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DOES A NETWORK OF MONOTONE RESISTORS HAVE
AN OPERATING POINT? *

A. H. Zemanian

Abstract — This work is a sequel to a prior work that established a procedure for
determining whether or not a series-parallel network of continuous, strictly monotonically
increasing resistors with restricted domains and ranges has an operating point. Herein we
accomplish the same thing but this time for networks with arbitrary graphs; that is, the
series-parallel restriction is now removed. This substantially expands the applicability of our
result. Moreover, our procedure is highly efficient for the following reasons: We characterize
each resistor by only four numbers (—oo and +oo allowed) determined by the asymptotes to
which the resistor’s characteristic curve approaches; it is only these numbers that are added
or subtracted to test for the existence of an operating point. Furthermore, the numerical
complexity of our procedure increases only linearly with the number of branches in the
network. All this is accomplished without a computation of the operating point, which can

be an onerous task that will perforce end in failure if the operating point does not exist.

1 Introduction

This is the third in a series of papers concerning a fast test for the existence and ratings
compliance of the operating point of a network of monotone resistors. The first paper
[4] was restricted to series-parallel networks; their resistor characteristics were taken to
be continuous, strictly monotonically increasing functions of voltage or current, but their
domains and ranges were allowed to be proper subintervals of the real line. Such restrictions
on domains and ranges arise commonly in models of electronic devices and one-ports, as

for example the Zener diode, but it leads to the difficulty that the network may not have
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any operating point — may indeed be senseless. A very rapid computational method
was presented in [4] for ascertaining whether an operating point exists without actually
attempting a computation of that operating point. The latter computation, if successful, is
generally expensive and prolonged, as is commonly the case with Newton-Raphson, secant,
or homotopy methods. The method of [4] accomplished its objective by using only the
. asymptotes of the characteristic curves. A determination of the nonexistence of an operating
point could be followed by a reexamination or abandonment of the proposed design without
wasting effort in trying to find the operating point.

The second paper [5] was also restricted to series-parallel networks with resistors of
the type stated; it resolved the following question: In the event that an operating point
exists, do all resistors operate within their ratings? In this case a manipulation of only the
asymptotes of the characteristic curves caﬁnot provide a solution. Instead each resistor was
now represented by that segment of its characteristic curve lying between its two ratings
points, and these segments were manipulated using some simplifications provided by the
series-parallel structure to answer the second question quite rapidly. If ratings were found
to be violated, a reexamination of the design would be mandated.

This present third paper is a sequel to the first one and assumes the same kind of
resistors. It questions the existence of an operating point but this time for networks with
arbitrary graphs. Graphs that are not of the series-parallel type have wheatstone bridges
as subgraphs [2], and thus the series and parallel sums introduced in [4] are inadequate for
examining such networks entirely. However, a fundamental result established in 1960 by
Minty [3] is available for this purpose. Our procedure for a network having at least one
embedded wheatstone bridge is first to reduce the network as much as possible by making
as many series and parallel combinations as possible and then to exploit Minty’s theorem
for the reduced network. Once again, we can restrict our computations to asymptotes, an
thus a very rapid determination of the existence or nonexistence of an operating point s
achieved. In fact, the computational complexity of our method increases only linearly witr
the number of branches in the network.

The next natural question for the case of arbitrary networks is whether all resistors



operate within their ratings when an operating point exists. Unfortunately, Minty’s theorem
cannot be used for finite segments of characteristic curves. How to resolve this last question

rapidly without computing the operating point is presently an open problem.

2 Preliminary Considerations

* In this paper the following is always assumed.

Conditions 2.1: N will denote a connected nonseparable network consisting of at least
three nonlinear resistors whose voltage-current characteristics are continuous, strictly mono-
tonically increasing curves that do not terminate at any finite point of the voltage-current
plane (i.e., every characteristic curve extends infinitely in both directions). Moreover, every
branch has an orientation with respect to which the positive values of voltage (drop) and
current (flow) are measured.

We take the voltage axis as horizontal and the current axis as vertical and denote them
as v-axis and i-axis respectively; the voltage-current plane is then the (v,i)-plane. Let
W denote the characteristic curve of a particular resistor, and let V and I denote the
projections of W upon the v-axis and i-axis respectively. Under Conditions 2.1, V' and
I are nonempty open intervals, which may be either finite, one-way infinite, or two-way
infinite. We refer to the Cartesian product V X I as the characteristic set of the resistor or
of W. If supV < oo, then W is asymptotic to the vertical line v = sup V. Similarly, W is
asymptotic to inf V' or sup I or inf I whenever any of the latter are finite. Moreover, V' x I
can be classified according to the nine types listed in [4, Section II} and illustrated herein
in Fig. 1. Furthermore, if W passes through the origin of the (v, i)-plane, then the resistor
or W itself is said to be passive. If W does not pass through the origin of the (v,t)-plane,
then the resistor implicitly contains a nonzero source, which can be represented either as
a voltage source in series with a passive resistor or as a current source in parallel with a
passive resistor.

With B denoting the number of branches in N, let us number the branches with the
subscripts 7 = 1,..., B. The same subscripts will be used for any entities belonging to

a branch bj, such as its voltage v;, current i,, or characteristic curve W;. With v =



(v1,...,vB) being the branch-voltage vector and i = (43,...,ip) being the branch-current
vector, an operating point is a pair of vectors (v, i) such that v satisfies Kirchhoff’s voltage
law around every loop, i satisfies Kirchhoff’s current law on every cutset, and (v;,%;) € W;
for every j. By exactly the same proof! as that for [4, Lemma 2.2), we have the following.

Theorem 2.2: Under Conditions 2.1, the network N has either a unique operating point
or none at all.

Let V; and I; denote the projections of W, on the v-axis and i-axis respectively for
each branch 4;. V; and I; are open intervals, possibly proper subintervals of the real line.
Also, Let L denote an oriented loop. With the usual definitions for sums and differences of
intervals, we can assign to L the interval 3°(7) +V;, where }°;) denotes a summation over
all the indices j for the branches b; in L, the + sign is used if the orientations of branch b;
and loop [ agree, and the — sign is used if those orientations disagree. Since each V; is an
open interval, so too is 37y +V;. If the interval 3°;) +V; contains the point zero, then L is
called balanced; otherwise, L is called unbalanced. Similarly, let C denote an oriented cutset.
In this case, we assign to C the interval 3~ ) +1;, where }_ ) denotes a summation over all
the indices j of the branches b; in C, the + sign is used if the orientations of branch b; and
cutset C agree, and the — sign is used if those orientations disagree. Here too, }°(c) £1; is
an open interval. If the interval 3-(c) £I; contains the point zero, then C is called balanced:
otherwise, unbalanced. A result? due to Minty [3] can now be combined with Theorem 2.2
to obtain the following.

Theorem 2.3: Under Conditions 2.1, the network N has a unique operating point if and
only if all the loops and all the cutsets of N are balanced.

With regard to series and parallel combinations of monotone resistors, we will use the
same definition and results as those of [4] without repeating all of them here. Thus, W OW,
denotes the series sum of two characteristic curves W, and W,, and W,0OW,; denotes their
parallel sum. Furthermore, instead of manipulating an entire characteristic curve W, we

shall manipulate only its asymptotes. As was mentioned before, the shapes of the charac-

!The proof is based upon a classical theorem due to Duffin {1]; unlike the present paper, Duffin’s theorem
requires that every characteristic curve define a bijection between the v-axis and i-axis.
?In particular, see Definition 4.2 on page 198 and the Corollary on page 210 of [3].



teristic curves having the properties stated in Conditions 2.1 can be classified into exactly
nine types according to their characteristic sets® as shown in Fig. 1. We assign to every
characteristic set S four asymptotes*: A;, A,, A4, and A,; at most two of them are finite
with the others being either —o0 or +00. We use the convention that, if W (or, equiva-
lently, if its characteristic set) extends infinitely in a horizontal or vertical direction, then
. the asymptote in that direction is either —oo or 4+00. Thus, for each type of characteristic
set shown in Fig. 1, the asymptotes take on finite or infinite values as listed in Table 1.
Finally, a path or loop embedded in N (and their branches as well) will be called
conformably oriented if the orientations of all of the branches in the loop or path agree with
some orientation of the loop or path. Similarly, a cutset or a parallel circuit embedded in N
( and their branches too) will be called conformably oriented if all the branches therein have
orientations pointing in the same direction from one side of the ‘cutset or parallel circuit to
the other side. For series and parallel circuits, conformable orientations are the same as the

confluent orientations discussed in[4, page 48].

3 Fundamental Loops and Cutsets

Because of our assumptions that N is connected, nonseparable, and has at least three
branches, the total number X of loops and cutsets in N is larger than the number of
fundamental loops and fundamental cutsets for a given spanning tree T in N. Indeed, the
latter number is simply the number B of branches in N, whereas the former number X is
always larger than B. Moreover, X is usually considerably larger than B. For example, for
the wheatstone bridge, B = 6 and X = 14. So, it will be advantageous to test only the
fundamental loops and cutsets instead of all the loops and cutsets.

The following two lemmas justify doing so. We assume henceforth that a spanning
tree T has been chosen arbitrarily and then fixed. Number the chords from 1 to B — N,
where N is one less than the number of nodes in N, and number the tree branches from
B~ N +1 to B. Also, number and orient each fundamental loop (resp. fundamental cutset)

in accordance with the number and orientation of the unique chord (resp. tree branch) in

3Characteristic sets are defined in [4, page 46]
*] for “left,” r for “right,” d for “down,” and u for “up.”



that fundamental loop (resp. fundamental cutset). Let L be any oriented loop in N other
than a fundamental loop. We will denote each loop by the algebraic sum of branches in
that loop with a + or — sign attached to each branch in the loop in accordance with the
conformity or nonconformity of the orientations of the loop and branch. Then, it is a fact

that

L =) +I; (1)

Here, Z&)) is a summation over the indices of the chords in L and a + (resp. —) sign is
attached to the fundamental loop L; for each chord in L if the orientations of L and the
chord for L; agree (resp. disagree). Indeed, adding or subtracting all the branches in those
L; in accordance with the signs resulting from the signs attached to the L; and the signs
assigned to the branches for the Lj, we obtain the correct representation L = } 1y +b; for
L in terms of its branches, where 37, is a2 summation over all the indices of the branches

in L. (Branches not in L cancel out.) In short, we can rewrite (1) as

(c)

L =Y &) +b. (2)

(L) (Ly)

(2&)) is a summation over the indices j for the chords in L, and 3 () is 2 summation
over the indices k of all the branches in L;.) This expression remains valid no matter what
orientations are assigned to the branches and the loop L.

Now, let v; be the branch voltage for b;. Then, by (2), the algebraic sum of voltages

around L is
()

Z:i:v,- =Y £ +u.

(L) (L) (Ly)
Next, replace each vx by the voltage interval V). assigned to bx. We get the following voltage

interval for L.
(c)

YoV = Y £) tVe (:3)

(L) Ly (Ly)
Now, if the open interval 3z ) £V for every fundamental loop L; in the right-hand side of

(3) contains the point zero, then so too does 3", , £V,. We have established the following



Lemma 3.1: If the algebraic sum 3=/, nxVi of voltage intervals around every fundamen-
tal loop Ly contains the point zero, then the algebraic sum 3°(;) £V of voltage intervals
around every loop L also contains the point zero.

Now, when examining any given fundamental loop Ls to see if its voltage interval
contains zero (i.e., to see if it is balanced), we are free to choose the branch and loop
. orientations to suit ourselves. In particular, assign any orientation to L; and then reorient
(if need be) each branch b; in L; to make L; conformably oriented. Let V; be the voltage
interval of the so-oriented b;. (This will require replacing V; by -V; = 171 if the original
orientation of b; disagrees with that of Ly; in this case, inf f’, = inf(-V;) = —supV; and
sup IV/J = sup(—V;) = —infV;.) Thus, Ly will be balanced if and only if 371 ) V; contains
zero. Since every f/_, is an open interval, this will be so if and only if inf} 5 IV/_, <0
and sup Z(L,) V] > 0. Moreover, inf S(L}) f/} (resp. sup Z(L,) V;) is obtained simply by
adding the left-hand (resp. right-hand) asymptotes of the characteristic curves Wj for the
(conformably oriented) branches in Ly. We take the left-hand (resp. right-hand) asymptote
of Wj to be at —oco (resp. +oo) if Wj extends infinitely toward the left (resp. right).

Cutsets can be treated similarly. Again we choose and fix a spanning tree T and number
the oriented branches as before. This assigns numbers and orientations to the fundamental
cutsets as before. Now, let C' be any oriented cutset in N other than a fundamental cutset
This time we have ®

C = ) *C; (1)
(©)

where Eftc)') is a summation over the indices of the tree branches in C, a + or — sign is used
in accordance with the conformity or nonconformity of the orientations of C' and the tree
branch for the fundamental cutset C;, and the summation is interpreted as additions an«
subtractions of branches as before. Thus, by writing each C; as an algebraic sum over th.

branches in Cj, (4) becomes
*)

C =) ) b, (5)
) (G))

no matter what orientations are chosen for the branches and for C. (}:Eg) is a summation

over the indices j for the tree branches in C, and } () is a summation over the indices &



of all the branches in C;.) With ¢; being the branch current for b;, the algebraic sum of the

currents in C is ®
t

Z +i; = Z + E k.
©) c) (¢j)
Then, with ¢ replaced by the current interval I; for bg, we get the following current interval

for C.
. (t)

St =) 1) +hL.

© @ ()
Again, if each open interval Z(cj) % 1; for the fundamental cutset C; contains the point
zero, then so too does }_ +I;. From this, we get the following result.

Lemma 3.2: 1f the algebraic sum 3¢ pE2f of current intervals for every fundamental
cutset Cy contains the point zero, then the algebraic sum 3 - +I; of current intervals for
every cutset contains the point zero too.

Here too, we can check the fulfillment of the hypothesis of Lemma 3.2 simply as follows.
When examining a particular fundamental cutset Cy, assign any orientation to Cy and
orient all the branches b; in Cy conformably. Under these possibly new orientations for the
branches, let I; be the current interval for b;. (If the orientation of a particular branch b;
becomes reversed, we have inf I; = inf(~I;) = —sup I; and sup I; = sup(—1;) = —inf I;.)
So, we need only check whether 3 ;) I; contains zero to see if Cy is balanced, and this
will truly be the case if the sum of the lower (resp. upper) asymptotes of the characteristic
curves W; for the (conformably oriented) branches in Cj is less (resp. greater) than zero.
As before, we take the lower (resp. upper) asymptotes of Wj to be at —oo (resp. +oo) if
W; extends infinitely downward (resp. upward).

Combining all this with Theorem 2.2, we have the following result, given any spanning
tree T.

Theorem 3.3: The network N will have a unique operating point if and only if both of
the following conditions are fulfilled.

(a) For every conformably oriented fundamental loop Ly, the sum of the left-hand (resp.
right-hand) asymptotes of the characteristic curves WJ- for all the branches b; in Ly

is negative or —oo (resp. positive or +00).



(b) For every conformably oriented fundamental cutset Cy, the sum of the lower (resp.
upper) asymptotes of the characteristic curves Wj for all the branches b; in Cy is

negative or —oo (resp. positive or +00).
4 Series-Parallel Reductions

- We can simplify our test for the existence of an operating point still further by first making
as many series and parallel reductions of N as possible before checking the fundamental
loops and cutsets. This is because checking the existence of a series or parallel sum requires
the examination of just two branches (4], but checking the balancing of a fundamental
loop or fundamental cutset requires the examination of, in general, many more branches.
However, to justify this initial reduction of N through series and parallel combinations, we
should check that the reduced network has an operating point if and only if the original
network has one and that, if an operating point exists, then every branch in the reduced
network operates with the same voltage and current as it does in the original network.
Consider any maximal series-parallel subnetwork N,, of N. This is a one-port in that
N,, meets its complement in N at exactly two nodes, say, n; and n;. Thus, the input
resistance of N, can be viewed as the resistance of a branch in the reduced network. If
any series or parallel sum for two branches in N,, fails to exist, then N,, has no sense.
and therefore neither does N have an operating point. Conversely, if N has an operating
point, then by definition every branch in N,, has a voltage and current, and so too does the
said one-port. The voltage and current at the terminals n; and n; of the one-port uniquely
determine voltages and currents at all the branches within N,,. This is because any point
(v,%) on the series sum W,OW, for the characteristic curves of two branches b, and b
in series uniquely determines the voltage-current pairs (v,,7) € W, and (v,¢) € W, for
those branches. Similarly, the point (v, ) on the parallel sum W,0W); uniquely determines
(v,14) € W, and (v,i3) € W;. Thus, given the voltage and current at the terminals n; and
ny, we can sequentially solve for all the branch voltages and currents in N,,. Conversely.
those voltages and currents within N,, uniquely determine the voltage and current at n,

and n, through series and parallel sums. Thus, series and parallel combinations within N,



do not disturb the terminal conditions at n; and ny, and Kirchhoff’s laws determine the
undisturbed conditions on all the branches outside N,,. It follows that an operating point

for the reduced network agrees with the operating point for the original network.

5 The Test

- The procedure we shall use to test for the existence of an operating point for the network
N satisfying Conditions 2.1 is first to reduce N as much as possible through a sequence
of series and parallel combinations of resistors, checking for the success or failure of the
series or paralle] sum at each step of the sequence, and then to check the balancing of
the fundamental loops and fundamental cutsets of the reduced network. Here then is the
procedure stated as an algorithm. It is assumed that every branch of N has been assigned
an initial orientation. Steps 1 through 4(c) repeat Procedure 8.1 of [4] and are justified as in
that paper. Furthermore, only summations of asymptotes are involved in all the numerical
steps of Procedure 5.1 (in particular, at Steps 3, 4(c), 7, and 9).
Procedure 5.1.

1) Search N for a series or parallel connection of two branches. If none exist, go to Step 5

below.

2) If the two branches are not conformably oriented, reverse the orientation and character-

istic set of one of them.

3) Reduce the network by combining the two branches through a series sum or parallel
sum of their characteristic set to obtain a single oriented branch with a determined

characteristic set.

4) a) If that characteristic set is empty, stop. (An operating point does not exist.)

b) I that characteristic set is not empty and if the reduced network has at least three

branches, return to Step 1.

c) If the reduced network has exactly two branches® with, say, the characteristic sets

So and Sy, change the orientation of one of them if need be to obtain the relative

*This imphes that N is a series-parallel network

10



orientations shown in Fig. 2, and then determine whether SN S is empty®.

Then, stop. (N has an operating point if and only if 55N $; is nonempty.)

5) Choose and fix a spanning tree in the reduced network N,. (Every branch of N, now

has a characteristic set and thereby four asymptotes as indicated in Table 1.)

. 8) Choose a chord different from all previously chosen chords, and thereby a fundamental
loop Ly. If need be, change the orientations of some of the branches in Ly to make

Ly conformably oriented.

7) Sum the left-hand asymptotes A; for the (conformably oriented) branches in Ly and
then sum their right-hand symptotes A, to see if Condition (a) of Theorem 3.3 is
fulfilled. If it is not fulfilled, stop. (An operating point does not exist.) If it is fulfilled

and if some unchosen chords remain, return to Step 6. Otherwise, go to Step 8.

8) Choose a tree branch different from all previously chosen tree branches, and thereby a
fundamental cutset Cy. If need be, change the orientations of some of the branches

in Cy to make Cy conformably oriented.

9) Sum the downward asymptotes A4 for the (conformably oriented) branches of Cy and
then sum their upward asymptotes A, to see if Condition (b) of Theorem 3.3 i~
fulfilled. If it is not fulfilled, stop. (An operating point does not exist.) If it is fulfilled
and if some unchosen tree branches remain, return to Step 8. Otherwise, go to Step

10.
10) Stop.

The next theorem states the main result of this paper. As always, N is assumed to
satisfy Conditions 2.1.

Theorem 5.2: Apply Procedure 5.1 to the network N. If that procedure stops at Step
4(a) or Step 7 or Step 9, then N does not have an operating point. If that procedure stops

at Step 4(c), then N has an operating point (and is a meaningful series-parallel network) f

6 As was defined in [4, page 51), $o = {(v,i): (—v,1) € S0}
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and only if SoN .8, is not empty. If that procedure reaches Step 10, then N has an operating
point (and is not a series-parallel network). The operating point is unique if it exists.

The next corollary bounds the computational complexity of Procedure 5.1.

Corollary 5.3. The number of times Steps 3, 4(c), 7, and 9 are executed altogether is

no larger than the number of branches in N.

"6 Some Final Remarks

The conclusions of this paper are stated succinctly by Theorem 5.2 and Corollary 5.3.
The numerical steps of Procedure 5.1 occur at Steps 3, 4(c), 7 and 9 and involve only
summations of asymptotes, with just two summations of asymptotes occurring at each
step (such a summation is trivial if any asymptote is —oc or +00). Thus, the numerical
complexity of our test for the existence of an operating point increases only linearly with the
number of branches and in this way is very efficient. In fact, if an operating point does not
exist, this fact may be revealed well before the entire Procedure 5.1 is executed. Of course.
this efficiency is achieved by sacrificing the determination of the operating point. However.
it is well worth applying Procedure 5.1 before attempting to compute the operating point
by the more computationally onerous standard methods for doing so. There is no point in

undertaking such a computation if there is no operating point.
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TABLE 1
The Finite and Infinite Values for the Four Asymptotes
of the Nine Types of Characteristic Curves Shown in Fig. 1.
(In every case, A; < A, and A4 < A,.)

| Characteristic Set | Symbol | A | A, | Ay | A, |
o0

Horizontal band By, - 400 | finite | finite
Vertical band B, finite | finite | —o0 | 400
Northwest quadrant Qnw —oo | finite | finite | +o00
Southeast quadrant Qs | finite | +00 | —oo | finite
Half-plane upward H, —00 | 400 | finite | 400
Half-plane downward Hy —00 { +00 | —oo | finite
Half-plane leftward H; —oo | finite | —oo | 400
Half-plane rightward H, finite | +00 | =00 | 400
The whole plane R*? -00 | 400 | —o0 | 400
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Figure Captions

Fig. 1. The nine types of characteristic sets (shown crosshatched) and possible character-

istic curves (shown dotted) within them.

' Fig. 2. The relative orientations for the two-branch network of Step 4(c) of Procedure 5.1.
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Figure 1: The nine types of characteristic sets (~hown «rosshatched) and possible character-
istic curves (shown dotted) within them.



Fig. 2. The relative orientations for the two-branch network of Step 4(c) of Procedure 5.1



