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DOES THE OPERATING POINT OF A
SERIES-PARALLEL NETWORK OF MONOTONE
RESISTORS SATISFY ALL RESISTOR RATINGS? *

A. H. Zemanian

Abstract — An important issue in circuit design is whether every element operates
within its rated values. For the particular case of a series-parallel network of monotone
resistors (i.e., one-ports) whose characteristic curves are continuous and monotonically in-
creasing at least within the ranges between their rated values, we present a rapid procedure
for resolving this question. If at least one resistor operates outside of its ratings, our pro-
cedure will reveal this fact without having to determine the operating point of the entire
network or even of that resistor alone. On the other hand, if all elements operate within
their ratings, our procedure determines that operating point easily without using the stan-
dard iterative numerical procedures, such as the Newton-Raphson, secant, or homotopy

methods, which can be computationally prolonged.

Index Terms — Nonlinear networks, monotone resistors, operating points, rated values,

series-parallel networks.

1 Introduction

There have been many papers about the determination of (DC) operating points for nonlin-
ear resistive networks. The references [3], [4], [6], [7], [8], and [9] are only a sampling of some
more recent works. Their bibliographies contain references to many earlier papers on that
subject. An important question in this regard, which does not seem to have been addressed

explicitly, is whether an operating point of a proposed network satisfies the ratings specifica-

*This work was supported by the National Science Foundation under Grant MIP-9423732.



tions of all the elements in the network. If any rating is violated, that operating point must
be avoided, necessitating a redesign of the network. Of course, once all the voltages and
currents corresponding to an operating point are determined, the satisfaction of all element
ratings can easily be checked. However, the standard methods for determining all those volt-
ages and currents in a nonlinear network, such as Newton-Raphson, secant, or homotopy
techniques, require iterative computations, which can be computationally onerous.

In a recent paper [9] a related question was completely resolved for any series-parallel
network of resistors with two-way infinite characteristic curves. A fast procedure was pre-
sented that determined whether or not the network had an operating point without actually
computing that operating point. The nonexistence of any operating point meant that the
network was senseless. However, the existence of an operating point did not ensure that all
elements operated within their ratings.

In this paper we again restrict our attention to series-parallel networks! of sources and
continuous monotonically increasing resistors.? We present herein a fast method for de-
termining whether or not a series-parallel network has an operating point under which no
resistor rating is violated. Such an operating point will be unique if it exists, in which case
our method will then yield that operating point with very little additional computation.
All this is accomplished without using any of the conventional, robust, iterative, and com-
putationally expensive methods for solving simultaneous nonlinear equations such as those
mentioned above.

In our approach every resistor is represented by its “characteristic segment,” namely,
that finite portion of the characteristic curve lying between the ratings limits for the resistor.
For example, a conventional p-n junction diode is rated by specifying a maximum forward
current and a maximum reverse voltage. These determine the two endpoints for that diode’s
characteristic segment. Then, that diode’s voltage-current pair must lie on its characteristic

segment if it corresponds to an allowable operating point.

IDuffin [2] characterized series-parallel graphs in several ways. Those ways that are of importance to us
are pointed out in [9, Section 3]. That discussion will not be repeated here.

2The series-parallel structure with monotone resistors is a severe restriction if practical electronic circuita
are to be considered in their entirety, but many subcircuits have this form. The determination of the (DC)
operating point of a series-parallel subcircuit is the kind of problem addressed herein.



Our procedure consists of a sequence of series and parallel combinations of resistors which
reduces the network to just two resistors forming a loop. At each step of the sequence a
combined characteristic segment is computed. If at any step a void characteristic segment
arises, our procedure stops and we conclude that the network does not have an allowable
operating point. If, on the other hand, the final two-resistor loop kis achieved, it is then
easy to determine whether an allowable operating point exists. In that case a reversal
of the sequence of combinations readily yields all the voltages and currents throughout
the network. We get the same result no matter which sequence of series and parallel
combinations we choose.

Let us now explicate some of our terminology and notations. A positive voltage drop
and a positive current flow in any branch are measured in the same direction — the assigned
orientation of the branch. We use “nonlinear” in an inclusive way to encompass “linear”
as a special case. In this work all resistors and sources are one-ports with no coupling
between them. Each branch contains a resistor and possibly a source. An operating point
for a network of such branches is a set of all branch voltages and currents determined
by Kirchhoff’s laws and the resistors’ characteristics. If no voltage or current violates a
resistor’s ratings, we say that the operating point is a within-ratings operating point. To
avoid repeating this phrase many times, we shall use instead its acronym “WROP.” Given
any “characteristic segment” C (i.e., a finite portion) of a characteristic curve in the voltage-
current plane (voltage v plotted along the horizontal axis and current 7 plotted along the
vertical axis), the operators® N, E, S, and W are defined by N(C) = sup{i: (v,?) € C}.
E(C) = sup{v: (v,i) € C}, S(C) = inf{i: (v,i) € C}, and W(C) = inf{v: (v,7) € C}; this
is illustrated in Fig. 1. Furthermore, for (v,i) € C, welet R:i— vand G= R 1: v~

be the resistance and conductance mappings specified by C.

2 Characteristic Segments

Throughout this paper the following is assumed.

3N for “north,” E for “east,” S for “south,” and W for “west.”



Conditions 2.1: The network is connected, nonseparable, with at least three branches
and at most finitely many branches. Those branches are in a series-parallel configuration.
Each branch consists of a nonlinear resistor, which possibly incorporates a source, and its
voltage-current pairs comprise a continuous monotonically increasing curve that terminates
at two (finite) points of the voltage-current plane.

That curve will be called a “characteristic segment.” When dealing with a single resistor,
it will always be understood that the two endpoints of its characteristic segment are the
resistor’s rated values shifted in accordance with any incorporated source, as is illustrated in
Fig. 2. A branch that is a pure source can be taken into account by shifting that source into
resistive branches [5, pages 131-132). More generally, we shall use the following definition
of the characteristic segment for a single resistor or for any series-parallel combination of
resistors.

Definition 2.2: A characteristic segmentis a finite, continuous, monotonically increasing
curve in the voltage-current plane having two endpoints. Those end point will be called the
ratings points of the characteristic segment (whether or not the characteristic segment is
for a single resistor or for a series-parallel combination of resistors). Furthermore, a single
point is allowed as degenerate case of a characteristic segment.

At times, we may need to reverse the orientation of a branch. This will replace the
branch’s voltage and current by their negative values. Thus, if C = {(v,i): v = R(3),S(C) <
i < N(C)} is the characteristic segment before the reversal, then C = {(-v,—4): (v,i) € C}

is the characteristic segment after the reversal. This too is illustrated in Fig. 1.

3 Duffin’s Theorem and a Consequence

We will make use of a classical theorem due to R.J. Duffin [1]. For this theorem, it is assumed
that each resistor is specified by a characteristic curve that is continuous, monotonically
increasing, and two-way infinite with v = R(%) relating voltage v and current ¢ at each point
on the characteristic curve, with v — 0o as 1 — 00, and with v — —o00 as 1 - —oco. Every
independent voltage or current source is incorporated into a resistor, and thus R(0) # 0 is

possible.



Theorem 3.1 (Duffin): A finite network of nonlinear resistors having the properties just
stated has a unique operating point.

A consequence of this theorem is the following result.

Theorem 3.2: A network satisfying Conditions 2.1 either has a unique WROP or none
at all.

Note: We are not asserting here that the network has no other operating point if the
actual characteristic curves extend beyond the characteristic segments. It may indeed if
its entire characteristic curves are nonmonotone with perhaps multivalued resistance or
conductance operators. What we are asserting is that either exactly one of those operating
points or none of them is a WROP.

Proof: We can extend each characteristic segment into a new characteristic curve that
satisfies Conditions 2.1 (thus, outside the characteristic segment this new characteristic
curve may be different from the actual one.) The new resulting network will have a unique
operating point by virtue of Theorem 3.1, which means that no other combination of points
on those new characteristic curves (one point for each curve) will satisfy Kirchhoff’s laws

throughout the network. This implies that there can be at most one WROP. D

4 The Series Sum of Characteristic Segments

Consider two branches b; and by connected in series. If they are not confluently oriented,
reverse the orientation of one of them to obtain the circuit shown in Fig. 3. Their currents
are the same: ¢ = 4; = i3, and their voltages add to give the voltage v = vy + v2 across the
combination — with again the same orientation. Our definition of the series sum C;0C,;
of their characteristic segments Cy and C, requires this confluent orientation of b; and b,.

Set N(CIOCQ) = mm(N(Cl), N(Cz)) and S(Cl<>Cg) = max(S(Cl), S(Cz)) If
S(C10C2) £ N(C1OCy), (1)

we set

v = Ry(i) + Ra() for S(C10C,) < i < N(C1OCy). (2)

The set of all such points (v,%) is by definition the characteristic segment C;OC; for the



series combination of the confluently oriented b; and by. This is illustrated in Fig. 4. If on
the other hand (1) does not hold, we take it that C;OC; does not exist.

The following is obvious.

Lemma 4.1. An existent series sum C;OC; of two characteristic segments is also a
characteristic segment. Moreover, each endpoint of C;OC3 is the series sum of a point of
C1 and a point of C5, at least one of which is an endpoint of C; or of C,.

Thus, if the series combination of two resistors is operating at one of its ratings points,
then at least one of those resistors is also operating at one of its ratings points.

If Cy and C; are given by formulas, then C1OC; is given as a formula directly by (2).
If however at least one of C; and C; is given graphically or by a table of points, our next
step is to compute a table of points (perhaps 30 of them) for the characteristic segment of
C10OC;. In each case (1) must hold of course. When only a table is available, interpolation
may be used to obtain intermediate points. We want the points computed for C,OC; to be
more or less uniformly spaced. To this end, we proceed as follows.

Set tpin = S(C10C3) and vpmin = Ri(min) + R2(imin), and set iy0; = N(C1OC3) and
Vmaz = R1(tmaz) + R2(imaz). We can do this because all the needed values are obtainable
from the lowest and highest values in the tables or graphs for C; and C,. Next, set i;,iq =
(imin + tmaz)/2 and vpig = Ry(imid + R2(imia), where Ri(imiq) and Ra(fmiq) are obtained
by interpolation in general.

Now, let us assume that the points (vk,ix) for C;OC; have been computed, where
k=1,...,K and K > 3. In effect, we have partitioned C;OC; into K — 1 segments Sk
(k=1,..., K~ 1) whose endpoints may be denoted by (v min,tk,min) a0d (Vk,mazs tkmaz)-
Define the size of Sk to be Vi maz — Vkmin + tk,maz — tk,min. Choose a segment S; having
the largest size. Set ijmid = (i,min + i,maz)/2, and get Vymid = Ri(i1mia) + R2(i1,mid)s
interpolating if need be. This adds one more point (v} mid, #1,mid) to our accruing table for
C10C,. Continue in this Way until enough (30 or so?) points for C;OC; are obtained.
Since it is always a largest segment that is being partitioned into two segments, the final set
of points will be approximately uniformly distributed. All this can be easily programmed

for a computer.



Of course, if Cy or C3 is degenerate, there is only one point in C1;OC; whenever (2)

holds.

5 The Parallel Sum of Characteristic Segments

We now examine how the characteristic segments of two parallel resistors combine. We start
with two confluently oriented parallel branches b; and by, as shown in Fig. 5; if need be,
reverse the orientation of one of the branches to achieve this confluence, which is required
for the following definitions. In this case, the voltages are the same: v = v, = v, and the
currents add to give i = 4; + i3. Set E(C410C;) = min(E(C,), E(C,)) and W(C,0C,) =
max(W{(C), W(C2)). If

W(C,0C;) < E(C10Cy), (3)

we set

i = G1(v) + G2(v) for W(C10C) < v < E(C1OCs). (4)

The set of all such points (v, %) is by definition the characteristic segment C10C; for the
parallel combination of the confluently oriented branches b; and b,. This is illustrated in
Fig. 6. If, on the other hand, (3) does not hold, we take it that C10C, does not exist.

As before, the following result is an immediate consequence of this definition.

Lemma 5.1. An existent parallel sum C;0C; of two characteristic segments is also a
characteristic segment. Moreover, each endpoint of C,0C, is the parallel sum of a point of
C1 and a point of C3, at least one of which is an endpoint of Cy or of Cs.

Thus, if a parallel combination of two resistors is operating at one of its ratings points.
then at least one of those resistors is also operating at one of its ratings points.

As before, if C; and C; are given by formulas, then C,0C, is given as a formula by
(4). So, consider the case where either or both of C; and C; are given graphically or by
a table of points and where (3) holds. We wish to compute a table of points for C,0C}.
'Interpolation will yield intermediate points. Qur procedure is the same as that for a series
sum except that voltages and currents exchange their roles, but let us be specific. To obtain

a fairly uniform set of points on C;0C,, we compute as follows.



Set vpmin = W(C10C3) and ipin = G1(Vmin) + G2(Vmin), and set vpq, = E(C10C;) and
imaz = G1(Vmaz) + G2(Vmaz). Then, set vpid = (Vmin + Vmaz)/2 and g = G1(Vmia) +
G2(Vmid), where G1(Vmiq) and G(vnmiq) are obtained by interpolation in general.

Now, assume that the points (vx,ix) for C;0C; have been computed, where k£ =
1,...,K, K > 3. This partitions C,0C, into K — 1 segments S;. Let us denote their
endpoints by (Vk,minstk,min) and (Vkmaz,tkmaz). Choose a segment S; with the largest
size Vi maz — Vimin + H,maz — Hmin. 9€t Vmid = (Vimin + Vlmaez)/2, and compute ij g =
G1(vi,mid) + G2(vi,mid), interpolating if need be. Thus, (v mid, #,mi¢) can be added as a new
point to our accruing table of points for C10C3. Our procedure will yield a more or less

uniformly distributed set of points on C}0C5.

6 The Final Two-Branch Loop

Our procedure for reducing the network will consist of a sequence of series and parallel
combinations of resistors ending in a loop?* consisting of two branches by and b;, as shown
in Fig. 7 if at every step of the sequence the combined characteristic segment exists.
Assuming that this is so, let us orient the final two-branch loop in accordance with Fig. 7.
reversing a branch orientation if need be. For a WROP to exist in the original network, we
must now have v; = —vg and t; = 1.

To state this another way, let Co be the mirror image through the i-axis of the charac-

teristic segment for bg:

Co = {(v,9): (-v,3) € Co}. (5)

Thus, Cy is a continuous monotonically decreasing curve in the (v,i)-plane with two end-
points (except in the degenerate case of a single point for C‘o). Then, a WROP will exist
in the original network if Co and C, intersect; in this case, the intersection point will be
unique by virtue of the monotonicities. To ascertain the existence of such an intersection'.
it is helpful to think in terms of the characteristic rectangles 130 and D, for Co and C,

These are the smallest rectangles with sides parallel to the v-axis and i-axis such that the

*That procedure will not end in a two-branch series circuit with two distinct end nodes (like that of Fig
3) because the original network is not separable.



endpoints of Cp and C; coincide with two corners of Do and Dy respectively. This is illus-
trated in Fig. 8. Dy contains all continuously monotonically decreasing curves Cg with the
fixed endpoints® NW(Co) and SE(Cy). Except for their endpoints, those curves lie in the
interior of Dg. In the same way, Dy contains all continuous monotonically increasing curves
C; with the fixed endpoints® N E(C;) and SW(C;). However, in the degenerate case, the
characteristic rectangle is also a single point.

In order for Cg and C; to intersect as stated, it is necessary that Do and D, overlap,
but the converse is not true. Nonetheless, by virtue of the intermediate-value theorem, a
sufficient condition for the intersection of C’o and () to exist is the following set of four

inequalities:
N(Co) > N(C1), 5(Co) < 8(C1), E(Co) < E(Ch), W(Co) > E(CY), (6)

See Fig. 9. Another such sufficient set of inequalities for that intersection occurs when Co

and C; interchange their positions in (6):
N(C1) > N(Cy), 5(C1) < S(Co), E(C1) < E(Co), W(C1) > W(Co) (7

See Fig. 10.
On the other hand, each of the following inequalities is a sufficient condition by itself

for the nonexistence of a intersection between Cy and Cy:

N(Co) < S(C) (8)
S(Co) > N(Cy) (9)
E(Co) < W(Cy) (10)
W(Co) > E(C1) (11)

In each case, the characteristic rectangles fail to overlap.
There are cases however where neither (6) nor (7) holds but where an intersection point

between Cp and C is still possible. Such for example, is the case illustrated in Fig. 8.

SNW for “northwest” and SE for “southeast.”
SNE for “northeast” and SW for “southwest.”



Co and C; may intersect as shown, or C; may pass below all of Cj, thereby avoiding an
intersection. In short, if each of the conditions (6) through (11) fail, we must then compute
Co and C; to ascertain whether or not they intersect. This is easily done. Cy and Cy can
be computed as stated in the preceding two sections, and then Co can be gotten from (5).
With Cp and C; given by tables,” their successive points are scanned for identical points
or more generally for two pairs of successive points where currents reverse their larger and
smaller relative values as voltage increases (or alternatively where voltages do so as current
increases). If no such occurrence is found, no WROP exists. If such is found, there will be
only one such occurrence, and a unique WROP will exist. In the latter case, interpolation

will yield the intersection point between Cop and C;.

7 All Reduction Sequences Yield the Same Result

So far, we can draw the following conclusions. for any chosen sequence of series and parallel
reductions. If any such reduction fails to produce a characteristic segment or if they all do
produce characteristic segments but then Cg and C fail to intersect, then there is no WROP.
On the other hand, if the reduction sequence produces a Co and a C; and they intersect,
then a unique WROP exists. The question that must now be addressed is whether or not
these conclusions depend upon the choice of the sequence of series and parallel combinations.

Lemma 7.1: It is impossible for one sequence of series and parallel combinations to lead
to the existence of a WROP and for another such sequence to lead to the nonexistence of
a WROP.

Proof: We shall invoke Theorem 3.1. To this end, we can extend each characteristic
segment into a two-way infinite characteristic curve satisfying the conditions hypothesized
in that theorem. After doing this, let N, denote the resulting network. Theorem 3.1 holds
for N;. Thus, N, has a unique operating point.

Suppose this lemma is not true; that is, let one sequence lead to the existence of a
WROP and a second sequence to the nonexistence of a WROP. For the first sequence,

every resistor operates within its ratings. For the second sequence, the operating point for

"In the unlikely event that Cs and C; can be obtained as formulas, it is computationally more convenient
to convert them to tables.

10



N, is such that at least one resistor operates beyond its ratings. Thus, N, must have at

least two operating points, in contradiction to Theorem 3.1. O

8 A Test for the Existence of a WROP

At this point we have the following procedure for answering the question, “Does the series-
parallel network have a WROP?” by either a “yes” or a “no.” As always, it is assumed that
Conditions 2.1 hold and that every branch has an arbitrarily assigned orientation.

Procedure 8.1:

1) Search the network for a series or parallel circuit of two branches. (There will be at

least one such pair.)

2) If they are not confluently oriented, reverse the orientation of one of them and adjust

its formula or table accordingly.
3a) If they are in series and if (1) is violated, state “no.” Then, stop.

3b) If they are in series and if (1) holds, reduce the network by combining the two branches

and computing the series sum of their characteristic segments (Section 4).
3c) If they are in parallel and if (3) is violated, state “no.” Then, stop.

3d) If they are in parallel and if (3) holds, reduce the network by combining the two

branches and computing the parallel sum of their characteristic segments (Section 5).
4) If the reduced network has at least three branches, return to Step 1.

5) If the reduced network has exactly two branches, reverse the orientation of one of them

if need be to obtain the relative orientations of Fig. 7.
6a) If either (6) or (7) holds, state “yes.”
6b) If any one of (8) through (11) holds, state “no.”

6¢) If none of the conditions (6) through (11) holds, compute Cp and C; and check for an

intersection point (Section 6). If an intersection point exists, state “yes”; if not, state

13 ”

no.

11



7) Stop.

All this is readily programmed for a computer.

9 Computation of the WROP

In the event that Step 7 is reached and a “yes” has been obtained in Procedure 8.1, it is
a simple matter to compute all the branch voltages and currents throughout the network,
thereby completely determining the WROP (if indeed such complete information is desired).
This is because all characteristic segments have already been computed as tables or formulas
except possibly for Co and C); the latter can be determined as in Section 4 or Section 5
again. Next, the intersection point between (:'o and C; can be computed as in Section 6.
Then, a reversal of the sequence of series and parallel combinations by which the network was
reduced will yield all branch voltages and currents by solving series and parallel summations.
Solving a series summation simply requires the insertion of the obtained common value
of current into both characteristic segments, using possibly interpolation, to obtain both
branch voltages. Similarly, a parallel summation is solved by inserting the common voltage
value to get both branch currents. Of course, branch orientations must be obeyed by
adjusting the signs of currents and voltages.

If, on the other hand, the voltage and current of one particular branch is all that is
desired, just designate that branch as by and choose a reduction sequence accordingly. Then,
the intersection point between Cp and C), computed as in Section 6, gives that voltage and

current directly.

10 Conclusions

Our principle purpose is to ascertain quickly whether or not a WROP exists in a network
satisfying Conditions 2.1. If a WROP does not exist, Procedure 8.1 may reveal that fact
well before all resistors are examined. If a WROP does exist, Procedure 8.1 will show this
too but only after all resistors are examined. In the latter case, all branch voltages and
currents can then be determined without much additional computation. At no point does

our method employ the robust but computationally prolonged standard iterative numerical

12



methods. Moreover, if our interest is on a particular branch, we can get its voltage and
current without having to determine the other branch voltages and currents. All this is

easily programmed.
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Figure Captions
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1. The effect on a characteristic segment C of reversing the orientation of a branch.

The symbols with the tildes denote entities after the reversal has been made.

2. (a) A characteristic segment that does not incorporate any source. (Vmaz,imaz)

and (Vmin, imin) are its ratings points.

(b) A characteristic segment that incorporates a voltage source e. The ratings points

are Now (Vmaz — €, imin) a0d (Vmin — €, imin ).

(c) A characteristic segment that incorporates a current source h. The ratings points

are now (Vmaz, tmaz — 1) and (Vmin, tmin — h).
3. Two confluently oriented series-connected branches.

4. The series sum C;OC]; of the characteristic segments of two confluently oriented

series-connected resistors.
5. Two confluently oriented parallel branches.

8. The parallel sum C,0C}; of the characteristic segments of two confluently oriented

parallel-connected resistors.
7. The final two-branch loop of the reduction process.

8. The characteristic rectangles Do for Co and D, for C;. This figure has been drawn

with intersecting Co and C;, but this need not be the case.

. 9. lustration of the sufficient conditions (5) for the existence of a WROP.

10. Iustration of the sufficient conditions (6) for the existence of a WROP.
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