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A CRITERION FOR TRANSITIVITY IN TRANSFINITE
CONNECTEDNESS *

A. H. Zemanian

Abstract — This work estznlishes a sufficient set of conditions under which A-connectedness

in a transfinite graph is transi*ive and thereby is an equivalence relation between branches.
This in turn insures that A-sections do not overlap and that they partition the transfinite

graph.
1 Introduction

Transfinite graphs possess many connectedness concepts that are meaningless for conven-
tional graphs. For example, two nodes that are infinitely far apart in a transfinite graph
can only be connected by transfinite paths that pass through infinite extremities of conven-
tional subgraphs of that transfinite graph. Moreover, there is a hierarchy of connectedness
concepts, namely, “A-connectedness” for each finite or denumerably infinite ordinal A. As
A increases, A-connectedness weakens in the sense that, when A; < A;, Aj-connectedness
implies Ag-connectedness, but not conversely. Thus, two branches may be A;-connected but
not A;-connected.

A-connectedness is a reflexive and symmetric binary relation between branches, but it
need not be transitive [3, Section 3]. As a result, A-connectedness need not be an equivalence
relation between branches, and this has undesirable ramifications. For example, it may
prevent unique node voltages in the theory of transfinite electrical networks. A sufficient
condition for the transitivity of A-connectedness was established in [3]. In this work we
establish another one. Neither criterion implies the other. Moreover, the one presented

herein, although more complicated, is more easily established.

*This work was supported by the National Science Foundation under Grants DMS-9200738 and MIP-
9200748.



The prerequisites for an understanding of this work are completely covered in [1] and [3].
The reference [2] can be used in place of [1] and in fact provides a more general discussion.
The present paper is written as a sequel to [3]. Of course, ideas that are newly introduced
herein are precisely defined below.

We will establish our results for every natural number rank p. as well as for the ranks
~ and w. Results for still higher ranks are obtained through obvious modifications. In
particular, when the rank is a successor ordinal, one need only follow the c=velopment for a
natural number rank. Similarly. when the rank is an arrow rank 6 or a liz* ordinal 6, the
development to follow is that for & or respectively w. (See [3, Section 4 Zz: the definition

of an arrow rank 4.
2 The Main Results

In the following v will denote a countable ordinal, and vy and g will denote natural numbers.
v+ will denote any unspecified rank no less than 4 and no larger than v. and y— will be
any unspecified rank no less than 0 and less than 7. Thus, 0 < (y—) <~ < (v4) < v. G
will be a v-graph. §*~! will be a 4 — 1-section.

Conditions 2.1. Let u be a fized natural number such that 0 < p < v. For each natural
number v such that 0 < ¥ < p and for every two (y+)-nodes n]* and n}™ that are incident
to the same (y — 1)-section S*~1, there exists a two-ended (i.e., finite) v-path PY such that
either (a) its traversed tips — other than those incident to n'f+ and n;"t — are not shorted

to any tips not traversed by PY or (b) PY satisfies the following three conditions:

(b1) All the branches of P" are embraced by S*~!.

(b2) One terminal node of P” is embraced by n]™*, and the other by ny™.

(b3) P7 does not meet any boundary node of a ((y— 1)+)-section other than n]™ and n)*.

With regard to the two conditions (a) and (b), (a) does not require that P” be embraced
by 8771, whereas (b) does do so. The simultaneous satisfaction of both conditions is allowed.

(a) can be restated in more suggestive terms by saying that P” is an isolated path totally



disjoint form the rest of G except at its terminal nodes. (b) requires that the only way one
can leave S7~! at a node of P is at a terminal node of P7.

When 7y = 0, "1 is a (—1)-section. that is, a single branch. Any two nodes incident
to that branch will automatically satisfv Conditions 2.1.

Theorem 2.2. Let GY be such that Conditions 2.1 are satisfied. Then, for each v such
that 0 < v < u, v-connectedness is transitive in G¥; that is, it is a transitive binary relation
among the branches of G¥ — as well as among the nodes of G¥.

Proof. The transitivity of ~-connectedness for the branches will follow from that for
the nodes. Choose + and y as in Conditions 2.1. Let n,, ng, and n. be three totally disjoint

nodes of any ranks. possibly different ranks. Consider the two statements
(i) n, and np are y-connected. and n; and n. are y-connected.
(i1) n, and n. are y-connected.

We shall prove that (i) implies (ii) inductively, and thereby the transitivity of v-connectedness.
This is true for ¥ = 0 because 0-connectedness is always transitive. (Moreover, Conditions
2.1 are always satisfied when v = 0, as was noted above.) So, assume that (i) implies (ii),
where now 0 < v < u. Hence, v-connectedness is transitive, and +y-sections partition GY.
We shall show that (i) implies (ii) for 4 replaced by v + 1.

Let P:;'] be a two-ended (v + 1)-path connecting n, and n; and oriented from n, to
ny, and let P;LH be the same path but with the reversed orientation. Also let P;:rl be a
two-ended (v + 1)-path connecting ny to n, and oriented from b to ¢. We shall construct a
two-ended (4 + 1)-path connecting n, to n..

Since P;LH and P;'CH are two-ended (5 + 1)-paths, they each traverse only finitely many
v-tips. All other tips traversed by these paths will have ranks less than 7. If Pg’a'"l and P;;H
meet at a node n, they will meet there with four tips (two for each), except when n is ny,
in which case they will meet at nj, with two tips (one for each). If all four tips (or both tips
when n = np) have ranks less than v, they will have representatives that are y-connected;
in this case, we shall say that P and P]™! meet inside a y-section. P):t' and P! can

meet inside a y-section infinitely many times because they can traverse infinitely many tips



of ranks less than 4. On the other hand, if at least one of those four (or two) tips has a
rank v, we shall say that P)*! and P meet with a y-tip; P and P)*! can meet with
a 7-tip only finitely many times since they traverse only finitely many 7-tips.

Now let us consider the various ways P;:H and P;ffl may meet.

Case I: They may meet only at n,. in which case P;"b""l U PQ;H is a two-ended (v + 1)-
path connecting n, and ny. So. assume in the following three cases that P;’:l and P,;f_,ﬂ
meet at at least one node totallv disjoint from ns.

Case 2: If n, and n, are both incident to the same v-section, then. since 4 < u now. we
can invoke Condition 2.1 to conclude that n, and n, are (v + 1)-connected. So, assume in
the following two cases that n. and n. are not incident to the same ~-section.

Case 3. Let us now trace P:,:'G'_l and P;:H starting at ny. Assume these paths meet
inside at least one y-section (possibly infinitely often). They will do so only within finitely
many 7y-sections. Let S, be the last such y-section that P"“H meets and let ng be the
last boundary node of S] that Pj."™' meets. Let P:;l be the (4 + 1)-path obtained by
tracing P, from n, to ng. PJ;' will be the trivial path {n,} or {ns} if n, embraces ng
or conversely. Also, let n. be the last boundary node of S that 'H meets. If ny and
n. are totally disjoint, we can invoke Conditions 2.1 to assert the existence of a two-sided
(v + 1)-path P;":l that connects ny and n. and does not meet P} except terminally at
ng. P;':l may also be a trivial path. Let PX*! be the (possibly trivial) path obtained by
tracing along P;.*" from n, to n.. If PJ{" and P7*! do not meet, then P; U P, P upt
is a two-ended (7 + 1)-path connecting n, to n.. If PJf' and P! do meet, they will do
so with a 5-tip, and there will be a first node ny at which qu+1 meets P,F1 — “first” with
respect to the orientation of P,:,j] from n, to ng. Possibly ny = n, or n; = n.. Now, let
P'*Jr1 (or P;F') be the path obtained by tracing along P from n, to ns (respectively,
by tracing along P! from n; to n.) Then, P'*"'1 U P}le is the (v + 1)-path we seek. In
the event that ny = n, or ny = n., one of these two paths will be trivial.

Case 4: Finally, assume that P;;H and P,:fl do not meet inside any ~-section. Then,
there is a last node ny (“last” with respect to the orientation of P;f]) at which ngl and

P! meet with a y-tip. Then, as in Case 3, P""H U P;:l is the desired path.



This exhausts all possibilities and completes the proof. &

Corollary 2.3. Let G¥ be such that Conditions 2.1 are satisfied. Also, let 8 be any
ordinal such that v < 8 < v. Then, any f-section is partitioned by the y-sections it embraces.
(In particular, G¥ is partitioned by the ~-sections.)

Proof. Since ~-connectedness is obviously a reflexive and symmetric binary relation
between branches. it follows from Thecrem 2.2 that it is an equivalence relation between
the branches of G“. Moreover, any two-ended y-path that connects two branches of a
§-section will remain within that f-seciion — whence our conclusion. &

In order to extend our results to J-connectedness and «-connectedness. we need other
kinds of “sections.” An &-section (or «-section) is a reduced graph induced by a maximal
set of branches that are pairwise &-conrected (respectively, w-connected).

Corollary 2.4. If Condition 2.1 holds for every natural number j, then &-connectedness
is transitive in G* (v > &), and &-sections partition any 6-section whenever § > &.

Proof. &-connectedness between two nodes means that the two nodes are y-connected
for some natural number px depending on the choice of the two nodes. The transitivity and
partitioning properties of G-connectedness thereby follow from those of u-connectedness. &

As before, G+ (or w+) will denote any unspecified rank no less than & (respectively, w)
and no larger than v.

Conditions 2.5. Conditions 2.1 hold for every natural number p and in addition the
following is required withw < v. For every two (w+)-nodes n§{™ and ny T that are incident to
the same G-section S*, there exists a two-ended w-path P~ such that either (a) its traversed
tips — other than those incident to ny™ and ny™ — are not shorted to any tips not traversed

by P¥ or (b) P“ satisfies the following three conditions:

(b1) All the branches of P¥ are embraced by S*.

(b2) One terminal node of P* is embraced by ny'*, and the other by ng™.

(b3) P¥ does not meet any boundary node of an (&+)-section other than ny* and ny™.

These last two conditions (a) and (b) are the same as those of Conditions 2.1 but with

the following replacements: 7 is replaced by w, and v — 1 by &.



Corollary 2.6. Assume G¥ (v > w) satisfies Conditions 2.5. Then, w-connectedness is
transitive in G¥, and w-sections partition any 0-section whenever 6 > w.

The proof of this corollary is the same as that of Theorem 2.2 but with obvious changes
in wording and notations, such as the replacement of Conditions 2.1 by Conditions 2.4 and

the replacements of symbols indicated just above.

3 A Final Note

The results obtained in this paper are different from those of (3. In particular. bot:
Conditions 2.1 and 2.5 allow nondisconnectable nonopen tips that are not shorted. Hence.
those conditions do not imply Condition 6.1 of [3], which prohibited such tips. Conversel:.
the prohibition of such tips does not imply Conditions 2.1 or 2.5. Thus, even thoug:
Theorem 2.2 has the same conclusion as Theorem 6.2 of [3], neither theorem subsumes the

other, and the same is true with regard to their corollaries.
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