite sets whose cardinalities are constant with respect to the p’s.
By Lemma 4.1, max; up, ;i — 1 as pr — oo and max;; £k Up,i — 0 as py — o0 when [ # k.
O

In the following we shall use a notation like
Prob(sny,tng,bnz | A)

to indicate the probability that ¥, after starting from node n;, reaches node n; before
reaching node n3, given the restriction A. The ranks of these nodes may differ. Moreover,
ny and n3 may be replaced by sets of nodes.

We take Lemma 6.1 as the basis for the following definition of a comparative transition
probability for ¥ starting at a 0-node ng of a 0-section S and reaching a 1-node nj, incident
to S before reaching any of the other 1-nodes n} (I =1,---, L;l # k) incident to S. We let

N denote the set of those other 1-nodes. (Actually, we should also establish that ¥ truly
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can reach any such 1-node; this will be shown shortly by showing that, under Conditions
2.3, every 0O-section S is “transient”.)

Definition 6.2. Let the 0-section S have at least two incident 1-nodes. Given that ¥
starts at a 0-node np in S and reaches some 1-node, the probability that ¥ will reach n}

before reaching any node of N}:
Prob(sng,rni,bAN; | ¥ reaches some 1—node) (10)

is defined to be the node voltage ug at ng when ni is held at 1 volt and all the n} € J\f; are
held at 0 volt.

In short, this definition arises as a limiting case of the aforementioned Nash-Williams
result.

Variations of Lemma 6.1 can be established in the same way and lead to definitions of
other comparative transitions probabilities. For example, we can compare transitions to
1-nodes with transitions to 0-nodes as in the next definition. In this case, the 0-section S
may have just one incident 1-node.

Definition 6.3. Let N;O be any finite set of 0-nodes in S, let ng be another 0-node in
S with ng ¢ MY, and let N} be the set of all 1-nodes incident to §. Given that ¥ starts at

ng, the probability that ¥ will reach any 1-node incident to S before reaching any node of
AN

g
Prob(sno, TN}, bAY) (11)
is defined to be the voltage ug at ng obtained when all the 1-nodes of A} are held at 1 volt
and all the nodes of AV are held at 0 volt.

With this latter definition in hand we can examine the transiency of any 0-section. In
particular, S is called transient if, given that ¥ starts at any arbitrarily chosen 0-node n, in
S, there is a positive probability that ¥ will reach a 1-node incident to S before returning
to ng.

Theorem 6.4. Under Conditions 2.3, every 0-section S of N1 is transient.

Proof. Let n, be chosen arbitrarily as a 0-node of S. ¥ starting at n, perforce reaches

a 0-node adjacent to ny in one step. Now, hold all the 1-nodes incident to S at 1 volt and
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hold n, at 0 volt by connecting a 1-volt source from n, to a short among all those 1-nodes.
Then, by Definition 6.3, S will be transient if at least one 0-node adjacent to n, has a
positive voltage.

Suppose all such adjacent nodes have zero voltages. (By Theorem 4.3, they cannot
have negative voltages.) Set s = i, the current regime produced by the 1-volt source in
accordance with Theorem 3.1. By Kirchhoff’s current law applied at n, and Ohm’s law,
80 = ip = 0 in (4), and therefore }°22, 7;i2 = 0. Hence, i; = 0 for all j. This means that
there can be no voltage difference between n, and the said 1-nodes—in contradiction to the
facts that ny is at 0 volt and those 1-nodes are all at 1-volt. O

Finally, we note that the “recurrent” 0-walk cited in Section 5 has zero probability of
reaching any 1-node before returning to any 0-node of the finite subnetwork M used in
that section. This is why such 0-walks do not occur in the random 1-walks that will be

discussed in the next section.

7 Random 1-Walks

So far, we have examined random 0-walks that may stop at a 1-node. To obtain random
1-walks that pass through 1-nodes and wander in general from one 0-section to another, we
have to first define how a random 0-walk may start at a 1-node.

Let n! be any 1-node of N1, choose a spur for every end embraced by n!—making those
spurs mutually disjoint, and then choose a finitely chainlike representation M = [J;2o M,
for the union of those spurs. Within M, V, separates n! from My, and, for ¢ > p, V,
separates n! from V,. Now, however, V, and V, will lie in many 0-sections whenever n! is
incident to many O-sections. For the next definition we assume that M has two or more
spines, and thus V, has two or more nodes. Also, V,\n, x denotes the set of all nodes in V,

other than the node ny .

Definition 7.1. Given that ¥ starts at n} and reaches a node of V,, the probability:
P(nd;npx) = Prob(snd,tn, k, bVp\ny i | ¥ reaches V,) (12)

that ¥ reaches the node n,x of V, before it reaches any of the other nodes n,; (I =

1,---,m;l # k) of V, is defined to be the node voltage u!(p, k) at n! when n, x is held at 1
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volt and every n,; (I # k) is held at 0 volt. Similarly, given that ¥ starts at a node ny; of
V, (g > p) and reaches a node of V,, the probability:

P(ngi;np k) = Prob(sngi,1np i, bVp\ny | ¥ reaches V) (13)

that ¥ reaches n,; before reaching any other node n,; of V, is defined to be the node
voltage ug i(p, k) at ny; when n,k is held at 1 volt and every n,; (I # k) is held at 0 volt.

The second sentence of this definition is needed because ng; resides in an infinite net-
work exterior to V,—in contrast to the Nash-Williams result which holds for finite interior
networks.

Definition 7.1 assigns comparative probabilities for transitions from n! to the nodes of
any V,. Since ¥, when proceeding from n' to a node n,x of V,, must first meet at least
one node of V,, where ¢ > p, we should now prove the consistency of our definition in the
following sense: The comparative probability for the transitions from n! to n, x is the same
as that obtained by combining the comparative probabilities for transitions from n! to the
various nodes of V, with the comparative probabilities for transitions from the nodes of V,

to n, . More specifically, by conditional probabilities, we should have for ¢ > p
P(n';inpk) = P(ngainpi)P(nlingn) + -+ + P(ngminpi)P(n'ingm)  (14)

if Definition 7.1 is to be consistent. This equation can be established electrically by using
the conditions in Definition 7.1 as follows.

Let 1; denote the vector of m real numbers with 1 as the kth entry and 0 for all other
entries. Let u, = (up1,--*,Upm) Where u,x is the node voltage at nyk, and similarly
for uy = (Ug,1,"**>Ugm). As before, let ul(p, k) be the voltage at n! when u, = 1;, and
let u!(g,k) be the voltage at n! when u, = 1. Now, let u,(p,k) be in particular the
vector of node voltages for V, when u, = 1k, and let ug;(p, k) be the ith component of
u,(p, k). Since V, separates V, from n!, the voltage ul(p, k) is the same as the voltage
induced at n! by imposing u,(p, k) as the vector of node voltages for V,;. But, ue(p, k) =

ug1(p, k)11 + -+ - + Ugm(p, k)1m, and so by superposition
ul(pa k) = uq,l(pa k)ul(‘b )+=++ uq,m(Pa k)ul(g, m). (15)
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Now, by Definition 7.1, u!(p,k) = P(nl;n, ), ul(g,k) = P(nl;ng), and u,i(p,k) =
P(ng,i;npk). Thus, (14) is justified by (15), and Definition 7.1 has the stated consistency.

A similar use of conditional probabilities and electrical-network manipulations shows
that Definition 7.1 is consistent for transitions from V, to V, through V, where p < n < q.

With regard to walks that start at nl, we have so far restricted ourselves to those that
do reach V,. The next natural question is: What is the probability that ¥, after starting at
nl, will reach V, before returning to n1? The answer is zero. Indeed, that ¥ starts from n!
means that ¥ reaches a node ng ; of V, for some g > p. The probability that ¥ then returns
to n! before reaching V, is, according to Definition 6.3, the voltage uy s at n,r when nl! is
held at 1 volt and all nodes of V, are held at 0 volt. But, ugx — 1 as ¢ — oo according to
Lemma 4.1. In other words, only a vanishingly small proportion of the 1-walks that start at
n! reach V, without first returning to n!, whatever be p. In this sense, n! is not a transient
node. It follows of course that the probability that ¥, given that it starts at n!, will reach
another 1-node before returning to n! is zero.

This does not mean however that there are no random 1-walks that, starting from some
1-node, penetrate a 0-section and continue on to reach another 1-node. It simply means
that we are dealing with the exceptional case among all the random 1-walks that start at
n! when we examine those that reach V, for any given p. Thus, we are free to compare
transition probabilities for those 1-walks that do penetrate a 0-section from an incident
1-node.

We can for example compare transition probabilities for 1-walks that rove (Definition
5.1), that is, for 1-walks that, after starting from a 1-node nj, reach another 1-node before
returning to nd. As our last task in this section, we shall show that a random roving 1-walk
is a Markov chain with a finite state space consisting of the 1-nodes of N1.

For this purpose, consider now a 1-node n and all its incident 0O-sections S, (a =
1,---,A). This is illustrated in Figure 2 wherein we have taken A = 2. Let n},---,nk
be the 1-nodes incident to those O-sections S, other than n}; we say that those 1-nodes
are adjacent to nf. Choose a spur for every end of the S, that is embraced by an n}

(k = 1,---,K). Those spurs can be chosen so small that they are disjoint from all the

25



other spurs; do so. Let |J;Zo My, now be a finitely chainlike representation for the union
of the spurs for the ends of the S, that are embraced by the single 1-node n}. Once again,
Vip = Mpp-1 UMg, (p>0).

Let us choose a positive integer py for each k = 1,---, K. The nodes of UK ; Vi ,, lie
in all the 0-sections incident to n} and separate n} from all the n}. (See Figure 2.) As a
direct extension of Definition 7.1, we can assign comparative probabilities for transitions
from n} to the various Vi ,,. In particular, given that ¥ starts at n} and reaches a node
of UK, Vi pr» the probability that ¥ reaches any node of Vi, before it reaches any node
of U{Vip,: Il = 1,---,K;l # k} is equal to the node voltage vox(p1,--,pK) at n§ when
the nodes of Vi, are held at 1 volt and the nodes of all the V;, (I # k) are held at 0
volt. As before, by virtue of Lemma 3.4, another node voltage ug x is obtained at n} by
holding n}. at 1 volt and the other 1-nodes n} (I # k) adjacent to n} at 0 volt. We can
repeat the proof of Lemma 6.1, substituting n} for ng, all the 0-sections S, incident to n}
for the single 0-section S, and the 1-nodes adjacent to n} for the 1-nodes incident to S.
The proof proceeds exactly as before, the only difference being that we need a maximum
principal for the node voltages in a 1-network. This is provided by Theorem 4.3. All this
leads to the conclusion that vox(p1,---,pK) converges to ugx as the p;,---,px tend to
infinity independently. Hence, we are led to the following definition, wherein A} denotes
all the 1-nodes adjacent to n} other than n}.

Definition 7.2. Assume there are two or more 1-nodes adjacent to the 1-node nj. For

any random roving 1-walk, the probability:
P(n};n}) = Prob(sng,rni,bA} | ¥ roves) (16)

that ¥, starting from nj, reaches an adjacent 1-node n} before it reaches any of the other
adjacent 1-node n} (I # 0,k) is defined to be the node voltage at ny when n}. is held at 1
volt and all the 1-nodes of A} are held at 0 volt.

Lemma 7.3. Under the conditions of Definition 7.2, 0 < P(n};n}) < 1.

Proof. This follows directly from Corollary 4.4. Forinstance, to conclude that P(ng; n}) <
1, choose the 1-path P! of that corollary to be P! = {n§, P%, n;}, where n; is the 1-node -

obtained by shorting the nodes of A} and P is an endless 0-path that reaches ng and ng.
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If n} has only one adjacent 1-node n}, P(n};n}) is set equal to one.

This then defines the one-step transition probabilities for a random roving 1-walk from
any 1-node nj to its adjacent 1-nodes. Obviously the probability that a 1-walk will go in
one step from n} to a 1-node that is not adjacent to n} is zero. Moreover, by definition of a
roving 1-walk, the probability of a transition from n{ to n} in one step is zero too. Finally,
to show that we have a Markov chain, we have to show that these probabilities for one-step
transitions from any given 1-node sum to one. By superposition, this sum is equal to the
voltage uj at nf when all the 1-nodes adjacent to n} are held at 1 volt and all other 1-nodes
and 0-nodes are left floating (i.e., no source connections to them). But then, all branch
currents in the 0-sections incident to n} are zero, and therefore u} = 1 too, as required.

Theorem 7.4. A random roving I-walk W for a network N1 that satisfies Conditions
2.8 is a Markov chain with a state space consisting of the I-nodes n} of N1 and with the
following one-step transition probabilities: Py = 0; Pr; = 0 if n}c and n} are not adjacent;
Py, is given by Definition 7.2 if n; and n} are adjacent.

By definition the following two conditions have also been imposed: Any 0-walk W?°
embraced by W?! follows the customary rules of transition for a random walk on the 0-
section to which W0 is confined. The transition in (9) from one 0-walk W2 to the next

0-walk W2, through the 1-node n] ., is governed by Definitions 6.2, 6.3, and 7.1.

8 Reversibility and the Surrogate Network

Theorem 8.1. The Markov chain of Theorem 7.4 is irreducible and reversible.

Proof. The case where N! has just two 1-nodes is trivial. So, let N1 have more than
two 1-nodes.

For any two adjacent 1-nodes n] and nl, the probability that a roving 1-walk will pass
from n} to n} in one step is positive (Lemma 7.3). The irreducibility [11] of the Markov
chain now follows from the 1-connectedness of NI.

As for reversibility, we start by recalling the definition of a cycle—adapted for 1-nodes.

This is a finite sequence C = (n},n},---,nl,nl,; = ni) of 1-nodes n}, where all 1-nodes
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are distinct except for the first and last, there are at least three 1-nodes (i.e., ¢ > 2), and
consecutive 1-nodes in C are adjacent in N1. A Markov chain is reversible if, for every cycle
C, the product [[§; Pk k41 of transition probabilities Py x+1 from n} to n},, remains the
same when every P k41 is replaced by Piyqk [11, Section 1.5]. Thus, we need only show
that

PiaPy3:-Py = Py P3Py, (17)

According to Definition 7.2, Pk k41 is obtained by holding n} , at 1 volt, by holding all
the 1-nodes adjacent to nj other than n}:+1 at 0 volt, and setting P x+1 = u}, where u} is
the resulting voltage at n}. For this situation, ux will remain unchanged when still other
1-node voltages are arbitrarily specified.

To simplify notation, let us denote n} by mo and n},, by my. Also, let mg,---,mg
denote all the 1-nodes different from n} and n},; but adjacent to either n} or n} , or
both. Since the cycle has at least three 1-nodes, we have KX > 2. Now, consider the
K-port obtained from N by choosing mg,mo as the pair of terminals for the kth port
(k = 1,---,K) with mg being the common ground for all ports. To obtain the required
node voltages for measuring Pi 41, we externally connect a 1-volt source to m; from all of
the mq, - --mg, with mg left floating (i.e., mo has no external connections). The resulting
voltage ug at mg is Pk k41.

With respect to mg, the voltage at m; is 1 — up and the voltage at my (k = 2,---, K)
is —ug. Moreover, with i; denoting the current entering my (k = 1,---,K), the sum
i1+ -+ ix is zero. (Apply Kirchhoff’s current law at m;.) Furthermore, the port currents
and voltages are related by i = Y'u, where i = (i1,---,1x), u = (1 — ug, —%o," - -, —ug), and
Y = [Y,4] is a K x K matrix of real numbers that is positive-definite (Lemma 3.3). Hence,

Y is symmetric. Upon expanding i = Yu and adding the 7, we get

K K K
0=ir+-+ix = Ya1 — ) D Yap
a=1 - a=1b=1
Therefore,
Ef:]_ Ya,l

(18)

Pert1 = wo = =3 - .
? R K
Za:} Zb:l Ya'b
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Upon setting G = YK, YK | o4, we can rewrite (18) as

K
GrPirs1 = ZYa,l- (19)

a=1
Now, 25(:1 Y, is the sum i3+ -+ -+ i when u = (1,0,--+,0); that is, Zi;l Y, is the sum
of the currents entering m,ms, - - -, mg from external connections when 1-volt sources are
connected to m; from all of the mg, ms, -, mg.

By reversing the roles of mg and m;, we have by the same analysis that Gx41Pr41,k is
the sum g+ i+ - - -+ ix of the currents entering mg, ms, - - -, mg from external connections
when 1-volt sources are connected to mg from all of the my, my, -+, mg. With respect to
the ground node mg, we now have u; = --- = ug = —1, and therefore i; = — ):fl{:l i
Moreover, under this latter connection, the sum —#; — i3 — - - - — ig of the currents leaving

my, My, -mk is equal to the current i entering mo. Hence, —4; = t9+1i2+ -+ ix. Thus,
K

Gis1Pit1e = —i1 = Y Vi (20)
a=1

Since the matrix Y is symmetric, we have Y3 , = Y, 1. So, by (19) and (20),

Gi+1Pri1k = GiPriy1- (21)
Finally, we may now write
Gy, G3 Gy
PiaPiaeePoy = AP B T o PP oo Pl
1,2P2,3 w1 = g P Paa P 2,1 P32 1,

This verifies (17) and completes the proof. O

Because the Markov chain is irreducible and reversible, we can synthesize a finite 0-
network N1~ whose 0-nodes correspond bijectively to the 1-nodes of N and whose random
0-walks are governed by the same transition matrix as that for the random roving 1-walks
of N1. N1=0 acts as a surrogate for N!1. A realization for it can be obtained by connecting
a conductance gx; = g1 between the 0-nodes ng and n0 in N1=0, where g, is given as
follows: Let n} — n? denote the bijection from the 1-nodes of N to the 0-nodes of N1—0,
If n} and n} are not adjacent in N, set gx; = 0. If n} and n} are adjacent in N, relabel

n} as mg, n} as my, and let my,---, mg be the other 1-nodes that are adjacent to either
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mo or my or both. Then, with our prior notation, set Gy = ¥X K v, ,. Also, set
G = Y Gk, where this latter sum is over all indices for all the 1-nodes of N'. Finally, set

gk, = PriGi/G. By (21), gk; = g1k This yields the surrogate network [4, page 43].
9 A Special Kind of v-Network

Let us turn now to random walks on v-networks, where v is any positive natural number.
Our theory for transfinite random walks of the higher ranks is constructed recursively and
is much like that for random 1-walks. However, modifications and extensions are needed
throughout the development. Because of this, we will be specific about our definitions, lem-
mas, and theorems but will explicate our proofs only when the arguments involve significant
deviations or expansions from the foregoing.

Let p be any natural number, and let K# be a given u-network with the branch set B.
Let B; and B; be two subsets of B, and let K; and K, be the reduction of K# induced
by B; and B, respectively. Then, the union K; U K3 is the reduction of K# induced by
B1 U B;. Also, the intersection K1 N K5 is the reduction of K# induced by By N B,. If
Bo, By, - - - is a partition of B, we say that K¥ is partitioned into Ko, K, - - -, where each K,
is the reduction of K# induced by B,. Thus, we may write K* = U, K,.

Furthermore, let a reduction K, of K# have a tip or node (of whatever rank) that is
embraced by a node ng (also of some unspecified rank) of K#; then, K, and ng are said to
be incident. If K, and L, are are two reductions of K#, then K, ® L, will denote the set
of all nodes of K# that are incident to both K, and L..

As with 1-networks, a critical construct in our development is an extension to u-networks
of Halin’s finitely chainlike structure for 0-networks. Now, let p > 1. A p-network M#* will
be called finitely u-chainlike if it can be partitioned into a sequence {M4}22 , of reductions
M§ of M*:

oo
M* = ;,UoMg (22)

where each M¥ is of rank y and has finitely many (p —1)-sections and where every (u—1)-

section of M# appears in its entirety in one and only one of the M}; it is also required
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that
M;@M:_l = v;: r=12.-., (23)

where each V}' is a finite set of u-nodes in M¥ and that the following three conditions be

fulfilled.

(a) The cardinality m* of each V}' does not depend upon p.
-2

(b) For every p > 2, M4 0 Uizg MY = 0.

(c) In each M} (p > 1) there are m* pairwise totally disjoint u-paths from the p-nodes in

V} to the pu-nodes in V[ ;.

Once again the union for all p of all the totally disjoint u-paths of condition (c) yields
m# totally disjoint, one-ended p-paths, which we will call spines or u-spines, and the set of
all m# of them will be called a full set of u-spines for the finitely p-chainlike structure.

A significant difference between this definition of a finitely u-chainlike structure for a
pu-network and Halin’s definition corresponding to a 0-network is that u-sections now take
on the role played previously by branches. This distinction will remain in force throughout
our development of random v-walks on a v-network NV,

As before, we require that there be no infinite 0-nodes, no self-loops, and no parallel
branches in N¥. Now, let v be a natural number no less than 2. For every u = 1,---,v, we
also require that no g-node of N” embrace a node of lower rank. Moreover, we shall require
that N” be v-connected. As a result, every (u — 1)-section will have at least one incident
pu-node and will be u-connected to other parts of N through its incident p-nodes.

Lemma 9.1. Under the just-stated conditions on N¥, let v > 2. Assume in addition
that, for every p = 0,---,v — 2, each p-section has finitely many incident (1 + 1)-nodes.
Then, there are infinitely many p-sections in every (u+1)-section for each p = 0,---,v—2.

Proof. By definition of a v-network [25], N” has at least one v-node and therefore at
least one (v — 1)-tip. This in turn implies that there is at least one one-ended (v — 1)-path
and therefore an infinity of (¥ —1)-nodes. Our conclusion for p = v —2 now follows from the
assumption that each (v — 2)-section is incident to finitely many (v —1)-nodes and from the

fact that every (v —1)-node must be incident to at least one (v — 2)-section. Our conclusion
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for all lower values of p is established by repeating this argument for p = v —= 3,-++,0 in
turn with N“ replaced by a (u + 2)-section. O

Now, let 1 < p < v. We say that N” possesses a u-tip t# and that t# is in NV if N¥
has a {u + 1)-node that contains t#; a similar wording is used for any reduction of N¥. Let
K be any reduction of N” and let the rank of K be yu + 1. Hence, K possesses at least
one u + 1-node and therefore at least one u-tip 7#. There is a unique u-tip t* in N* that
contains 7# as a subset. In fact, 7# ~— t# is an injection from all the u-tips of K to some or
all of the u-tips of N¥. Because of this, we say that K possesses t* as a u-tip if there is a
representative of t# that lies entirely within K.

For 1 < p < v again, let S}‘_l denote any finite set of (u — 1)-sections in N” and let
Ny = N"\S;:'“1 denote the reduction of N* induced by all branches of N* that are not in
the members of S}‘_l. Since the deletion of the branches in the members of S}‘_l removes
only a finite part of any one-ended p-path, N and N% possess exactly the same pu-tips.

As the next step, we extend the definition of an end. With 1 < u < v still, two u-
tips of N¥ will be called p-end-equivalent if, for every choice of S}‘_l, the two u-tips have
representatives lying in the same p-section of N%. The corresponding equivalence classes of
pu-tips will be called u-ends of N¥. Since all u-tips in a given p-end must belong to a single
u-section of N¥, we say that the y-end belongs to that u-section. Because every p-section of
NY has at least one incident (u + 1)-node and therefore at least one u-tip, every p-section
has at least one p-end. As with Lemma 2.1, we have

Lemma 9.2. Under the stated assumptions on N¥, N” and N} = 1‘«1"\53‘,‘_1 have the
same p-tips and the same p-ends.

Let a pu-end d* of N” be such that an S}‘_l can be so chosen that, within N% = N"\S}“_l,
the p-section S that possess d* as a p-end has no other p-end. In this case, S} is called
a p-spur for d#, and d* will be said to possess S as a p-spur. As before, we can alter S}
and still have a u-spur for the given d* by removing or perhaps appending (u — 1)-sections.
Some obvious modifications of the proof of Lemma 2.2 establishes the following under our
stated assumptions on N¥.

Lemma 9.3. Assume that a pu-section S* of N has only finitely many p-ends. Then,

32



a finite set 5}‘_1 of (1t — 1)-sections can be so chosen that every u-end of S* is the one and
only p-end of some p-section S of N"\S}‘_1 (i.e., each such p-section is a u-spur for its
p-end) and the p-spurs are mutually disjoint (i.e., mutually not p-connected).

Let us now gather together all the assumptions we impose upon the v-network N¥
throughout the remainder of this work.

Conditions 9.4. Let u and v be natural numbers withv>1and u=0,---,v—1.

(a) NV is a v-connected v-network having no infinite 0-nodes, no self-loops, and no parallel
branches. For every u, no (u + 1)-node embraces a node of lower rank. NV has at

least two v-nodes.

(b) N¥ has only finitely many (v — 1)-ends, and for each pu every p-section has only finitely

many p-ends.

(¢) Fach p-end is embraced by some (u + 1)-node (i.e., all the p-tips in that p-end are
members of a single (u+1)-node), and every (u+ 1)-node embraces only finitely many
pu-ends.

(d) Every branch b; of N¥ has assigned to it a positive number g, called the branch con-

ductance; r; = gj_l is called the branch resistance. Fvery branch has an orientation.

(e) Every p-end has a p-spur that is finitely u-chainlike and possesses a full set of pu-spines,

each of which is perceptible.

The proof of Lemma 2.4 extends directly to yield the following. Here, a 0-spur is a spur
as defined in Section 2, and similarly for a 0-end.

Lemma 9.5. Under Conditions 9.4, the following is true.
(1) Every p-spur has the properties indicated in Condition 9.4 (e).
(i1) Every one-ended p-path lies within a p-spur.

(iii) Between every two nodes of N¥ there is a perceptible v-path that terminates at those

nodes, whatever be the ranks of those nodes.
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(iv) N* has only finitely many (v — 1)-sections and v-nodes. Moreover, for each pi, ;avery
p-section is incident to only finitely many (u + 1)-nodes, and every (u + 1)-node is

incident to only finitely many p-sections.

We have already defined in Section 2 what we mean by shorting together finitely many
0-nodes. As for the shorting of a finite number of u-nodes, where p is fixed, positive, and
possibly equal to v, just take their union to create a new p-node and thereby a new v-
network. Note that the new v-network also satisfies Conditions 9.4. As for the shorting of
finitely many nodes of various ranks, first short all the nodes of the same rank, doing this
for every rank; then the resulting node of highest rank is taken to embrace the resulting
node of next highest rank, which in turn is taken to embrace the resulting node of third

highest rank, and so forth.

10 Excitations at Nodes of Arbitrary Ranks

The objective of this section is to establish that a pure voltage source can be connected
to any two nodes of NV, whatever be the ranks of those nodes. We start with a resistive
voltage source. Let by denote a source branch consisting of a pure voltage source eg in series
with a positive resistance p. Let us append by to N” by connecting by to any two nodes
(of any ranks) of N¥. (We now index the branches of N” by j = 1,2,....) The resulting
network will be denoted by N¥. As with 0-sections, a “u-section” of whatever rank u will
always be understood to be a p-section with respect to N¥, not with respect to N¥. The
spaces KO and K are defined for N¥ as in [25, section 10], and so too for g-loop currents
and g-basic currents. That paper has established
Theorem 10.1. Let the resistive-voltage-source branch by be connected to any two nodes
of N¥. Then, there is a unique current vector i* = (ig,1y,15,...) € K such that
o0
eoso = pigso+ Y Tii5s; (24)
j=1
for every s € K.
The next step is to extend Kirchhoff’s current law to a “cut” in N that “isolates” a node

n#+1! of rank p + 1 < v. We allow n#*1 to be one of the nodes to which the source branch
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bo is connected. By Condition 9.4(c), n¥*! embraces only finitely many p-ends. Choose
a p-spur for every p-end embraced by n#*! (Lemma 9.3). From the finitely u-chainlike
structure of the union of those spurs, we can select a finite set V;‘ﬁ = M;,‘“ ® M;f”_l of
p-nodes. Now each p-node in V}, embraces only finitely many (1 —1)-ends, and therefore is
incident to only finitely many (u — 1)-sections. By the definition of the finitely u-chainlike
structure (see Section 9), each of the latter (u — 1)-sections lies entirely within either My,
or M;:,.—l (not in both). If there is any (u — 1)-section that is incident only to p-nodes in
V}.,, we assign that (1 — 1)-section to M;“ Thus, any (4 — 1)-section S§~! in M} _, that
is incident to one or more u-nodes in V;ﬁ is also incident to some p-nodes of M;‘p_l that
are not in Vj . Consider all of the (u — 1)-sections like S4~1. Choose a (u — 1)-spur for
every one of their (4 — 1)-ends that is embraced by a u-node of Vi, The union of all those
(#—1)-spurs is finitely chainlike. Therefore, we can choose a finite set V£~ of (u—1)-nodes

from that chainlike structure, and then consider all (x — 2)-sections Sg‘_z in M;:l

_,—1 €ach

of which is incident to at least one node of V4 and to at least one node not in L
Continuing in this way toward lower ranks, we finally reach a finite set V9 = M3 @MY _;
of 0-nodes which separates n#*1 from all other (u + 1)-nodes in the following way: If P#+1
isa (u+ 1)-path in N” that meets n#*1 and any other (u + 1)-node, then P#*+! embraces a
0-node of V2 . (In a similar sense, we will say later on that V) separates n*+! from nodes
of other ranks.)

All the branches of Mp _, that have one node in V3 and one node not in V2 comprise
a finite set C. We call C a cut for n**+1 at Vgo, and refer to the branches of C as cut-branches
at V) . We also say that, within N¥, C isolates n#*! from all other (u + 1)-nodes. Again
a cut-branch is said to be oriented away from (toward) n#+! if it is oriented away from

(toward) its node in Vp . Kirchhoff’s current law for C is again expressed by (5), except

that n! is now replaced by n#*1. To be specific, for N¥, that law states that

3 =8 (25)

where the summation is for the branches in C and for by as well if bg is incident to n#*1, ; is
the current in those branches, and the plus (minus) sign is used if the branch’s orientation

is away from (toward) n#*!. With obvious modifications to its proof, Lemma 3.2 extends
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to the present case of a v-network N¥:

Lemma 10.2. Kirchhoff’s current law (25) holds whenever i€ K.

Lemma 3.3 also extends directly. In particular, we can produce a unique voltage-current
regime within N” by connecting finitely many pure current sources hs,...,hx from any
node n; in N to K — 1 other nodes n,...,ng. The ranks of these nodes may differ.
The resulting vector u = (ug,...,ux) of node voltages at the latter nodes measured with
respect to np (i.e., u; = 0) is related to the vector h = (hq,...,hx) by u = Zh, where Z is
a (K —1)x (K — 1) real matrix. In the same way as before, we can prove

Lemma 10.3. Z is positive-definite and therefore nonsingular.

This implies that pure voltage sources can be connected from n; to no,...,n; to produce
a unique voltage-current regime within N¥,

Furthermore, the voltage-current regime produced by a single pure voltage source eq
connected between any two nodes can be approached by connecting a resistive voltage
source, as in Theorem 10.1, and then letting p — 0. Exactly as in Section 3, the following
generalization of Theorem 3.4 can be obtained. (Here, the same branch numbering system
as that for Theorem 10.1 is used. Also, in the limit the inner product for Z becomes
(i,s) = 3211585, and g is determined from the other branch currents by Kirchhoff’s
curent law.)

Theorem 10.4. Let a pure voltage source eq be connected to any two nodes of N¥ of
arbitrary and possibly differing ranks. . Then, for the resulting network NV, there is a unique

i € K such that, for every s € K,

=]
€pSp = ZT_.';?:_;;SJ‘. (26)
=1

11 Node Voltages in NV

From now on, NY will denote N* with a single pure 1-volt voltage source connected to
any two nodes of N¥. The negative terminal of the 1-volt source will always be assigned
the zero node voltage. As was the case for 1-networks, we will need the fact that every

node voltage in N¥ is bounded between zero and one. We shall establish this through an
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inductive argument that extends the results of Section 4 to higher ranks. In doing sc;, we
will obtain a maximum principle for node voltages in a v-network.

Let 0 € u < v, and let S* be a u-section in N¥. S* will be called sourceless if no node
(of whatever rank < p) in S* is incident to the source branch by of N¥. (A sourceless S#
may have bg incident to one of its incident (u + 1)-nodes.) Consider the following. Part (a)
is a transfinite generalization of the maximum principle for node voltages.

Properties 11.1.
(a) There ezist ezactly two possibilities for all node voltages in any sourceless u-section S*.

(al) All the u-nodes in S* have the same voltage.

(a2) The p-node voltages in S* are strictly less (and strictly larger) than the largest

(respectively, least) voltage for the (1 + 1)-nodes that are incident to SH.

(b) The p-node voltages along any one-ended p-path P“ in S* (whether or not P* is
perceptible) converge to the voltage of the (u + 1)-node that P* meets.

Note that these properties are fulfilled for 4 = 0 according to Lemmas 4.1 and the
classical maximum principle for node voltages in the usual kind of network. We now use
strong induction. Assume that Properties 11.1 hold for all ranks up to and including any
chosen p, where g < v — 2. We argue that they also hold for u replaced by p + 1. If
possibility (al) is not fulfilled by some sourceless (u + 1)-section S#*1, then any arbitrarily
chosen (p+1)-node n#+! in S#*1 will have a voltage u#+! different from that of some other
(1 + 1)-node nf*! in S#+1. We can choose a (u + 1)-path in S#*! that terminates at n#t1
and n}t! and trace along it to find a (u + 1)-node (possibly n#+! itself) with the same
voltage as n¥t! but adjacent to a (x + 1)-node with a different voltage. Let S! be the
union of all u-sections, each of which is incident to both of the latter two (u + 1)-nodes.
According to Lemma 9.5(iv), there are only finitely many u-sections in the union S}’. Then,
by the assumed Properties 11.1, all the y-node voltages in S! are strictly less than the
largest voltage u‘l""l for the (u + 1)-nodes incident to S¥ (i.e., incident to a u-section of
S¥). Let n“*! be a (u + 1)-node incident to S¥ with the largest voltage uf*'. (Possibly,

n#t1 = putl)) We have uft! > yptl.
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Suppose all the (4 +1)-nodes adjacent to ny** have voltages no larger than e, Iénore
the p-sections incident to nf*! with constant u-node voltages; all their currents are zero.
With regard to the remaining u-sections incident to n;‘“, from the finitely p-chainlike
structure for a union of u-spurs for all the p-ends embraced by ni‘“, choose a V} and a

+1
V¥ (¢ > p), where V¥ separates V¥ from nf

. Next, consider the network between V/
and V§. It has (u — 1)-spurs for its (4 — 1)-ends embraced by the nodes of Ve-1, and the
union of those spurs has a (4 — 1)-chainlike structure. Choose a V}~! from it. Thus, V#~1
separates V}' from V¥ and therefore from ny*!. Repeating this procedure for still lower
ranks, we finally obtain a V?, where V;] separates V¥ from nf =5 Moreover, these choices
can be so made that the largest u-node voltage for V¥ is strictly less than the least 0-node
voltage in V2. The latter requirement can be fulfilled by virtue of (a2) and (b) of Properties
11.1 and our strong-induction hypothesis. Therefore, we can connect pure voltage sources
to the nodes of V% U VY as in our argument for Theorem 4.3 to derive a contradiction to
Kirchhoff’s current law as applied to a cut at V;:' for ni‘“. This shows that adjacent to
n4*! there is a (1 + 1)-node n4+! with w41 > w41, We choose 751! such that u4*? is the

largest voltage for all (1 + 1)-nodes adjacent to n%*?.

Repeating this argument, we can find another (u + 1)-node n4*' with the following
properties: n4*! is adjacent to n4™! but not to n#; uht! > ustl; ubt! is the largest

voltage for all (i + 1)-nodes adjacent to n5*'.

Further repetitions lead to an infinite sequence {n *'}2 . of (4 + 1)-nodes wherein

two (4 + 1)-nodes are adjacent in the sequence if and only if they are adjacent in N,.
Moreover, u’{"l < uﬂ} for every k. It follows that we can find a (u + 1)-path P#*! having
nkt1 nh*l .. as its consecutive (u + 1)-nodes. P#*! is a representative of a (u + 1)-

4+2 incident to S#*1, the sourceless (i + 1)-section

tip embraced by some (u + 2)-node n,
with which we started. Now, the (u + 1)-node voltages along P#*! are strictly increasing.
Moreover, P#*! meets infinitely often various nodes of |JjZ, V#+! for a finitely (u + 1)-
chainlike structure for a union of (u 4+ 1)-spurs (chosen according to Condition 9.4(e)) for
all (4 + 1)-ends embraced by n5‘+2. The voltages for the nodes of |J2, V4t! comprise a

directed function and converge to u6‘+2 because every spine is perceptible and there are only
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finitely many spines. Consequently, the (x4 1)-node voltages along P#*! converge to 1}:;*'*‘.
Thus, u4? > u#t! > u#+1. Since n¥+! was chosen arbitrarily in S¥*1, we can conclude
that every (u + 1)-node voltage for S#*1 is strictly less than the largest of the voltages for
the finitely many (4 + 2)-nodes incident to S¥+1.

A similar argument shows that, if part (al) of Properties 11.1 is not fulfilled by S¥+1,
then every (i + 1)-node voltage for S#*+1 is strictly larger than the least of the voltages for
the finitely many (1 + 2)-nodes incident to S¥*1. This establishes part (a) of Properties
11.1 for u replaced by p + 1.

As for part (b), let u < v — 2 again and let P#*1 be a one-ended (x + 1)-path in S#+1.
By Lemma 9.5(i) and (ii), P#*! lies in a (u + 1)-spur, which is finitely (u + 1)-chainlike in
accordance with Condition 9.4(e). Let n#t2 be the (1 + 2)-node that P#+1 meets. Now
consider any Mg"'l in that chainlike structure. By our preceding argument, all the voltages
for the (4 + 1)-nodes in M£+! are no larger (no less) than the largest (respectively, least)
(p+1)-node voltage for Vp+1 UV;‘LI. Since there are only finitely many spines and they are
all perceptible, these largest and least voltages converge to the voltage at n*t2? as p — oo.
Thus, part (b) holds for u replaced by x + 1. We have established inductively

Theorem 11.2. Under Conditions 9.4, Properties 11.1 are fulfilled by any sourceless
u-section S* with any rank u =0,...,v —1.

Corollary 11.3. If S* is a sourceless p-section with 0 < p < v and if S* has only one
incident (1 + 1)-node, then all the node voltages for S* are the same, namely, the voltage
of the incident (pu + 1)-node.

We can draw a stronger conclusion regarding convergence of voltages along one-ended
paths even when there are finitely many sources appended to S¥, both of the voltage and
current types and both pure and resistive.

Lemma 11.4. If no more than finitely many sources are appended to nodes of S*, part
(b) of Properties 11.1 remains true for every p < v.

Proof. In the prior inductive proof of part (b), P#*! can be restricted to a (u + 1)-spur
which is sourceless. Then, every M4*1 is sourceless and the prior argument can be applied

again. O
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Let us now return to N¥, that is, to N¥ with a single source—a pure 1-volt source—
appended to two nodes of arbitrary ranks; the negative terminal of the source is assigned
the zero node voltage. The next objective is another extension to N¥ of the maximum
principle for node voltages. We start with a lemma, which will be used later on to construct
a contradiction.

Lemma 11.5. Let S* be a p-section with 0 < u < v and let it contain one or both
of the source nodes. Assume there is a p-node ng in S* with uf > 1. Then, there is a
(1 + 1)-node n¥*! incident to S* such that wtT > 1, w4t is no less than the voltages at
all the (u + 1)-nodes incident to S*, and u%*! is strictly larger than the voltages at all the
p-nodes within S,

Proof. We argue inductively. For 4 = 0 this lemma follows from Lemma 4.2 for the
case where the 0-section S° contains both n and a source node and therefore has differing
0-node voltages. Now, assuming the lemma is true for all ranks up to and including some
chosen rank g < v — 2, we shall prove that it is true for the (u + 1)-section S#*! that
contains S¥.

Let there be a (u+1)-node nft! in S#+1 with uf*! > 1. It follows that there will be two
adjacent (u+ 1)-nodes n#*1 and nft! in S#+1 with w4+ > wf™! > 1 and ust! > uft!. Let
S#*1 denote the finite union of all the u-sections that are incident to both n#+1 and nf*!.
Then, by Lemma 11.4 in conjunction either with our inductive hypothesis (if a u-section of
S¥ contains a source node) or with Theorem 11.2 (if a u-section of S} is sourceless), there
exists a (u+1)-node incident to S* such that 44! is no less than the voltages at the finitely
many (i + 1)-nodes incident to S¥ and u4™! is strictly larger than the voltages at all the
p-nodes in S¥. Thus, u§t! > ustl > uft! > 1.

Using Lemma 11.4 again, we now proceed exactly as in the argument that led to Theorem
11.2 to conclude that, if Kirchhoff’s current law is not to be violated at a cut that isolates
n“*! from all other (i + 1)-nodes and from the source nodes, there must be a (1 + 1)-node
n4*1 adjacent to n#*! such that the following hold: uwht! > w4t! > wft! > 1; w4 is

no less than all the voltages at the finitely many (u + 1)-nodes adjacent to n4%%; w4 is

strictly greater than the voltages at all y-nodes within the yu-sections incident to n4*.
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A repetition of the last paragraph shows that, if Kirchhoff’s current law is not to be

violated at a cut that isolates n;‘“ from all other (x4 1)-nodes and from the source nodes,

there must be another (i + 1)-node n4*! adjacent to n4*! such that the stated conditions

are again satisfied with n¥*! replaced by n4*! and n4*! replaced by n4*!.

ptl putl patl | of consecutively adjacent

Continuing in this way, we find a sequence n
(g + 1)-nodes in S#*1 with 1 < uft! < ubtl < ubt! < wb%1 < wbt! < .. It follows that
these are the (u + 1)-nodes along a (p + 1)-path P#+! that meets a (u + 2)-node nj*?
incident to S#+1 and whose voltages converge to u4™? (Lemma 11.4 again). Since this is so

4+1 with which we started, we can furthermore conclude that there

whatever be the node n
is a (1 + 2)-node n**? incident to S#*1 such that the conclusion of Lemma 11.5 is fulfilled
when pu is replaced by g + 1. This completes the inductive proof. O

Theorem 11.6. The voltage at every node (of any rank) in N¥ is no less than zero and
no greater than one.

Proof. Suppose there is a node with a voltage larger than one. We can apply Theorem
11.2 and Lemma 11.5 recursively to conclude that there is a v-node nf in N¥ with the
following two properties: u§ > 1; ug is no less than all the voltages at all the nodes of all
ranks in NY. By tracing a v-path from n§ to a source node, we can find a v-node n¥ such
that u¥ = uf and nY is incident to a (v — 1)-section whose nodes of all ranks less than
v have voltages strictly less than u} (invoke Lemma 11.5 again). However, this implies a
contradiction to Kirchhoff’s current law at a cut that isolates ng from all the other v-nodes
and also from the source nodes. Hence, our supposition is false.

A similar argument involving a modification of Lemma 11.5 establishes that there is no
node with a negative voltage. (Alternatively, we can obtain this second conclusion from the
first one by reversing the source’s polarity and adding 1 to all node voltages. This merely
reverses all branch currents.) O

As before, n? denotes the source node at 1-volt and nf denotes the source node at 0
volt, @ and 8 being their ranks.

Corollary 11.7.

(i) Let ng be a y-node for which there is u-path P*, where p > max(8,7), that terminates
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at ng and n? and does not embrace n2. Then, ug < 1.

(ii) Letn] be a y-node for which there is a p-path P*, where p > max(e, ), that terminates

~

at nj and n¢ and does not embrace nf. Then, uj > 0.

Proof. Under the hypothesis of (i), suppose uy = 1. Let us trace P* from nj to n?
and examine the node voltages. They must eventually fall below one. By virtue of Lemma
11.4 and Theorems 11.2 and 11.6, exactly two cases arise.

Case 1: P* embraces two adjacent A-nodes n)} and ny with 4} = 1 and %) < 1, and
the (A — 1)-sections to which n} and n{ are both incident are sourceless. As in the proof of
Lemma 11.5 (with g + 1 replaced by A), we can find a A-node n} with 43 > u)} = 1. But,
u3 > 1 contradicts Theorem 11.6.

Case 2: P* embraces a A-node n that is incident to at least one sourceless (A — 1)-spur
whose (A — 1)-nodes have voltages strictly less than one. Since all node voltages are no
larger than one (Theorem 11.6), this violates Kirchhoff’s current law at a cut that isolates
n) from all other A-nodes and from the source nodes.

Hence, uj < 1. A similar argument works for (ii). O

12 p-Walks

With the results of Sections 9 through 11 in hand, we can extend our discussion of random
roving 1-walks to walks on the transfinite network N quite directly. In this section, p < v.
Having defined 0-walks and 1-walks, we may now define pu-walks recursively. We take it

that, for u > 2, (u — 1)-walks have already been defined as the alternating sequence
Wﬂ*l = { s n}‘:m_i}W#{_za n;_-l-lla W:;:-i’ o }

of (1 — 1)-nodes n#~1, nontrivial (u — 2)-walks W£~2, and possibly a terminal element
on the left and/or on the right. A terminal element is required to be an 7n-node where
0 < p < u-1. In this way, W#~! may be finite, one-ended, or endless. W#~1! is called
nontrivial if it has at least one (u — 2)-walk. When denoting a terminal node, we will drop
the superscript if that node’s rank is arbitrary and unspecified. (Shortly, we shall complete

our recursive definition of a yu-walk by stating all the conditions that a y-walk must fulfill.)
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One-ended portions of a one-ended or endless W#~! are denoted by
Wem = {Walsnih, Whii,ni)

and

=1 . u=1 - k=1
Whe = {n&: W“ an,W +1, -}

Let d#~! denote a (u — 1)-end. Choose a finitely (u — 1)-chainlike representation M#~1 =
Upzo M5~ for a (u — 1)-spur for d#~1. We say that W#~! starts at d*~1 and also starts at
the u-node that embraces d#~! if, given any integer ¢ > 0, there is an m such that W*=!

—00,m

remains within (J;2, M4~1. Under the same definition but with walm replaced by W1,
we say that W#~1 stops at d*~! and also stops at the u-node that embraces d#~1. Also,
W#=1 js called transient if it stops at a u-node and transient-in-reverse if it starts at a
u-node,

Now let W¥ be a (finite, one-ended, or endless) alternating sequence of the form
We = {oonnh, Wt inh 0, Wiiho o) (27)

where m is restricted to the integers, every W£~1 is a nontrivial (u — 1)-walk, and every n%
is a u-node—with a possible exception arising if W* terminates on the left and/or on the
right. In the latter case, the terminal element is a node, and its rank may be any integer
from 0 to u. Terms in (27) may repeat. For example, consecutive pu-nodes may be the same.
(The latter was also allowed when p = 1, but could not occur when g = 0 because of the
absence of self-loops.)

We need to define terminal behavior when (27) is one-ended or finite and terminates at

a node of rank less than p. In particular, consider the one-way infinite sequence
= {ng, W™, nf, W, ) (28)

where 0 < 7 < p. This will signify that there is a finite sequence of A-walks, where

A=mn,...,u, of the form:

n n-1 n
Wy ol Wt o wtal. )

+1 _ n+1 7}+1
wItt = {ad, W2, a7 W, a0t )
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=1 _ n p—2 _u—1 u=2 _p—1
W3 = {ng, Wy “,n{" , W n8™",...}

B = n u—=1 _pu p=1 _p
w = {HO’WD anlswl ’n23"'}

where W(' ™! starts at nJ, W, stops at n}, and finally WA-! for m > 0 starts at n), and
stops at n), ;. In this case, we shall say that (28) starts at nJ. A similar definition is used
when (27) terminates on the right at an n-node n7, in which case we say that (27) stops at
k.

Definition 12.1. W¥, as given by (27), is called a p-walk if, for every m, W41 starts

at the node on its left and stops at the node on its right. Also, W* is said to perform a

m

one-step p-transition from nf to n, ..

One consequence of this definition is that W* is confined to some u-section. Also, since
no node embraces a node of lower rank according to Condition 9.4(a), a (x — 1)-walk Wx-1
in (27) can start or stdp at a p-node adjacent to WA~ in (27) only if it starts or stops at a
(= 1)-end embraced by that p-node. We use the words “to reach” and “to pass through”
as before. W* will be called nontrivial if (27) has at least one (u — 1)-walk. Also, W* is
said to embrace itself, all of its elements, all elements embraced by its elements, all elements
embraced by the elements embraced by its elements, and so forth. By these definitions, for
any < u every n-walk embraced by W# must be both transient and transient-in-reverse
unless it is respectively the last or first n-walk embraced by W#.

Definition 12.2. The p-walk W# (and ¥ too) is said to rove if, for every n-walk W7
embraced by W# (n < u), every two consecutive n-nodes in W7 are different.

Henceforth, we always assume that ¥ roves whatever be the rank u < v.

13 Random p-Walks

We will now discuss how ¥ may wander in N” by passing through nodes of various ranks.

Transitions between and through nodes of ranks 0 and 1 have already been discussed in
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Sections 6 and 7.

In accordance with our recursive approach, we now take it that random roving n-walks
have been defined for n = 1,...,u, where 1 < u < v. This means in particular that
appropriate generalizations of Definitions 6.2, 6.3, 7.1, and 7.2 have been established for
each n less than p. These are stated in Definition 13.1 below (for x instead of 7). In effect,
the behavior of a random roving 7n-walk that is transient and also transient-in-reverse is
taken as the local behavior of a random roving (7 + 1)-walk. Those definitions are then
used to establish random roving (u + 1)-walks.

As always, S# will denote a u-section in N¥, where p < v.

Definition 13.1.

(a) Let S* have two or more incident (x+1)-nodes. Let n*" be a (1 + 1)-node incident to
S* and let V#*! be the set of all the other (x + 1)-nodes incident to S#. Given that
¥ starts at a u-node nf of S# and reaches some (p + 1)-node (i.e., W# is transient),

the probability that ¥ will reach n}*! before reaching some node of N#+1:
Prob(snf, tnf ™ bA#+! | W* is transient) (29)

is defined as the voltage at nf when nf:"'l is held at 1 volt and all the nodes of AV#+1

are held at 0 volt.

(b) Now, S¥ is allowed to have just one incident (u 4+ 1)-node. Let A/ be any finite set
of p-nodes in S¥. Let n§ be another p-node in S* with ng ¢ N¥. Let N¥+! be
the (finite) set of all (u + 1)-nodes incident to S#. Given that ¥ starts at ng, the

probability that ¥ will reach some node of N#*! before reaching some node of N#:
Prob(snf, N 1, bNY) (30)

is defined as the voltage at n{ when all the nodes of N#*! are held at 1 volt and all

the nodes of V¥ are held at 0 volt.
(c¢) Let nf*! be a (u 4 1)-node. Choose a p-spur for every p-end embraced by nht1,

making those u-spurs mutually disjoint (apply Lemma 9.3 to every u-section incident
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to n§*'). Then, choose a finite u-chainlike representation Upzo My for the union of

those p-spurs. For p > 1, set V;;‘ = M; ® M;‘_l. Assume that Vi has two or more
nodes, and let V\n} , denote the set of all nodes in V¥ other than ny . € V£, Given
that ¥ starts at n4*! and reaches a node of V}, the probability that ¥ will reach the

node n;!k € V} before it reaches any of the other nodes in Vi
Prob(snﬁ“,rn;‘,k,bvg‘\n;"k | ¥ reaches V}) (31)

is defined as the voltage at n§t' when ny . is held at 1 volt and all the other nodes

of V} are held at 0 volt.

(d) Assume that there are two or more (x + 1)-nodes adjacent to the (u + 1)-node n§™'.
Let nf*" be a (u 4 1)-node adjacent to ni*" and let N}*1 be the set of all the other
(u+1)-nodes adjacent to n4*'. Given that ¥ starts at n4*! (remember that ¥ roves),

the probability that ¥ will reach nf™" before it reaches some node of AP
Prob(snft!,rnit!, bAEHY) (32)

is defined as the voltage at n§*’ when nk*1 is held at 1 volt and all the nodes of

J\G‘"‘l are held at 0 volt.

(e) Let n¥ be a p-node in S* and let nit! be incident to S#. Let A4+ denote the set
of all (1 + 1)-nodes adjacent to-nst’. Given that ¥ starts at n5* (and roves), the

probability that ¥ reaches some node of N#+1 before reaching n¥:
Prob(snf*!, tN#+ bnk) (33)

is defined as the voltage at n4*! when all the nodes of A#*! are held at 1 volt and

nj is held at 0 volt.

Parts (a), (b), (c), and (d) of this description generalize respectively Definitions 6.2, 6.3,
7.1, and 7.2. Part (e) represents an new situation that we shall encounter. Also, part (d)
generalizes the standard rule for one-step transitions for random 0-walks.

To justify Definition 13.1(a) as a limiting case of the Nash-Williams rule, choose a p-spur

for every u-end of S# with each u-spur disjoint from the other u-spurs (Lemma 9.3). Only
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finitely many such p-spurs are needed. Now, consider any single ni‘“ of the (u + 1)-nodes
that are incident to S#. The union of the u-spurs for the u-ends of S* that are embraced by
n{*! is finitely p-chainlike (Lemma 9.5(e)), and so we can choose a chainlike representation
Up=o My, for that union, wherein the spines are all perceptible. Then, for any given p-node
ng in S#, a px can be chosen such that n§ is not in Upeps Mi . - Let Vip, = Mb OMSL _;
this is finite set of y-nodes that within S# separates nj*' from nf. With n*! (1= 1,..., K)
denoting all of the (u + 1)-nodes incident to S*, perform this construction for each union
of p-spurs for the yu-ends of S* embraced by an nf*!. The Vf,, are mutually disjoint, and
together they separate ng from all the (14 1)-nodes; in fact, they separate the (u+1)-nodes
from the reduced p-network F*(py,...,pk) induced by all branches in S* that are not in
L, Upzp My, F#(p1,...,pK) has only finitely many p-nodes.

Now, in accordance with our recursive construction, we also take it that there is a finite
surrogate 0-network F#~0%(p,, ..., px) whose 0-nodes correspond bijectively to the y-nodes
of F#(p; ...,px) and whose 0-walks are governed by the same probability transition matrix
as that which governs the random roving y-walks on F*(py,...,px). Thus, by applying the
Nash-Williams rule, we can determine the probability Ug‘k(}?l, ...,pr) of ¥ reaching any
node of Vi before it reaches any node of J;¢;, Vi, where L= {l:1=1,...., K;1 £ k).
(Hold the nodes of Vi p, at 1 volt, hold the nodes of |Jer Vi, at 0 volt, and measure
the voltage vy, (p1,-..,PK) at ng.) Finally, exactly as in the proof of Lemma 6.1 but
using Theorem 11.6 in place of Theorem 4.3 and Theorem 11.2 (for Property 11.1(b)) in
place of Lemma 4.1, we can show that, as the p;,...,px tend to infinity independently,
vo4(P1,- -, PK) converges to ug,, the voltage indicated in Definition 13.1(a). This then is
the justification of that definition as a limiting case of the Nash-Williams rule extended to
u-networks.

In much the same way, Definition 13.1(b) can be justified.

Definition 13.1(c) indicates how a random p-walk may start at a (u + 1)-node n#+1,
Just as in Section 7, it can be shown that this definition yields a consistent set of prob-

abilities when the comparative probabilities for transitions from n#*! to the nodes of V¥

are first obtained directly from the definition and are then obtained by using conditional
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probabilities to combine probabilities for transitions from n#*! to the nodes of vk (q‘> D)
with probabilities for transitions from the nodes of V¥ to the nodes of V. The latter tran-
sition probabilities are defined as in Definition 7.1 (except that 0-nodes are now replaced
by p-nodes.).

Furthermore, for p fixed and given that ¥ starts from n#*! and reaches a node of V¥, the
probability that ¥ then reaches a node of V} before returning to n#+! vanishes as ¢ — oo.
In other words, we are again dealing with the exceptional case when discussing random
roving (u+1)-walks: Such walks comprise but a vanishingly small proportion of all random
(i + 1)-walks whose consecutive nodes in (27) are allowed to the same.

Definition 13.1(d) states comparative probabilities for ¥ passing from a (u + 1)-node

utl

nit! to any of its adjacent (4 + 1)-nodes ni" (k= 1,...,K). To obtain it, we again

proceed as in Section 7. Consider the p-ends of all the u-sections incident to nE‘H other
than the p-ends embraced by nSH. Choose mutually disjoint u-spurs for those u-ends.
Next, for each k, choose a (u+ 1)-chainlike structure L= M:,p for the union of the u-spurs
corresponding to ntt!. Set Vip = Mj, ©M}__,. Finally, choose a natural number pj for
each k. Then, UK , vf'm is a set of p-nodes that separates %! from all of the ni‘“. Asa
direct extension of Definition 13.1(c), we take the voltage at n4*', when the nodes of i
are held at 1 volt and the nodes of Uz Vf,, where L = {l: I =1,...,K;l # k}, are held
at 0 volt, as the probability that ¥ will reach a node of v,;‘,pk before it reaches a node of
any V:‘.'m- Arguing as in the proof of Lemma 6.1 but using now the maximum principle of
Theorem 11.6, we can show that these comparative transition probabilities converge as the
p1,-.-,Pk tend to infinity independently. Thus, Definition 13.1(d) also arises as a limiting
case of a prior definition.

Finally, Definition 13.1(e) is obtained in the same way as Definition 13.1(d). Using the

p41

same V};"pk as in the preceding paragraph, we now examine the voltage at ny™" when n¥

is held at 0 volt and either the nodes of V,f'pk or nﬁ“ is held at 1 volt for every k. Upon

sending pi1,...,px to infinity, we obtain this definition as a limiting case again.
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14 Transience

A p-section is called transient if, given that ¥ starts at any arbitrarily chosen 0-node ng
in S# and then roves, there is a positive probability that ¥ will reach some (u + 1)-node
incident to S before returning to nJ.

Let S~! denote the reduced network induced by the branches incident to ng. We shall
say that a 0-node is incident to S~! if it is adjacent to nJ. Also,for each p=1,...,p+ 1,
let S7~1 be the 7-section in which n resides. Let P{*! denote a three-term (i + 1)-path
{n, Py n?“}; thus, nj‘“ is incident to S#, and P/*! does not contain any other (u + 1)-
node. Finally, for n =1,..., 4, let n} be the first 7-node embraced by PAL and let n be
the first node after nJ embraced by PFt!. (Figure 3 illustrates some of this.)

Lemma 14.1. P!*! can be so chosen that, for each n = 0,. ...+ 1, every n-node
embraced by P/t other than n} is not incident to S71,

Proof. Because there are only finitely many pu-nodes incident to S¥~1, there is a three-
term (u + 1)-path PJ“.""1 = {n?,Pé“,n?“} that starts at some p-node n% incident to S#~1,
stops at some (u + 1)-node n‘)‘.‘“ incident to S¥#, and embraces no other y-node incident
to S¥~1. For a similar reason, there is a three-term u-path P;f = {n?“l, Pg‘_l,n}‘} that
starts at some node n?'l incident to S#~2, stops at the chosen n?, and embraces no other
(#—1)-node incident to S#~1. In this fashion, we can continue selecting three-term 7-paths
Py = {n'}_l, B, n}} for n = p,...,1, where P} embraces no other (1 — 1)-node incident
to ST Ldlse, n? is the n-node previously chosen when selecting P}’H. As the last selection,
we choose the 0-path P? = {nJ,b,n}}, where n§ is the previously chosen 0-node adjacent
to nd.

We now construct the (u + 1)-path P**! as follows: Append P{ as the initial 0-path
to P} to get a 1-path P}. Append P} as the initial 1-path to P} to get a 2-path PZ.
Continuing in this way, we finally append P/ to }’5’;,""1 to get the (u + 1)-path P#*! that
we seek. O

Theorem 14.2. Under Conditions 9.4, if ¥ roves, then every u-section of every rank
W ts transient.

Proof. With nJ chosen arbitrarily, choose a (1 + 1)-path P/t in accordance with
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Lemma 14.1. There is a positive probability that ¥, after starting from nd will reac;h n%
before reaching any other 0-node adjacent to nJ. The path P} (specified in the proof of
Lemma 14.1) embraces n$ and n} and does not embrace n9. So, by Definition 13.1(b) and
Lemma 11.7(ii), there is a positive probability that ¥ will reach some 1-node incident to S°
before returning to nJ:
Prob(snf'f, rA;,bnd) > 0,
where N'gl now denotes the set of all 1-nodes incident to Sg. If there is more than one 1-node
incident to S°, we invoke Definition 13.1(a)I: Since P} does not embrace any 1-node incident

to SO other than n}, Lemma 11.7(ii) implies that there is a positive probability that ¥ will

reach n} before reaching any other 1-node incident to S°:
Prob(sn},tn}, b} \n} | ¥ reaches N}) > 0

Thus, with positive probability ¥ will reach n} before returning to ng.

This argument can be continued inductively. (See Figure 3. The dots represent nodes
and the closed curves represent sections—of various ranks.) Let us assume the following
for any 7 such that 1 < 7 < p: Given that ¥ starts at ng and roves, there is a positive
probability that ¥ reaches n} before returning to n9. Let A7~! be the set of all (7 — 1)-
nodes incident to the (7 — 2)-section S7~2 that contains nJ. (If n = 1, N7~! is replaced
by n9.) Also, let n] be the next n-node after n’} that is embraced by P**'. Thus, there
is a three-term 7-path P/, embraced by P/*! that terminates at n and n] and does not
embrace any node of AV7~1. Let N7 denote the set of all 7-nodes adjacent to n}. By
Definition 13.1(e) (we can view the nodes of N7~! as being shorted at this point) and by

Corollary 11.7(ii), there is a positive probability:
Prob(sn,tNJ,bNJ™1) > 0

that ¥ will reach some n-node adjacent to n; before reaching any node of A7~ and therefore
: 0
before returning to n,.
Note that P7 also does not embrace any other n-node adjacent to n”’. Hence, we can
fa Y n J f

combine Definition 13.1(d) and Corollary 11.7(ii) to conclude that
Prob(sn%,rn],bNJ\n]) > 0.
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Therefore, with positive probability ¥ reaches n before returning to nJ.

Next, let N7 (NJ*1) be the set of all 7-nodes (respectively, (7 + 1)-nodes) incident
to S7~1 (respectively, S7). P/*! embraces an 7-path P}, that terminates at n, reaches
n?"'l € NJ*1, and does not embrace any node of A7. Hence, by Definition 13.1(b) and

Corollary 11.7(ii) again, there is a positive probability:
Prob(sn?, tNJ*1,bNT) > 0

that ¥ will reach some node of N’;""l before reaching any node of N, o and therefore before
reaching n.
Now, note that P:f also does not reach any node of N;H other than n}"'l. So, by

Definition 13.1(a) and Corollary 11.7(ii) once again,
qu*r,'b(sa‘z,ﬁ,1'1%?‘*'1,]:u\f'g”"'l\n’}"'1 | ¥ reaches A1) > 0.

Therefore, there is a positive probability that ¥ will reach n}‘“ before returning to ng.
Hence, by induction the last statement is true for n’}"'l replaced by n?"'l. Thus, S* is
transient. O

Theorem 14.3. Under Condition 9.4, if ¥ roves, then, for any two nodes ng and nf
of whatever ranks a and [3, there is a positive probability that ¥, after leaving n%, will reach
nf before returning to ng.

Proof. There is a finite y-path P;;‘ with g > max(a, §) that terminates at n¢ and nf.
With regard to a tracing of P} from n to nf, if @ < p, let nf be the last y-node in Py
that is incident to the (u — 1)-section that contains nZ; also, if B < pu, let n# be the first
p-node in Py that is incident to the (u — 1)-section that contains nf Proceeding as in the
proof of Lemma 14.1, we replace the p-path embraced by P§' that terminates at nZ and
ny by a p-path P); with the same terminations and fulfilling the conclusion of that lemma
for n = a+1,...,u, where ng takes the role of ng. That is, P.; does not embrace any
n-node that is incident to the (7 — 1)-section containing n¢ other than a single n-node. In

the same way, we replace the p-path embraced by P§ that terminates at n% and nf by a

p-path P!, with the same terminations and fulfilling similar conditions. Finally, if n} and
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n; are distinct, let P;, be a p-path embraced by P}’ that terminates at those nodes. Any
of the paths P}y, Py, and P}, may be trivial if a = p, n{ = n#, and 8 = p respectively.

By the proof of Theorem 14.2, there is a positive probability that ¥, after starting from
ng will reach n{ before returning to n2.

Now, let n{, nj,...,n# be the consecutive y-nodes in P}. By the definition of ny, the
p-path Pp, embraced by Py, that terminates at n{ and n% does not embrace any nodes
of the (u — 1)-section that contains n#. So, by Definition 13.1(e) and Corollary 11.7(ii),
there is a positive probability that ¥ will reach a y-node adjacent to n¥ before reaching
any (4 — 1)-node incident to the (u — 2)-section containing n& and therefore before reaching
ng. Also, by Definition 13.1(d) and Corollary 11.7(ii), ¥ will reach n} before reaching any
other yu-node adjacent to nf, will reach n% before reaching any other y-node adjacent to
ny, and so forth. Thus, with positive probability, ¥ will reach n¥ before returning to ng.

Finally, we argue that, with positive probability, ¥, after starting from n¥, will reach nf
before returning to n%. Let n# n¥-1 ... nf = nf be the last nodes of ranks u,u—1,...,8
in P}. As in the construction of Definition 13.1(c), we can choose a set Vi1 of (u—1)-
nodes that isolates n% from all other p-nodes and from n%~! as well. Moreover, we can
modify P, if need be, so that it embraces only one node of V;‘"l; let that node be nf_l.
Thus, there is a (4 — 1)-path that terminates at n{~!, reaches n#, and does not embrace
any other node of V#~!. So, by Definition 13.1(c), Corollary 11.7(ii), and the fact that ¥
roves, there is a positive probability that ¥ will reach ni"l before returning to n2.

Next, note that the embraced (x — 1)-nodes in P/ lying between n%~' and n#-1 are
only finite in number. Upon repeatedly applying Definition 13.1(d) and Corollary 11.7(ii)
to those (u — 1)-nodes, we conclude that with positive probability ¥ will reach n%#~! before
returning to ng.

The same argument works for transitions from n4~! to n#~2, from n%=2 to n4=3, and

so forth down to nf. This completes the proof. O
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15 Markov Chains and the Surrogate Network

Our final conclusions about the random roving u-walks on any pu-section S* of N¥ follow
from arguments virtually the same as those given in Section 8. Two obvious statements
are: (i) The probability of a one-step p-transition between to nonadjacent y-nodes is zero.
(ii) Since ¥ roves, the probability of a one-step u-transition from a u-node back to itself is
zero. Finally, by superposition of the sources specified in Definition 13.1(d), we also have:
(iii) The probabilities for one-step u-transitions from a u-node to its adjacent p-nodes sum
to one. These results yield

Theorem 15.1. Under Definition 13.1, the random roving p-walks on any p-section
S* of N¥ comprise a Markov chain with a countable state space consisting of the u-nodes of
S* and having the following transition probabilities: Py = 0; Pr; =0 if nj; and nf' are not
adjacent; Py is given by Definition 13.1(d) when nj; and n! are adjacent. When u = v,
the state space consists of the finitely many v-nodes of NV.

Theorem 15.2. The Markov chain of Theorem 15.1 is irreducible and reversible.

Proof. Consider the Markov chain for the random roving u-walks on a p-section S* of
NV. Its irreducibility follows from Theorem 14.3. Its reversibility can be proven exactly as
in the proof of Theorem 8.1 by substituting Definition 13.1(d) for Definition 7.2 and Lemma
10.3 for Lemma 3.3. O

As a result of this last theorem, a finite “surrogate” 0-network N9 can be derived
exactly as in Section 8. The random 0-walks on N*~C are governed by the same transition
matrix as that for the random roving v-walks on N¥. Similarly, for p < v an infinite
“surrogate” 0-network N#—0 exists for the random roving u-walks on any u-section S* of

Nv.
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