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GENERALIZATIONS OF KONIG'S LEMMA FOR
TRANSFINITE GRAPHS

A.H.Zemanian

Abstract - Konig's lemma asserts that an ordinary infinite graph, which is locally

finite and connected, contains a one-ended path. The present work extends that result to

transfinite graphs. This requires a decomposition into certain reduced transfinite graphs in

order to obtain a generalization of local-finiteness, in addition to transfinite connectedness.

The conclusion is that, whatever be the choice of a node of rank v in a graph of rank v,

there is a one-ended transfinite path of rank v starting at that node.

1 Introduction

Konig's lemma [1, page 81] states that for each node no in an ordinary, infinite, connected,

locally finite graph there is a one-ended path starting at no. This is a basic result for infinite

graphs and has a variety oframifications [2], [3]. Our aim is to establish a generalization of

Konig's lemma suitable for transfinite graphs. Such graphs were proposed and examined in

[4] and [5], the key idea being that nodes ofrank 1 or synonymously 1-nodes can be defined,

which connect together infinite graphs at their extremities to obtain transfinite graphs of

rank 1, i.e., 1-graphs. The latter can be connected together at their infinite extremities by

2-nodes to obtain 2-graphs. This process can be continued recursively to obtain v-nodes

and I/-graphs, where v is any countable ordinal (finite or transfinite). The question arises as

to whether a v-graph contains a one-ended v-path, that is, a transfinite path with infinitely

many v-nodes. The latter are needed if the v-graph is to be connected to another v-graph

through a (v + 1)-node in order to obtain a (v + 1)-graph.

In order to obtain the desired extension of Konig's lemma, the idea oflocal-finiteness has

to be extended to transfinite graphs, but one difficulty is that a transfinite node need not
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have any incident branches. Another complication is that a transfinite node may contain

many transfinite nodes of lower ranks. Now, an ordinary graph can be viewed as being

partitioned by its branches, which may meet in a locally-finite fashion. It turns out that

there are certain subgraphs of a transfinite graph, which we will call "subsections" and which

partition the transfinite graph and playa role analogous to that of branches in an ordinary

graph. In particular, two v-nodes will be called "(v- )-adjacent" if they are both incident

to a subsection of rank less than v. Then, a v-graph can be viewed as being "locally finite"

if everyone of its v-nodes is (1/- )-adjacent to only finitely many I/-nodes. This leads to the

conclusion that any I/-connected, "locally finite" v-graph with infinitely many v-nodes will

have a one-ended v-path.

We present a detailed proof of this result for the case where v is any natural number

and then indicate what few alterations are needed when v is the first transfinite ordinal w.

The proofs are exactly the same for still larger countable ordinals; they just require a more

complicated notation. An exposition of the theory of transfinite graphs used in this paper

is given in [4, Chapters 3 and 5].

2 Sections and Subsections

Henceforth, Greek letters will denote natural numbers except for w, which will denote the

first transfinite ordinal; in addition, the natural number J1,will be larger than O. Further-

more, gJ.Lwill denote a J1,-graph as defined in [4, Section 5.1]:

gJ.L= {B,N°,... ,NJ.L} (1)

Here, B is a countable set of branches, and, for each a = 0, . . ., J1"NCi. is the set of a-nodes

[4, page 141] in gJ.L.All these sets are nonvoid.

Two nodes na and nb are said to be shorted if there is a node that embraces both na

and nb; we also say na is shorted to nb, and conversely. In this terminology na and/or nb

may be replaced by tips.

A non maximal node nl is a node such that its set of embraced tips is a proper subset of

the set of embraced tips of another node n2. Perforce, the rank of nl is no larger than the
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rank of nz. A maximal node is a node that is not nonmaximal. Thus, an ordinary O-node

is a maximal O-node. \Vith regard to an a-node n~ in a reduction (IT of (lJ.t, n~ may be

maximal with respect to (IT but not maximal with respect to (lJ.tbecause (lJ.tmay have a

node whose embraced tip set is a proper superset of the embraced tip set of n~. Henceforth,

when we call any node maximal we will mean that it is maximal with respect to (lJ.t(or (lw

for Section 5).

Let P be a path, t a tip, and n a node; their ranks need not be the same. P is said to

trave1'se t if P embraces a representative of t. (If t is an elementary tip, its representative

is the branch having that tip.) P is said to meet n if P traverses a tip such that both t and

n are shorted, Le., are embraced by some node. For example, if P is a one-ended I-path, it

is a representative of a I-tip t1. If there is a 2-node n2 that embraces both t1 and a O-node

nO, then P meets both nO and nZ, even though it embraces neither nO nor nZ. Furthermore,

we say that P meets a node set or a reduced graph if it meets a node of that node set or of

that reduced graph.

Let n be a node of any rank; we do not require that n be maximal. Also, let (IT be a

reduced graph of (lJ.t. We say that n and (IT are incident if n is shorted to a tip t having a

representative lying entirely within (IT (Le., all the branches of that representative belong

to (IT)' This is equivalent to requiring that (ITcontain a path that meets n. As a special

case, when a node n of any rank embraces an elementary tip te, we take the branch b for te

as the (one and only) representative for te and obtain the definition of incidence between a

node n and a branch b.

Two branches, or two nodes, or a branch and a node are said to be a-connected if there

is a finite a-path that meets them [4, page 146]. An a-section is a reduction [4, pages

142-143] of (lJ.tinduced by a maximal set of branches that are pairwise a-connected.

We need the idea of "nondisconnectable tips", which in [4] was only defined for O-tips.

Consider any representative of an a-tip tOt;this is a one-ended a-path pOt, more specifically,

a one-way infinite alternating sequence of a-nodes ni and (a - I)-paths Pt-1 (where Pt-1

denotes a single branch if a = 0):

P Ot

{ '1 p.Ot-l Ot POt-l a
P a-l

}= no, ° , nl' 1 , nz, Z , . . . (2)
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Here, the first node nri may have any rank 1] no larger than a. Also, certain additional

requirements must be fulfilled if pc> is to be an a-path [4, page 144]. Next, consider an

infinite sequence {7n}, 7n2, 7n3, . . .}of nodes 7n[ of possibly differing ranks, no two of which

are shorted together. We say that the 7n[approach the a-tip tC>if there exists a representative

(2) for tC>such that, for each natural number i, all but finitely many of the 7n[ are shorted

in a one-to-one fashion to nodes embraced by the members of (2) lying to the right of ni.

Now let ta and tb be two tips, whose ranks need not be the same. We say that ta and

tb are nondisconnectable if there is an infinite sequence of nodes that approach both ta

and tb. In effect, ta and tb are non disconnect able if each representative of ta meets every

representative of tb infinitely often.

Henceforth, the following conditions are imposed upon gJ.L.

Conditions 2.1.

(a) gJ.Lhas no infinite O-nodes, no self-loops, and no parallel branches.

(b) gJ.Lis J.L-connected.

(c) If two tips (of not necessarily the same rank) are nondisconnectable, then those two tips

ar'eshorted (i.e., are embraced by the same node).

Restriction (c) insures that a-connectedness is a transitive - and thereby an equiva-

lence relationship between branches and that a-sections partition gJ.L[6, Theorem 6.2 and

Corollary 6.4].

Let {3be a fixed natural number with 0 < {3:; J.L;{3will be so restricted henceforth. As

a convenient notation, {3- and {3+ will denote arbitrary and unspecified natural numbers

such that 0 :; ({3-) < {3:; ({3+):; J.L.Thus, two ({3- )-nodes need not have the same rank,

but in any case their ranks will be less than {3. Also, a ({3-)-tip is not an elementary tip

[4, page 7] because ({3- ) 2: o.

We now turn to the definition of a "subsection". Subsections provide a finer partitioning

of gJ.L;indeed, each a-section is partitioned by certain subsections. We start by partitioning

the branch set B by placing two branches in the same subset if there is a finite ({3- )-path

that meets them and does not meet any ({3+)-node. This truly partitions B. Indeed,
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the property of having such a ([3- )-path between two branches establishes an equivalence

relationship "=" within the set of all branches. Reflexivity and symmetry being obvious,

consider transitivity. Let bl, bz, and b3 be three branches with bl "="b2and bz"="b3. This

means that there are two finite ({3- )-paths pf- and pf- (not necessarily of the same rank),

which do not meet any ([3+)-node and are such that pf- terminates at a node of bl and

a node of bz and pf- terminates at a node of bz and a node of b3. By virtue of Condition

2.I( c) and the proof of [6, Theorem 6.2], there is a finite ({3-)-path Pg- contained in

pf- U pf- U {b2} that connects bl and b3. Clearly, Pg- also will not meet any ({3+)-node.

Whence, the transitivity of "=". Thus, "=" truly partitions B into subsets Bi; that is, every

Bi is nonvoid, Bi n Bj = 0 if i ¥: j, and B = UBi.

We define a ({3- )-subsection Sb{3- to be the reduction of gJ.Linduced by the branches in

anyone of the subsets Bi. Remember that 0 < {3~ J.L.Wealso define a (0- )-subsection to

be any individual branch.

Some immediate implications of these definitions are the following: gJ.Lis partitioned

by the ({3- )-subsections. Every ({3+)-section is partitioned by some or all of the ({3-)-

subsections. For any natural number, with {3< , ~ J.L,every(,- )-subsectionis partitioned

by some or all of the ({3-)-subsections. The ranks of the various ({3-)-subsections as

transfinite graphs can differ if {3> 1, and those ranks can have any values up to J.L.Moreover,

given any ([3- )-subsection Sb{3-, there will be some a with a < {3such that every two nodes

of Sb{3- are a-connected. Furthermore, a path in gJ.Lcan pass from one ({3- )-subsection to

another ({3- )-subsection only by meeting a ({3+)-node as it makes that transition.

Examples illustrating these ideas are shown in Figures 1 to 3. Figure 1 indicates a

I-graph. Each maximal vertical O-path - along with the I-node it meets but with the

embraced O-node deleted - is a (1- )-subsection; its rank is 1. There are other

subsections; namely, each horizontal branch along with its reduced O-nodes is a

subsection of rank O. Except for n~, every I-node is incident to two or three

(1- )-

(1- )-

( 1- )-

subsections. On the other hand, n~ is a singleton I-node whose O-tip has as a representative

the O-path induced by all the horizontal branches; n~ is not incident to any (1- )-subsection.

Note that no representative of the I-tip embraced by n~ is contained in any single (1-)-
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su bsection.

Figure 2 shows a 2-graph that has only one (2- )-subsection and only one (1- )-subsection,

both identical to the 2-graph itself. This situation arises because the 2-graph is branchwise

O-connected. All the I-nodes and the 2-node as well are incident to both subsections.

The 2-graph of Figure 3(a) has an infinity of (1- )-subsections, each one consisting

of an endless O-path or a single horizontal branch. Each (1- )-subsection has two incident

maximal I-nodes. The two 2-nodes and their embraced nonmaximall-nodes are not incident

to any (1- )-subsection. All the nodes are incident to the single (2- )-subsection, which is

the 2-graph itself. This 2-graph is branchwise I-connected. Note that here as well no

representative of the single O-tip embraced by either nonmaximal I-node is contained in

any single (1- )-subsection.

In the 2-graph of Figure 3(b), both 2-nodes and their embraced I-nodes are incident to

a (1- )-subsection consisting of the horizontal and vertical branches incident to the O-nodes

in the lower endless O-path. The other (1- )-subsections are the upper endless O-paths,

infinitely many in number. Here too, the (2- )-subsection is the entire 2-graph.

Two of these exam pIes show that there may be {3-nodes that are not incident to any ((3- )-

subsections. This occurs when a {3-nodeembraces a ({3-1 )-tip, none of whose representatives

reside in a single ((3- )-subsection. Such is the case for the I-node n"bin Figure 1 and for the

two nonmaximal I-nodes in Figure 3( a). We wish to avoid this situation for certain nodes

and will do so by requiring that certain nodes be incident to certain subsections, where

"incidence" bears the precise meaning defined above (see Condition 4.1 below).

3 f3-Adjacency

As before, we require that 0 S ({3-) < {3S ({3+) S I-l. Two nodes nl and n2 (of possibly

differing ranks) are said to be {3-adjacent if they are not shorted and if they are both

incident to the same ({3- )-subsection. Furthermore, two nodes are called O-adjacent if they

are incident to the same branch. (Were we to view a single branch as a (-1 )-subsection and

were to allow (3 = 0, then the second definition would be a special case of the first one.)

We will need another lemma provided by some results of [6]. Let pP and Q( be two
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finite oriented paths; their ranks need not be the same and may be either natural numbers

or w. Let pP and Q( both start at the same O-node n~ but end at two different O-nodes,

n~ for pP and n~ for Q(. Let {ndiEI be the set of maximal nodes met by both pP and

Q(, and order {nihEI in accordance with a tracing of pP from n~ to n~. The O-node n~ is

embraced by the first node in {ni}.

Lemma 3.1. There is a last node nx in the ordered set {ni} that is met by both pP and

Qc.

The proof of this lemma is given in [6, Section 6] and in particular in the proofs of

Theorem 6.2 and Corollary 6.3 of that reference.

Lemma 3.2. Let n1 and n2 be two {3-adjacent ({3+)-nodes and let Sb{3- be a ({3-)-

subsection to which they are both incident. Assume that Sb{3- has only finitely many incident

({3+)-nodes. Then, there is a ({3- )-path p{3- that meets 11,1and 11,2,lies within Sb{3-, and

does not meet any ({3+)-nodes except for 11,1and 11,2.

Proof. Since n1 is incident to Sb{3-, it embraces an (l'-tip t~ with a representative

lying entirely within Sb{3-' Similarly, n2 embraces a ,-tip tl with such a representative.

Since Sb{3- has only finitely many incident ({3+)-nodes, those representatives cannot meet

infinitely many ({3+ )-nodes and therefore cannot have ranks of {3 or larger. Hence, (l' < {3

and, < {3. We can choose a representative PI for t~ and a representative Pi for tl such

that they are totally disjoint, do not meet any ({3+)-nodes other than 11,1for PI and n2

for Pi, and terminate at 0-nodes n~ for PI and n~ for Pi within Sb{3- (see Figure 4).

Hence, there is a finite ({3- )-path pfc- in Sb{3- that terminates at n~ and n~ and does not

meet any ({3+)-node. Furthermore, there is a O-node n~ in PI such that the path in PI

from n1 to n~ is totally disjoint from pfc-, for otherwise pfc- would traverse a tip that

is nondisconnectable from 11,1[6, Lemma 4.2] and would therefore meet 11,1according to

Condition 2.1(c). We can now invoke Lemma 3.1: Upon tracing PI from n~ to n~, we will

find a last maximal node nx that is also embraced by pfc-.

The same argument yields the following: Upon tracing Pi from n~ to 11,2,we will find a

last maximal node ny that is also embraced by pfc-. Now the part PIx from 11,1to nx does

not meet any maximal node of pfc- other than nx, and similarly the part P;2 of Pi from
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ny to n2 also does not meet any maximal node of pfc- other than ny. So, the part Pfy-

of pfc- between nx and ny is totally disjoint from Pfx and P;2 except terminally. In fact,

Pfx U Pfy- U P;2 is a (/3- )-path, and is the path p/3- we seek. ..

4 Extension of Konig's Lemma to J-l-Graphs

We will first obtain a generalization of Konig's lemma for the fl-graph gIJ.and subsequently

will indicate how it can be extended to any reduced graph of gIJ.. We assume throughout

that gIJ.satisfies Conditions 2.1, that every (fl- )-subsection has only finitely many incident

fl-nodes, and that the following is fulfilled as well:

Condition 4.1. Every (fl- )-tip of every fl-node has a representative lying in a single

(fl- )-subsection.

This means that each fl-node is incident to a subsection through everyone of its (fl-)-

tips (but those subsections may be different for different (J.l- )-tips of the fl-node). Here

again, the rank of the subsection need not be the same as that of the corresponding tip but

it cannot be any less than the rank of the tip.

We define a metric dIJ.("') for the set of fl-nodes of gIJ. as follows: dIJ.(nIJ.,nIJ.)= 0 for

every fl-node nIJ.;for any two distinct fl-nodes n~ and n~, dIJ.(n~, nn = m if there exists

a fl-path pIJ.terminating at n~ and n~ with exactly m + 1 fl-nodes (counting n~ and nn

and if there does not exist any such ",-path with fewer fl-nodes. Since gIJ.is fl-connected,

there is such an m for each choice of n~ and n~. We call dIJ.(n~, nn the fl-distance between

n~ and n~. If n~ and n~ are fl-adjacent, then dIJ.(n~, nn = 1; indeed, by virtue of Lemma

3.2 and [4, Lemma 5.1-6], there is a fl-path terminating at n~ and n~ and having no other

fl-nodes.

dIJ.(n~, nn satisfies the metric axioms. The only axiom that is not obviously satisfied

is the triangle inequality. To verify that one, let P:b (or Ptc) be a fl-path that terminates

at n~ and n~ (respectively, at n~ and n~). Then, P:b U Ptc is a tracing through gIJ.that

terminates at n~ and n~. If P:b and Ptc embrace the same fl-node n~, then a part of that

tracing that starts and ends at n~ can be removed to get a shorter tracing from n~ to n~.

A finite number of such removals will yield a tracing from n~ to n~ in which no fl-node
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repeats. Furthermore, if in the last tracing two fL-nodes are fL-adjacent, then by Lemma

3.2 the tracing between those two fL-nodes can be replaced by a fL-path that terminates at

them and passes through exactly one (fL- )-subsection without meeting any other fL-node

and therefore without meeting any other node incident to another (fL- )-subsection. A

finite number of replacements of the latter kind finally yields a tracing in which no (fL-)-

subsection is traversed more than once. Hence, the last tracing is a fL-path QI1-terminating

at n~ and nr. The number of fL-nodes in QI1-will be no larger than the sum of those numbers

for P:b and P!:c. We can conclude that dl1-("') satisfies the triangle inequality.

Here is an extension of Konig's lemma (promoted to the rank of "proposition") for

fL-graphs:

Proposition 4.2. Assume Conditions 2.1 and 4.1. Let the fL-graph (}11-(fL 2: 1) be such

that the following hold.

(i) Every fL-node is fL-adjacent to only finitely many fL-nodes.

(ii) There are infinitely many fL-nodes.

Then, for each fL-node n6 there is at least one one-ended fL-path starting at n6'

Proof. Corresponding to (}11-,we set up a surrogate O-graph (}~ by setting up one

and only one O-node s~ in (}~ for each fL-node n~ in (}11-and inserting branches as follows:

Arbitrarily choose but then fix a It-node n6 and let s8 be its corresponding O-node. In the

following we shall say that another fL-node n~ of (}11-is at the distance m ("from n6" being

understood) when dl1-(n6, n~) = m. Also, the correspondence n~ 1-+ s~ is designated by

identical subscripts. Insert a branch from s8 to a O-node s~ whenever n~ is adjacent to n6

(Le., is at the distance 1). Continue recursively: If nr is at the distance m, insert a branch

between s~ and every s~ for which n~ is fL-adjacent to nr and is at the distance m + 1 - if

any such s~ exists. Because of hypotheses (i) and (ii) and the fL-connectedness of (}11-this

process will never cease and every O-node of (}~ will be incident to a branch. In fact, (}~ will

be O-connected, locally finite, and infinite. Consequently, we may invoke Konig's lemma to

conclude that (}~contains a one-ended O-path pO starting at s8.

Note now that, with doC') denoting the distance function for a O-graph, we have

dl1-(n6,n~) = do(s8,s~). Trace along pO starting from s8. There will be a last node 8?

9



in po that is adjacent to sg. Let bo be the branch in g~ between 5g and s~. In the subpath

of po beyond s~ there will be a last node sg adjacent to s~ and at the distance 2. Let b1 be

the branch in g~ between s~ and sg. Continue recursively: Let the branches bo, b1,. .., bm-l

be chosen with s?" being the node incident to bm-l and at the distance m. In the subpath

of po beyond s?" there will be a last node S?"+l adjacent to s?" and at the distance of m + 1.

Let bm be the branch in g~between s?" and S?"+l' We obtain in this way infinitely many

branches bo, b1, . . ., which induce a one-ended a-path QO in g~. Moreover, with respect to

a tracing of QO starting at sg, the consecutive a-nodes of QO will be at strictly increasing

distances.

By hypothesis (i), every (f1- )-subsection has only finitely many incident f1-nodes. Hence,

we may now invoke Lemma 3.2. For each branch bm with incident nodes s?" and S?n+l in g~,

there is a (f1- )-path P~~n+l that resides in a single (f1- )-subsection of gJ.Land meets n~, and

n~'+l' Moreover, for m i= i, P~~n+l and Pt,i+l will be totally disjoint - except terminally

when i = m + 1 - because they will reside in different (f1- )-subsections. Furthermore,

P~~n+l and P~+1,m+2will both meet n~n+l' Upon replacing s~ by n~, and bm by P~~n+l

for every m, we convert QO into a one-ended f1-path in gJ.Lstarting at n~. ...

Proposition 4.2 extends directly to reduced graphs of gJ.Lsuch as ({3- )-subsections be-

cause any reduced graph is an a-graph g;, (a :s; f1) by itself. We need merely replace f1

by a and gJ.Lby g;, in Conditions 2.1 and 4.1 and in Proposition 4.2 in order to get the

appropriate statements.

5 Extension of Konig's Lemma to w-Graphs

Our arguments extend directly to w-graphs gl». Such graphs are defined in [4, Section 5.2].

So too are w-tips, w-nodes, w-connectedness, and w-sections. The nondisconnect ability of

two w-tips or of an w-tip and a f1-tip is defined exactly as above after the idea of a sequence

{ml, m2, m:3,. . .} of nodes approaching an w-tip is defined. The latter is done by replacing

(2) by an w-path [4, Equation (5.5)]. (See also [6, Section 2].) Conditions 2.1 are now

replaced by

Conditions 5.1.
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(a) gw has no infinite O-nodes, no self-loops, and no parallel branches.

(b) gw is w-connected.

(c) Let t1 and t2 be two tips whose ranks may differ but are both no larger than w. If t1

and t2 are nondisconnectable, then t1 and t2 are shorted.

Our definition of incidence requires no changes so far as its wording is concerned, but

now the tip t may have the rank w. As for the definitions of an (w- )-subsection and of

w-adjacency , replace (3 by w in our prior definitions of a ((3- )-subsection and (3-adjacency.

Thus, (3+ is now w, and (3- is now w-; w- denotes an arbitrary and unspecified natural

number or possibly w. As before, two ((3- )-entities may have different ranks. Lemma 3.1

has already been stated in a fashion suitable for w-graphs. On the other hand, Lemma 3.2

is replaced by

Lemma 5.2. Let n1 and nz be two w-adjacent w-nodes and let Sbw- be an (w-)-

subsection to which those two nodes are both incident. Assume that Sbw- has only finitely

many incident w-nodes. Then, there is an (w- )-path pw- that meets n1 and nz, lies within

Sbw-, and does not meet any w-node except for n1 and nz.

The definition of the metric dw(',.) for the set of w-nodes in gw reads exactly as does

that for dIL("') but with f.l replaced by w. Condition 4.1 is replaced by

Condition 5.3. Every (w- )-tip of every w-node has a representative lying in a single

(w- )-subsection.

Finally, our extension of Konig's lemma to w-graphs is the following:

Proposition 5.4. Assume Conditions 5.1 and 5.3. Let the w-graph gw be such that the

following hold.

(i) Every w-node is w-adjacent to only finitely many w-nodes.

(ii) The7'e are infinitely many w-nodes.

Then, for each w-node nO' there is at least one 07~e-ended w-path starting at nO'.

The proof of this proposition is the same as that of Proposition 4.2 but with the afore-

mentioned changes in notation and replacements of lemmas and conditions. Also, replace

[6, Lemma 4.2] by [6, Lemma 4.3].
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6 A Final Note

Propositions 4.2 and 5.4 can be extended recursively to any l/-graph whose rank v is any

countable ordinal. The arguments for a successor ordinal 1/ or a limit ordinal v hold exactly

as they do for a natural number f-1or respectively for w.
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Figure Legends

Figure 1. A I-graph in which the I-node n~ is not incident to any (1- )-subsection. The

heavy dots are O-nodes, the small circles are I-nodes, and the lines between the O-nodes are

branches. Note also that this graph does not contain a one-ended I-path even though it

has an infinity of I-nodes.

Figure 2. A 2-graph. The symbolism is the same as that of Figure 1 except for the

indicated 2-node. The upper line of branches induce a one-ended I-path with the I-nodes

ni, n~, nA,. . .; its I-tip is embraced by the 2-node n6. There are other I-tips, and they too

are taken to be embraced by n6. All the O-tips on the extreme right are embraced by the

nonmaximal I-node n~, which in turn is embraced by n6. The branches connecting the

upper O-nodes to the lower O-nodes induce a bijection between those two sets of O-nodes.

This 2-graph has exactly one (1- )-subsection, namely, itself because the entire 2-graph

is O-connected. Similarly, its (2- )-subsection is also the 2-graph itself. Thus, the ranks of

both subsections are equal to 2.

Figure 3. Two 2-graphs. The symbolism is the same as before. The O-paths within the

endless I-paths are endless.

(a) Neither the nonmaximalI-nodes nor the maximal 2-nodes are incident to any (1-)-

subsection, that is, to any O-subsection. All the I-nodes and both of the 2-nodes are incident

to the one and only (2- )-subsection, namely, the entire 2-graph.

(b) All of the I-nodes and both of the 2-nodes are incident to the (1-)-subsection

induced by the horizontal and vertical branches incident to the lower O-nodes. The other

(1- )-subsections are the upper endless O-paths along with their incident reduced I-nodes.

There is only one (2- )-subsection, the entire 2-graph itself.

Figure 4. illustration for the proof of Lemma 3.2.
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