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PRISTINE TRANSFINITE GRAPHS

A. H. Zemanian

Abstract — A tranfinite graph is pristine if no node of any rank embraces a node of
lower rank. Every transfinite graph has an equivalent pristine graph obtained by extracting
from all maxir;xal nodes every embraced node of lower rank. This leads to considerable
simplifications in many parts of the theory of transfinite graphs. The present report is the

first of a series of reports that will develop this simpler theory.
1 Introduction

The idea of a transfinite graph arose from an outstanding problem in the theory of infinite
electrical networks; namely, what is the input resistance of an infinite ladder of resistances?
If the ladder is not uniform in its element values, it can happen that this question has
no unique answer unless a resistor R connected to the infinite extremity of the ladder is
specified [4, Section 1.4]. In order to connect R to the ladder at infinity, a new kind of node
is needed — a “l-node”; such a node is a set of one-way infinite paths that are equivalent
in the sense that they are pairwise identical except for finitely many branches and nodes.
Any one those paths specifies the 1-node. The needed connection of R is accomplished by
inserting the conventional nodes of R (now called “0-nodes”) as members of the two 1-nodes
specified by two disjoint one-way infinite paths in the ladder.

This yields a “transfinite graph” (called a “graph of rank 1” or simply a “1-graph”)
having no counterpart in conventional graph theory. In addition to branches and 0-nodes,
we now have 1-nodes. This procedure for making connections at infinite extremities can be
extended to a 1- graph containing infinitely many conventional graphs connected together
by 1-nodes. This leads to “2-nodes” that make connections at the infinite extremities of
such a 1-graph to obtain a “graph of rank 2" or simply a “2-graph.” Continuing in this

way, we obtain “3-nodes,” ..., “v-nodes,” and the corresponding “u-graphs” (g < v),
y g g



where the rank v can range through both finite and transfinite ordinals. Moreover, a v-
node can contain a node of lower rank, which in turn can contain a node of still lower rank,
and so forth. These node containments lead to considerable complications in the theory of
transfinite graphs.

It turns out that a node of lower rank can be extracted from a node of higher rank
without altering the connectivity of the transfinite graph. For example, the 0-nodes of R
can be connected to the 1-nodes of the ladder through one-way infinite paths of electrical
shorts instead of inserting the 0-nodes as members of the 1-nodes. The result is a transfi-
nite graph in which no node of higher rank contains any node of lower rank; this we call
a “pristine transfinite graph.” A further result is that the theory of transfinite graphs be-
comes substantially simpler when all the transfinite graphs are replaced by their pristine
equivalents.

The aim of this report is to rework the theory of transfinite graphs by restricting the
discussions to pristine graphs and making simplifications wherever possible. This will be just
the first of several reports, which together will rework all the theory of of transfinite graphs as
it presently exists. Later on, we will do the same thing for transfinite electrical networks and
random walks. The result will be a more accessible rendition of these subjects. Moreover,
new results will also be presented, whose discoveries were facilitated by our restriction to
pristine graphs. In fact, our initial restriction to pristine graphs will free us from a number
of subsequent complicated assumptions that were needed to make the theory work in the

nonpristine case.

2 Pristine Nodes

In this section we explicate how embraced nodes can be extracted from nodes of higher
ranks to obtain a “pristine nodes” and thereby “pristine graphs.” In order to follow the
discussion, one must know what a nonpristine transfinite node of arbitrary rank is, and this
entails a fairly long recursive construction of transfinite graphs. Let us not repeat what
appears elsewhere [3, Chapter 5], [4, Chapter 2] and is in fact unessential to this report’s

discussion. Instead, we will simply address our remarks in this section to those having such



knowledge. Moreover, as occasions arise later on, we will point out how our restriction to
“pristine nodes” (defined below) simplifies the general development of transfiniteness for
graphs. This section and those remarks can be ignored. Everything else herein can be
understood without referring to (3] and [4].

Turning to our task for this section, we start with the fact that there are several kinds
of transfinite nodes. It is convenient to restrict the ranks of transfiniteness that we shall
examine to the natural numbers u = 0,1,2,..., to the arrow rank &, and to the first
transfinite-ordinal rank w. A discussion of higher ranks requires only a repetition of what
we say here.

A transfinite node n* whose rank is a positive natural number y is a set consisting of
at least one and in general many (g — 1)-tips and possibly a single node of lower rank n®
(a < p). When n* does not contain any node of lower rank, n* will be called pristine.
However, when n® does exist as a member of n*, n® may in turn contain another node
of still lower rank, which in turn may contain another node of still lower rank, and so on
through finitely many nodes. Thus, we can have a finite sequence of nodes {n#*}&_ of
natural number ranks ux with gy < g2 < ... < pg = u such that n#* is an element of n*s+1
(k < K). Each of the n#* contains at least one (ux ~ 1)-tip. We say that n# embraces itself,
all its members, and all the members of all the n#* for k = 1,..., K — 1. (By definition, n*
does not embrace any other entity such as the representative paths of its embraced tips.)
Thus, n* is pristine if and only if n* does not embrace any node of lower rank, that is, if
and only if n* is simply a nonvoid set of (x — 1)-tips.

On the other hand, n* is called mazimal if it is not embraced by a node of higher rank.

Consider next a node n® of the arrow rank &; & is the only rank satisfying g < & < w
for all natural number ranks p, where w is the first transfinite-ordinal rank. n® contains
no tips of any ranks. Instead, there is an infinite sequence {n**}22, of nodes of natural
number ranks p; such that px < pry1 and n#* is a member of n#*+1 for every k. Thus,
each n**+1 embraces every node preceding it in the sequence as well as all the tips in every
such node. (n* does not embrace a node of lower rank.) Then, n® is defined as the set

{n#*}22 . There is no such thing as a “pristine &-node.”



Consider, finally, a node n* of rank w. This is a set consisting of at least one J-tip and
possibly (but not necessarily) one node of rank less than w. As before, n® is called pristine
if it does not contain a node of lower rank. If, on the other hand, it does do so, n* will
embrace infinitely many nodes if it contains an &-node but will embrace only finitely many
nodes if it contains a p-node, where g is a natural number as before.

A node of any rank is called marimal if it is not embraced by a node of higher rank.

When all the nodes of a transfinite graph (or network) are pristine, that is, when no node
embraces a node of lower rank, the graph (or network) will be called pristine too. Thus, a
graph is pristine if and only if all its nodes are maximal. It turns out that the theory of
pristine graphs and networks is substantially simpler than the theory for transfinite graphs
and networks given in (3] and [4].

For example, in a general transfinite graph G of rank v, a p-section (p < v) can be
taken to be a branch-induced maximal subgraph of the p-graph of G¥ whose branches are
p-connected, that is, connected through an a-path where a < p. (This is a somewhat
sharper definition of a p-section than that given in [4, page 49].) On the other hand, a
((p + 1)—)-subsection is a branch-induced maximal subgraph of the p-graph of G whose
branches are p-connected by paths that do not meet y-nodes in G¥ where ¥ > p+ 1. (Here
too, this is a somewhat sharper definition of a ((p + 1)~)-subsection than that given in 4,
page 81].) In general, p-sections and ((p + 1)~)-subsections are different entities, but they
may be identical in particular cases. For instance, consider

Example 2.1. Refer to the 2-graph of Fig. 1(a). There is therein a one-ended 1-path
P = {n], P?,n}, PY,n}, P?,...}, where the P? are endless 0-paths. P! reaches the 2-node
n? through its 1-tip, and n? contains a 0-node n°. Furthermore, a finite 0-path containing
the branches by, by, b3, and b4 passes through n° and thereby through n2.

P! is both a 1-section and a (2—)-subsection. Also, each P? is a 0-section and a (1-)-
subsection. On the other hand, the branches by, b,, b3, and b4 induce a 0-section S®, which
is partitioned into two (1-)-subsections: 8;1‘ induced by b; and b, and S,}z" induced by b3
and by. S°, S;f , and S,}{ are all different. Here, all nodes are both pristine and maximal
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except for n? and n% n? is maximal but not pristine, and n° is pristine (all 0-nodes are



pristine) but not maximal. &

It may appear that pristine graphs are more restrictive than transfinite graphs in general.
However, any transfinite graph can be converted into a pristine one by extracting embraced
nodes. This will not change the connectivity relationships within the graph. The procedure
is as follows.

First consider the case of a maximal y-node n*, where u is a positive natural number.
Let {n#*}X | be the sequence of nodes embraced by n* with g < pg1 fork =1,..., K -1
and pg = p. Thus, n#* is a member of n#k+1, Let us first remove n#! from n#2, thus
making n*! a pristine maximal node and converting n*? into a pristine node (we use the
same notation for the new nodes); then, let us append a one-ended (u; — 1)-path P#2~!
that terminates at n*!; finally, let us add the (uz — 1)-tip of P#2~! to the members of n*z.
All the nodes of P#2~! are pristine and maximal. We obtain hereby a new u-node that
embraces only the nodes n#2,...,n#K and is connected to n#! through P#2~!. We continue
this way by extracting in turn n*2,...,n*X. More specifically, consider the case where we
have extracted n*1,...,n**-! and are ready to treat n**., We remove n** from n#*+! thus
making n** a pristine maximal node, then we append a one-ended (g4 — 1)-path Pre+171
that terminates at n#*, and finally we add the (pr41 — 1)-tip of P#&+171 to the members
of n#*+1, Here too, all the nodes of P#*+1~! are pristine and maximal. We call P#k+1-1
the ertraction path along which n#* is ertracted from n*s+1, P*x+1~1 is isolated in the
sense that it meets or reaches the rest of the graph only through its terminal nodes or tips.
After treating all the n#* (k= 1,..., K — 1), the result will be pristine maximal nodes 7**
(k=1,...,K - 1) and in addition a pristine maximal node 7#. (We have now changed
notation by adding a “hat.”)

Example 2.2. Consider again the 2-graph of Fig. 1(a). The 0-node n° contained in
the 2-node n? of that graph is extracted to obtain the pristine 2-graph of Fig. 1(b). This
is accomplished by first removing n° from n? and then appending the one-ended 1-path
Q' = {n° Q9,m},Q9,m},QY,...} that terminates at n° and reaches the pristine node 2.
QY is a one-ended 0-path, but the Q% (k = 2,3,...) are endless 0-paths. Note that n® is

trivially 2-connected to n? in part (a) and is 2-connected to 42 through the extraction path



Q! in part (b). In this way, the connectivity ranks are not changed. &

For the case of a maximal &-node n, we have an infinite sequence {n#*}2  of nodes
embraced by n%, and moreover n¥ does not contain any tip. Proceeding as above through
k =1,2,3,..., weobtain an infinity of pristine maximal nodes a}* (k = 1,2,3,...) such that

each #}* is connected to A,;Y' through an appended one-ended extraction path P#k+1~!

starting at 2}* and reaching fziﬁ_‘;‘ In this case, n® disappears and is not replaced by any
node after all extractions have been made. On the other hand, the appended one-ended
extraction paths form altogether a one-ended &-path.

Finally, consider a maximal nonpristine w-node n*. It may contain either a node n#x
of natural-number rank px or an J-node. Thus, it may embrace either finitely many nodes
n#1 ..., n#K or infinitely many nodes n#!,n#2 .... In the first case, the procedure removes
all the n#* (k =1,..., K) and then appends finitely many one-ended paths which together
form an &-path that starts at n#! and passes through n#2,...,n#K in turn; the &-tip of
that &-path is adjoined to the remaining members of n* to get a pristine maximal w-node
7. In the second case, there are infinitely many appended extraction paths which are all of
natural-number ranks but together form an &-path P?; again, the &-tip of P¥ is adjoined
to the remaining members of n* to get a pristine maximal w-node 7“.

This procedure for extracting embraced nodes can be continued in the very same way
through ranks higher than w.

If we perform such extractions for all the nonmaximal nodes in a graph, the result
will be a pristine graph. Any two branches or nodes that are p-connected in the original
network will remain p-connected in the resulting pristine network, except for the &-nodes
— they disappear.! In this way, many results concerning arbitrary transfinite graphs can be
established simply by examining pristine graphs. The same is true for the electrical behavior
of transfinite networks so long as the appended paths that implement the extractions of

nonmaximal nodes are taken to be paths of shorts.

'If n® embraces n”, where p > v, n” and n” are taken to be p-connected through a trivial p-path.



3 0-Graphs and 1-Graphs

0-graphs are conventional graphs. However, we shall define them in an unconventional way.
In our approach, a branch is a set with two elements, each of which is called either an
elementary tip or a 0-tip or a (—1)-tip. Here, 0 or —1 is the rank of the tip. Thus, as ranks,
we have 0 = —1. In words, we refer to 0 as “zero-arrow.” (We will meet other “arrow
ranks” later on; they are the immediate predecessors of the “limit-ordinal ranks.”) Each
0-tip belongs to exactly one branch. To conform with some terminology we will use later
on, we also refer to a branch as a (—1)-section and as an endless (—1)-path. Also, if t? and
tg are the two elementary tips of a branch b (i.e., if b = {t?,tg}), we say that b traverses
t? and tg and that b is a representative of t? and of tg. All this may seem quite arbitrary
and unnecessary, but it simply reflects some terminology that will be needed for graphs
of higher ranks. A branch may be assigned an orientation, that is, on ordering of its two
0-tips, in which case it is called an oriented branch.?

Let B = {b;};es denote a nonvoid set of branches, where J is a set of indices for the
branches. Also, let 70 = Ujesb; be the set of all 0-tips for all the branches in B. The
cardinality B = J of B is unrestricted. Thus, ﬁ = 2B if B is a finite set, and ? =BifB
is an infinite set. Let A’ = {nd}cck be a partitioning of Tﬁ, where K is an index set for
the partitioning. Each n{ is called a 0-node and corresponds to a conventional node. The
degree of n{ is its cardinality. If two or more 0-tips are members of the same 0-node ng,
those 0-tips are said to be shorted together by n} (or simply shorted). A singleton 0-node
is one having exactly one (—1)-tip; otherwise, it is called a nonsingleton 0-node. The sole
0-tip of a singleton 0-node is said to be open.

A self-loop is a branch having both its 0-tips shorted. If a branch b has at least one
of its O-tips 0 in a 0-node n°, b and n® are said to be incident, and b is said to reach n°

through 0. Note that, according to this construction, n°

is not a member of b; n° and b
merely intersect as sets of O-tips. If two branches are incident to the same 0-node, we say

that they are adjacent. If two branches are incident to the same two 0-nodes, we say that

2Branch orientations will be needed for electrical networks when branch currents and branch voltages are
measured with respect to those orientations.



they are in parallel or are parallel branches. (Two self-loops that are incident to the same
0-node are not taken to be in parallel.)

Now, let B and thereby 79 be given, and let A" be a chosen partitioning of 79, Then,
the pair

gO = {B’NO} (1)

is called a 0-graph. G° is called finite, infinite, countable, and uncountable according to
whether B has those properties respectively. Also, G° is called locally finite if all its 0-nodes
are of finite degree.

A “subgraph” of a 0-graph G° = {B,AN?} is defined as follows. Let B, be a nonvoid
subset of B, and let N2 be the (nonvoid) subset 6f N? consisting of those 0-nodes each
of which contains at least one -tip belonging to a branch of B,. Then, G° = {B,,N?} is
called a subgraph (or a 0-subgraph) of G°. For more specificity, we also refer to G2 as the
0-subgraph of G® induced by B, (or by the branches of B,). Note that G0 is not in general a
graph because there may be a 0-tip in one of the nodes of G? that does not belong to any
branch of G.3 Any member of B, U NQ is said to be in G. Furthermore, if B; C B,, the
subgraph G? induced by B; is a subgraph of the subgraph G2, and G? is said to be in G°

The union (resp. intersection) of two subgraphs of a 0-graph is the subgraph induced
by the union (resp. intersection) of the branch sets of the two subgraphs. Two subgraphs
(resp. a 0-node and a subgraph) are said to meet or to be incident if they have a common
0-node (resp. the 0-node is in the subgraph).* Otherwise, they are called disjoint. Incident
subgraphs need not contain a common branch, and disjoint subgraphs will not contain a
common branch.

A 0-path PP is an alternating sequence of 0-nodes and branches

Po = {..-,n?n,bm,n?n+],bm+1,..-} (2)

in which no 0-node and therefore no branch appears more than once and moreover every

branch and 0-node that are adjacent in the sequence (2) are incident in the graph. The

3Were we to eliminate all such O-tips from all the nodes of G2, we would obtain a 0-graph, which we
might call a “reduced graph”; see [3, page 8]. We will not bother with this particularity.

*Later on, when dealing with transfinite graphs, “meet” and “incident” will mean different things, “meet”
being a stronger concept than “incident.”



indices ...,m,m + 1,... are restricted to the integers (i.e., they do not extend to the
transfinite ordinals). Thus, P° is in fact a conventional path. We can and do identify the
0-path (2) with the 0-subgraph its branches induce.

An orientation is assigned to P® by choosing one of the two possible orderings of (2)
that maintain (2) as a path. PO is called finite or one-ended or endless if respectively the
sequence (2) has only finitely many terms or extends infinitely in exactly one direction
or extends infinitely in both directions. A finite 0-path is also called two-ended. If (2)
terminates on either side, we require that the terminal element on that side be a 0-node.
PY is called nontrivial if it has at least one branch, in which case it will have at least two
0-nodes as well. PP is called trivial if it contains exactly one term, a 0-node. A 0-loop is
defined as is a finite nontrivial 0-path except that its two terminal elements are required
to be the same 0-node. (More precisely, it is a circulant sequence; the 0-node chosen as
the terminal elements when writing down the sequence is immaterial to its definition.) As
with a 0-path, one of the two possible orderings of that circulant sequence may be chosen
to obtain an orientation of the 0-loop.

Two 0-nodes are said to be 0-connected if there is a 0-path (perforce finite) terminating
at those 0-nodes. Two branches are called 0-connected if a 0-node incident to one branch
and a 0-node incident to the other branch are 0-connected, and similarly for a branch and
a 0-node.’ If all the branches of G° are 0-connected, we say that G° itself is 0-connected.
A 0-section of a 0-graph is a subgraph induced by a maximal set of 0-connected branches.
Thus, a 0-section is identical to (what in conventional terminology is called) a component of
the 0-graph. Later on, when transfinite graphs are discussed, a 0-section will be in general
different from a component of the graph.

Our next objective is to define the “infinite extremities” of a 0-graph G% = {B,N°}
having at least one component containing a one-ended 0-path. Two one-ended 0-paths will
be called equivalent if they are identical except for finitely many branches and nodes. This
is truly an equivalence relationship, and it partitions the set of all one-ended 0-paths in G°

into equivalence classes, called 0-tips. Each one-ended 0-path is a representative of the 0-tip

*A single branch is 0-connected to itself through a trivial 0-path.



in which it resides. The 0-tips are taken to be the “infinite extremities” mentioned above,
and in a moment we shall use them to define a new kind of node that can connect infinite
components together at their infinite extremities.

Subgraphs of G° may also have 0-tips; those 0-tips are defined in exactly the same
way except that the one-ended 0-paths are required to be in the subgraph. We say that a
subgraph of G® traverses each of its O-tips and also each of the 0-tips of its branches. A
one-ended (resp. endless) O-path, considered as a subgraph, has exactly one 0-tip (resp.
two 0-tips).

Let 7° be the set of 0-tips of G°. Arbitrarily partition 77 into a set A of subsets n}
(k € K;), where K, is the index set for the subsets. Each n,lc is thus a set of 0-tips; it is
called a 1-node. We may think of n} as a shorting together of some (or all) of the 0-tips of
G% n} provides a new kind of connection® between the infinite extremities of G°. The rank

of n} is 1. All this results in a transfinite graph of the first rank, defined to be the triple:
gl = {BvNole} (3)

and called a 1-graph.
A one-ended or endless 0-path P is said to reach a 1-node n! if a O-tip of P? is a

member of nl.
4 p-Graphs and (p + 1)-Graphs

To continue our recursive construction of transfinite graphs, let us now assume that, for

some natural number x4 — 1 and for each rank ¥ =0,...,4 — 1, y-graphs:

G = {B,N°..., A"}, (4)
v-paths:
P" = {0, Pr n) 0PI, ) (5)

and +v-tips, have all been defined, where N7 is the set of y-nodes n]. The definition of

a 7-path includes the idea of a (y — 1)-path reaching a y-node and of two (y — 1)-paths

®In contrast to the constructions given in [3] and [4], the components of G° can only be connected together
at their 0-tips because all nodes are now pristine; see Section 1.2.
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being disjoint. All this was done in the preceding section for ¥ = 0, where branches b,
took the role of the paths P)~! in (5). (We view a branch as an endless path of rank -1,
and it reaches any 0-node containing one of its (—1)-tips. Branches are trivially disjoint.)
Moreover, the ideas of 0-path reaching a 1-node and of two 0-paths being disjoint were also
defined.

Let 74! denote the set of all (x — 1)-tips of G#~1. If 7#~! is nonvoid, we can continue
our recursive construction. Assuming this, we arbitrarily partition 74~! into a set A* of
subsets nf (k € K,) of 7#~1, where K,, is an index set for the partition. Each nf is called
an p-node, and p is its rank. If n} contains more than one (u — 1)-tip, we say that nj; shorts
them, and we think of nf as a joining together of some (or all) of the infinite extremities of
G#~1. In this case of two or more (g — 1)-tips in n}, we call n} a nonsingleton node. If nf
has exactly one (u — 1)-tip, n}, is called a singleton node, in which case we say that its sole
(u — 1)-tip is open.

All this yields a transfinite graph G* of rank gy or synonymously a u-graph, which is by
definition the (u + 2)-tuple:

G* = {B,N°,...,N*). (6)

For 1 > 0, B is perforce an infinite set. Moreover, for every 4 < py, there will be an infinity
of nonsingleton y-nodes. Indeed, there will be at least one (y + 1)-node, and therefore at
least one v-tip with a one-ended representative path P, which perforce will have an infinity
of nonsingleton y-nodes. It follows that A™ is infinite too, but there may be finitely many
singleton y-nodes — or none at all. On the other hand, A* may be either a finite or infinite
set.
If a (u ~ 1)-tip t*~! of a one-ended or endless (x — 1)-path P#~! is contained in the
1

u-node n*, we say that P*~1 reaches n# through t+~1.

(¥ + 2)-tuple

For each vy = 0,...,u4 — 1, the

g‘y = {B,NO"'-’M} (7)

is called the vy-graph of G¥.
Next, let B, be a nonvoid subset of B. For each v = 0,...,u, let ) be the set of all

v-nodes nY in N7 such that n” contains at least one (y — 1)-tip having a representative
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all of whose branches are in B,. (The branches of a representative can be identified in
principle by expanding every (v —2)-path in it into a sequence containing (v — 3)-paths and
then repeating this process through decreasing ranks for the paths until a set of branches
is achieved.) A2 will not be void, but, for ¥ > 1, N may be void. However, there will be
some maximum rank § (0 < § < p) for which all the N (0 < ¥ < §) are nonvoid. When
8 < p, then all the N (6 < v < p) will be void. This because, if V) is void, then there
are no y-paths and therefore no representatives of -tips that can be constructed out of the
branches of B, alone; hence, N)*! must be void too.

For each ¥ = 0,...,4, the (v + 2)-tuple
Gl = {B,,N7,...,AJ} (8)

is called the vy-subgraph of G* induced by B, (or by the branches of B,). By the subgraph of
G* induced by B, we mean the §-subgraph of G* induced by B,. Thus, G is the subgraph
of the y-graph of G* induced by B,. Here too, G} is not in general a graph because some
node of some N# (0 < 8 < v) may have a (8 ~ 1)-tip with no representative consisting
exclusively of branches of B,. Any member of B, UNP U...U N} is said to be in G7, and
any (-subgraph induced by a subset of B, is said to be in G or alternatively a subgraph of
gr.

The union (resp. intersection) of two subgraphs of G# is the subgraph induced by the
union (resp. intersection) of the branch sets of the two subgraphs.

Example 4.1. It can happen that the union of two subgraphs can have more nodes
than the nodes of the two subgraphs. In fact, the union can be of higher rank than the
ranks of both subgraphs. Consider the 1-graph G! of Fig. 2, wherein a one-ended 0-path
reaches a 1-node n'. Let G2 (resp. GP) be the subgraph induced by the branches ay (resp.
by), where k = 1,2,3,.... Each of these subgraphs, being of rank 0, does not contain any
1-node, but their union is G! and contains the 1-node nl. &

Two subgraphs of possibly different ranks (resp. a node and a subgraph) are said to meet
if they have a common node of any rank (resp. if the node is in the subgraph). Otherwise,
they are said to be disjoint. Note that two different nodes are perforce disjoint whatever be

their ranks (because all nodes are pristine). As before, subgraphs that meet need not have
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a common branch, and disjoint subgraphs will not have a common branch.

We identify any (u—1)-path with the subgraph induced by its branches. (Those branches
can be identified as was done above for representatives.) Thus, the idea of disjointness can
be applied to two or more (u — 1)-paths.

For subgraphs of ranks larger than 0, “meeting” and “being incident” can be different
ideas. However, “reaching” is synonymous with “being incident to.” Specifically, a 7-
subgraph G” is said to reach or to be incident to a A-node n* if there is a one-ended
(A = 1)-path (A — 1 < ) all of whose branches are in GY and whose (A — 1)-tip is in n*. If
A—1<7~,n"isin G?, in which case we say that G meets n*. However, if A — 1 = v, n*
will not be in G7, and we do not say that G7 meets n*. Two subgraphs reach (resp. meet)
each other if they reach (resp. meet) a common node. Thus, two subgraphs may reach each
other without meeting.

We are now ready to define a “u-path,” where p is a positive natural number. P* is

called a nontrivial p-path if it is an alternating sequence of the form
P o= (. .,nk, PET b PR ) (9)

where the indices m are restricted to the integers, the P~~! are (u — 1)-paths, and the n¥,
are p-nodes satisfying certain conditions. However, when the sequence (9) terminates on
a side (possibly both sides), the terminating element is a y-node where 0 < v < u. The

required conditions are these:

(a) There is at least one (u — 1)-path and at least one p-node.

(b) Every two elements in the sequence (9) are disjoint, except when there is a terminating
v-node n” of P* with ¥ < u, in which case n” is the terminating element of its adjacent

(1 — 1)-path in (9). (There may be two such terminating nodes.)
(c) If n* is adjacent to P#~! in (9), then P#~! reaches n*.

As a consequence of this definition and the fact that all nodes are pristine,” we have

that, when a (u — 1)-path P#~} in (9) is adjacent to two p-nodes in (9), P#~! is endless.

" As a result of our restriction to pristine nodes, this is a much simpler definition of a u-path than those
given in [3, page 144] or in [4, page 39]. ([4] uses a tighter definition than [3] so as to avoid an ambiguity in
the rank of a path.)
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However, when P#~! is adjacent in (9) to a terminating y-node n” with v < y, then P#~!
is one-ended and has n” as its terminating node. In this latter case, P#~! can be written

out in the form
Pl = (n7,Q7, Q7 a2 Q7R et QR (10)

where, for each k = 0,...,4 — 7 — 1, Q"** is a one-ended (7 + k)-path having n7** as
its terminating node (thus, nY** is a member of Q7**), and Q7+* reaches nY+*+! with its
(y + k)-tip. (Q*~! reaches the u-node adjacent to P*~! in (9).) In any case, a nontrivial
p-path has at least one p-node incident to a (u — 1)-path.

The nontrivial u-path P* is called two-ended or, synonymously, a finite u-path if (9)
terminates on both sides at different nodes; thus, a two-ended nontrivial u-path (u > 0) has
only finitely many p-nodes but infinitely many nodes of lower ranks. P* is called one-ended
if (9) terminates on exactly one side. P* is called endless if (9) extends infinitely on both
sides.

A trivial p-path is a singleton {n*}, where n# is a p-node.

A p-loop is defined exactly as is a two-ended nontrivial u-path except that the two
terminating elements in (9) are the same p-node. (Actually, (9) for a u-loop is a circulant
sequence, and which of its y-nodes is chosen as the terminating elements when writing (9)
is of no importance.)

We identify a nontrivial u-path or a p-loop with the u-subgraph of G# that its branches
induce. Here too, we can assign an orientation to a nontrivial p-path or a u-loop by choosing
one of the two orderings of (9) that maintain (9) as a u-path or p-loop.

The next step in our recursive construction of transfinite graphs is to define the “u-tips”
of a p-graph G*; these represent the infinite extremities of G¥. Two one-ended u-paths
will be called equivalent if their sequences of the form (9) are the same except for finitely
many of the y-nodes and (i — 1)-paths. This too is a proper equivalence relationship, and it
partitions the set of all one-ended u-paths in G# into equivalence classes, called u-tips. Each
one-ended p-path in a u-tip is a representative of that u-tip. G* may have no one-ended
path and therefore no p-tip, but, if it does have a u-tip, we can continue our recursive

construction on to (u + 1)-graphs. So, assuming the latter case, let 7% be the set of all
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p-tips for G#. Partition 7# into a set AV#*1 of subsets 4+ (k € K,41) of T#, where K,
denotes the set of indices for the partitioning. Each nZH is thus a set of u-tips and is called
a (g + 1)-node; its rankis p + 1.

The (i + 1)-graph G**! is the (u + 3)-tuple:

Grtl = (B, NO,... N#H1Y, (11)

We can now define the “y-graph of G#*1” (0 < v < ) and “branch-induced 4-subgraphs
of G#t1” (0 € v < p+ 1) exactly as was done for G*. Also, the “meeting,” “reaching,”

” «

“incidence,” “disjointness,” “union,” and “intersection” of subgraphs of G#*! are defined as
before. We also say that a y-subgraph (and therefore any y-path or y-loop) traverses each

of the §-tips (0 < § < v) having a representative in that vy-subgraph.
5 &-Graphs and w-Graphs

Since p is any natural number in the preceding section, our recursive construction of transfi-
nite graphs has hereby been accomplished for all natural-number ranks. We can now assume
that there is an entity consisting of an infinite set B of branches and in which nodes of all
natural-number ranks have been constructed by repeating the constructions in the preced-
ing section without ever stopping. Thus, for every natural number p, we have a nonvoid set

N*# of u-nodes. This entity is called an &-graph and is specified by the infinite set of sets:
G° = {B,N°,N1,..} (12)

In this case, every set A’ has infinitely many nonsingleton u-nodes and possibly finitely or
infinitely many singleton p-nodes.

For each natural number 7, the (y + 2)-tuple:
G = {B,N°... N}

is called the y-graph of G®. Also, for any nonvoid subset B, of B, the subgraph G, of G®
induced by B, (or by the branches of B,) is either the finite set

g.f = {BS’NB"",A/;&} (13)
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or the infinite set

G2 = {B, N2, N}, ..} (14)

where each N} is defined exactly as in the preceding section. The finite set (13) arises when
N? is nonvoid but there are no one-ended 6-paths in G, and the infinite set (14) occurs when
no such stopping of the recursive construction occurs. Similarly, for the natural number +,

we define the y-subgraph of G° induced by B, to be the set
G;' = {337/\/‘.?,--"/‘/:}

so long as N is nonvoid. This is the subgraph of the y-graph of G® induced by B,.

» o«

For these subgraphs, “meeting,” “reaching” or synonymously “incident to,” “disjoint-
grap g g )

” oW M« Y

ness,” “union,” “intersection,” and the “traversing of tips” are defined exactly as in the

preceding section.
However, an “G-path” is defined® rather differently than is a u-path, u being a natural

number here and below. A one-ended &-path P® is a one-way infinite, alternating sequence:
J 1 1 2 2
PO = {nk, P, nit, Pt np? ppt? ) (15)

where, foreach k = 0,1,2,... (kis restricted to the natural numbers), n;c”'k is a (u+k)-node

and P,f+k is a one-ended (p + k)-path such that

(a) PEY* has nf** as its terminating element (thus, nZH is a member of PA*F),

(b) other than the terminating condition (a), every two elements in (15) are disjoint (that

is, for each k, P +* contains n‘,:+k but is disjoint from all other elements of (15)), and
(c) P *+* reaches nﬂf“.

An endless &-path is the union of two one-ended J-paths that meet only at a common

initial node. Thus, it has the form

2 1 1 1 putl _p+2
P9 = {...,m4*% {"" ,m‘{+ ,Qf,‘,mﬁ:n{,‘,Pé‘,n‘l"" PP b ) (16)

®This definition too is much simpler than those given in [3, page 147] and [4, pages 40-41].
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where the leftward sequence of (g + k)-nodes m;:+k and (4 + k)-paths Q;c”'k (k=0,1,...)
fulfills the same conditions as does (15), and moreover every element to the left of m§ = ng is
disjoint from every element to the right of mg = n{ except that Qf and P share m{ = nj.

There is no such thing as a two-ended &-path or a trivial J-path or an J-loop. (Indeed,
terminating (15) on the right at a é-node would yield a §-path for some natural number é.)

As always, we identify an &-path with the subgraph induced by its branches, those
branches being identified through successive expansions of paths.

We now prepare for the definition of an w-graph, w being the first transfinite ordinal.
Assume that the G-graph G given by (12) has a nonvoid set of one-ended &-paths. Partition
that set into equivalence classes, where two such paths are taken to be equivalent if they
are identical except for finitely many terms in their sequences (15). Each equivalence class
is called an &-tip and represents an “infinite extremity” of G¥. Let 7% denote the set of all
J-tips for G¥. Next, partition 7% in any arbitrary fashion into subsets ny (k € K, where
K, is the index set for the partition.) Each n{ is called an w-node. Let N'“ denotes the set
of them. Then the graph G“ of rank w or synonymously the w-graph G“ is defined to be the
infinite set of sets:

GY = {B,NO,N',...,.N¥} (17)

where the ellipsis ... represents the same sequence of node sets as that in (12). Since we
are confining ourselves to pristine nodes, there is no such thing as an J-node [4, page 37],
and thus A% does not appear in (.17). “Singleton” and “nonsingleton” w-nodes are defined
as were their counterpart g-nodes in Section 2.2.

Again, for ¥ now being any natural number or &, we define the “y-graph of G“” in
the same way as was done for a u-graph in Section 2.2 and for an &-graph in this section;
that is, for ¢ a natural number, the p-graph of G¥ is {B,N7,...,N*#}, and the J-graph
of G¥is {B,N°,N1,..}. In addition, given a subset B, of B, we define the “y-subgraph
of G induced by B,” (v being either a natural number or & or w) in the same way as

before, with the “subgraph of G induced by B,” being the é-subgraph as before. Similarly,

” « ” &

“subgraphs of subgraphs,” “meeting,” “reaching” or “incident to,” “disjointness,” “union,”

“intersection,” and the “traversing of tips” are defined as in Section 2.2.
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A nontrivial w-path P“ is an alternating sequence of the form

PY = {-"vn:}n7P:1vn:Jn+l’Pr;'x+lv"'} (18)
where the indices ...,m,m + 1,... are restricted to the integers, the P,‘;’: are -paths, and

the n¥ are w-nodes satisfying the conditions given below. If the sequence (18) terminates
on either side, the terminating element is a y-node where now 7y denotes either a natural

number or w. Here are the required conditions:
(a) There is at least one &-path and at least one w-node.

(b) Every two elements in the sequence (18) are disjoint, except when the sequence termi-
nates on a side at a p-node n* where p is a natural number, in which case n* is the

terminating element of its adjacent &-path in (18).
(c) If n¥ and P? are adjacent in (18), then P“ reaches n“.

It follows that, when P? is adjacent to two w-nodes in (18), P? is endless. However,
when P? is adjacent to a terminating yu-node n* (u a natural number), then P? is one-ended
and has n* as its terminating node (in which case, n* is a member of P¥).

The adjectives “two-ended,” “one-ended,” and “endless” are applied to the nontrivial
w-path P“ in exactly the same way as they were for P¥ in Section 2.2. A trivial w-path is a
singleton {n“} containing an w-node n“. An w-loop is defined as is a nontrivial two-ended
w-path except that the two terminating elements in the sequence are the same w-node.
(That is, an w-loop is a circulant sequence with the choice of the terminating w-node when

writing (18) being immaterial.)
6 Transfinite Graphs of Higher Ranks

With w-paths in hand, we can continue our recursions on toward ranks higher than w.
Indeed, endless &-paths have taken the role that branches played in Section 2.1, and thus
&-tips correspond to 0-tips, w-nodes correspond to 0-nodes, and w-paths correspond to 0-

paths. Then, by repeating the constructions given in Section 2.1 with these replacements,
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we can define w-tips, (w + 1)-nodes, and finally (w + 1)-graphs. The latter have the form
gw+1 = {BaNO, .o ~7vaNw+l}’

where the ellipsis ... represents node sets of all positive natural-number ranks u. Then,
by repeating the recursive arguments of Section 2.2 with u replaced by w + u, we obtain

(w + p)-graphs for every natural number u:
Gutk = (BN, NY N N@tTH)

Then, the arguments of Section 2.3 with & replaced by w+& and w replaced by w+w = w-2

produce (w + &)-graphs
GUtd = (B,N°,... NV N Nt ),

where the last ellipsis denotes node sets of all ranks of the form w + x4 above w + 2, and

finally (w - 2)-graphs
GU? = {B,NO N L N N9 NP

At this point we have repeated a cycle of recursions twice, once from ranks 0 to w and
secondly from ranks w to w - 2. We can continue with more cycles of recursions to obtain
transfinite graphs of still higher ranks. It is tempting to speculate that this process can be
continued through all the countable-ordinal ranks. Indeed, we might suppose that transfinite
graphs have been constructed for all ranks up to some arbitrarily chosen, countable, limit-
ordinal rank v. Then, another cycle of recursions can produce graphs of the ranks v +
1,...,v+ &, v +w. But, can such a supposition be justified? Very large countable ordinals
have strange properties [2, pages 64-73], and what about the still larger countable ordinals
that have not been named and explored? Perhaps our cycle of recursions may collapse for
sufficiently large ranks. What we can say is that our cycles of recursions can be carried far
beyond w.

Henceforth, we will present detailed arguments for the ranks up to and including w.
Repetitions of those arguments will yield results for many higher ranks. From now on,
whenever we discuss a v-graph G¥ it will be understood that the rank v satsifies 0 < v < w

(possibly v = &).
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7 Nondisconnectable Tips and Connectedness

Let us repeat some definitions mentioned in Section 1.2. for the v-graph G* (0 < v < w).
Let p denote any rank such that 0 < p < v. Two nodes n] and n are said to be p-connected
if there is a two-ended a-path with @ < p that terminates at n] and n3. (If p = &, we
must have @ < & because there is no two-ended path of rank &. Moreover, because all
nodes are pristine, we must also have v < « and § < a.) Two branches are said to be
p-connected if they are incident to 0-nodes that are p-connected. Furthermore, a p-section
S? in a v-graph GY is a subgraph of the p-graph of G¥ that is induced by a maximal set of
p-connected branches and which contains at least one p-node if p # & and contains nodes of
all natural-number ranks if p = &.% Unlike subgraphs in general, a p-section S” is a graph
because every tip of every node in §” will have a representative all of whose branches are
in &?. This is a consequence of the fact that the branch set that defines S is a maximal
set of branches that are p-connected.

There can be a node that is incident to a p-section S” but is not in §. Such a node
must be of rank p + 1. Indeed, by the definition of incidence that node will have a tip with
a representative in 8. Since &7 is a p-graph, the rank of that tip cannot be less than p, for
otherwise the node, being pristine, would be of rank no greater than p and therefore would
be in §7; also, that tip’s rank cannot be greater than p because any path of rank greater
than p cannot be in S”. Hence, the tip’s rank is p, and therefore that node, being pristine,
is of rank p + 1.

We can classify the (p+ 1)-nodes incident to a p-section S” as follows. A bordering node
mP+1 of §” is a node of rank p + 1 that is incident to S”; in other words, m?*! contains a
p-tip traversed by S®. A boundary node n**! of 8” is a node of rank p+1 that is incident to
S? and also to another p-section; in other words, n?*! contains a p-tip traversed by S” and
another p-tip not traversed by S®. Thus, a boundary node is a special case of a bordering

node. All boundary nodes are nonsingletons, but a bordering node may be a singleton.!?

®This is a somewhat sharper definition of a p-section than that given in [4, page 49] because there a
p-section was merely required to be a subgraph of G* whereas now a p-section is required to be a subgraph
of the p-graph of G¥. In this regard see also www.ee.sunysb.edu/“zeman for the Errata for [4, page 49].

1%These definitions conform as special cases to those given in [4, pages 49 and 81].
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Let also note that, if G¥ is v-connected, we can simplify the definition of a p-section
87 by dropping the requirement about the ranks of nodes in §?. In particular, if G¥ is
v-connected, a p-section S is simply a subgraph of the p-graph of G“ that is induced by
a maximal set of p-connected branches. Indeed, for p # &, every branch will then be p-
connected to some p-node, and therefore a maximal set of p-connected branches will induce
a subgraph having at least one p-node. Similarly, for p = &, nodes of all ranks less than &
will automatically exist.

By a “component” we will mean something that is in general different from a section. Let
G be a graph; for example, G may be G” or §°. Let G, be a subgraph of G induced by some
subset B, of the branch set of G. A component of G, is a subgraph induced by a maximal
set of branches in B, that are connected through G, with any rank of connectedness. The
essential difference between a section and a component is the following: A section is defined
in G for some rank p, and different p-sections may be v-connected through G for v > p.
However, for different components of the subgraph G, there will not be any paths of any
ranks in G, connecting them.

Lemma 7.1. Let the v-graph G¥ be v-connected and such that, for each p < v, every
p-section has only finitely many incident nonsingleton (p + 1)-nodes. Then, for each such
p, there exist infinitely many (p — 1)-sections in each p-section.

Proof. For each p < v, each p-section §” has at least one incident (p + 1)-node
n?*1 by virtue of the v-connectedness of G¥. Therefore, S® contains a representative P?
of a p-tip in n**!. P’ is a one-ended p-path and therefore must pass through infinitely
many nonsingleton p-nodes. Since every (p — 1)-section has only finitely many incident
nonsingleton p-nodes, there must be infinitely many (p — 1)-sections in S*. &

Conventional connectedness is 0-connectedness. It is an equivalence relationship among
0-nodes and hence among branches as well. Indeed, if n2, n, and n? are 0-nodes with
n? and n) being 0-connected and with n) and nl being 0-connected, then n2 and n? are
also O-connected. In fact, if P? is a 0-path connecting n% and n? and if PQ is a 0-path
connecting nY and n?, then the union P U P§ will contain a 0-path connecting n% and

n%. Hence, 0-connectedness is a transitive binary relationship between 0-nodes and is also
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reflexive and symmetric obviously.

Transitivity does not extend to higher ranks of connectedness in general. In particular,
if the nodes n? and n{ are p-connected (p > 1) through a two-ended a-path P& (a < p)
and if the nodes nf and n$ are p-connected through a two-ended B-path Pf (B < p), there
need not be a two-ended #-path (4 < p) terminating at n) and né. As a result, p-sections
may overlap. (See Examples 3.1-5 and 3.1-6 in [4] for illustrations of this difficulty.)

Transitivity for p-connectedness can be assured by imposing a rather simple requirement
on the tips within G”. To state it, we need some more definitions. Two tips are said to
be disconnectable if one can find two representatives, one for each tip, that are disjoint.
Thus, any two elementary tips are trivially disconnectable since their representatives are
branches. As the negation of “disconnectable,” we say that two tips are nondisconnectable
if every representative of one of them meets every representative of the other tip infinitely
often. We can state this somewhat differently as follows. Two tips ¢] and t§ are called
nondisconnectable if Py and P{ meet at least once whenever P] is a representative of t]
and P is a representative of t5. Finally, by an isolated path P in the network G¥ we will
mean a path that does not meet G\ P except possibly at the terminal nodes of P; this too
can be stated differently by asserting that all the tips in all the nodes of P are traversed
by P except possibly for some tips in the terminal nodes of P. If P is endless, it can only
reach nodes of G¥\ P; if P is one-ended or two-ended, it may meet G\ P at one or both of
its terminal nodes.

We say that two tips in different nodes are connected through a path @ if those two nodes
are connected through Q. Let us now restrict all the tips in our graph G* as follows.

Condition 7.2. If the py-tip 15! and the py-tip t9* belong to different nonsingleton
nodes, then they are either disconnectable or are connected through an isolated two-ended
v-path where v = max{p; + 1,p2 + 1}.

The isolated path can arise as an extraction path (defined in Section 1.2) along which,
say, the node n§'*! containing t§* is extracted from the node n5**! containing t5?, assuming

p1 < p2. Thus, there may be many such isolated paths if the pristine graph at hand has
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been obtained by extracting nodes from nodes of higher ranks in a nonpristine graph.!!

There is another way of stating Condition 7.2.

Lemma 7.3. Condition 7.2 holds if and only if the following is true. If the py-tip t}'
and the py-tip t5* are nondisconnectable and not connected through an isolated two-ended
v-path, where v = max{p; + 1, p2 + 1}, then either they are shorted together (and therefore
of the same rank) or at least one of them is open.

Example 7.4. Fig. 3 illustrates two tips of different ranks that are nondisconnectable.
A one-ended 1-path is shown horizontally therein as a sequence of dots, dashes, and small
circles; it reaches a 2-node n? through a 1-tip t!. The arcs represent branches comprising a
one-ended 0-path that reaches a 1-node n! through a 0-tip t°. Those two tips are nondis-
connectable. For Condition 7.2 to be fulfilled, the following would be needed. Either t° or

2 is a singleton), or both t° and t! are open, or there is there is

¢! is open (so that n! or n
an isolated two-sided 2-path connecting n! and n? (thus connecting t° and ¢!). The case
where t® and t! are shorted together is not allowed because they are of different ranks; such
a shorting would yield a nonpristine node, namely, n? with n! as its embraced node.

There are of course infinitely many other 1-tips in the graph of Fig. 3 belonging to one-
ended 1-paths, each of which switches back and forth infinitely often between the horizontal
and arc parts of the graph; these 1-tips too are nondisconnectable from each other and from
t0 and ¢!. If in addition these other 1-tips are all open, Condition 7.2 is completely fulfilled.
Alternatively, if they are all shorted to ! and if t° is either open or connected to t! through
an isolated two-ended 2-path, then Condition 7.2 is again completely fulfilled. Still another
way to fulfill Condition 7.2 is to leave some of the 1-tips open, connect all pairs of the
nonopen 1-tips through shorts or isolated paths, and have t° either open or connected to
all the nonopen 1-tips through isolated paths. &

The proof of our main result regarding the transitivity of p-connectedness (given by
Theorem 7.6 below) requires another idea, namely, “path cuts.” Let P? be a p-path with
an orientation. Let &’ be the set of all branches and all nodes of all ranks in P?. The

orientation of P? totally orders X'. With z; and z, being two members of X', we say that

M At the end of this section we summarize the simpler case where the isolated paths of Condition 7.2 are
absent.
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z1 is before z9 and that x4 is after zy if in a tracing of P? in the direction of its orientation z,
is met before z, is met. A path cut {By, B3} for P? is a partitioning of the set of branches of
P? into two nonvoid subsets B; and B; such that every branch of B, is before every branch
of B;. Another way of stating this is as follows. The partition {B;, B;} of the branch set of
P? comprises a path cut for P? if and only if, for each branch b € By, every branch of P*
before b is also a member of B;.

Lemma 7.8. For each path cut {By, B2} for PP there is a unique node n™ (y < p) such
that every branch by € B is before n and every branch by € By is after n”,

Note. We shall say that the path cut occurs at n”. It follows that all the nodes of P?
other than n” are also partitioned into two sets, the nodes of one set being before n¥ and
the nodes of the other set being after n”.

Proof. This is obvious if the rank p of P? is 0. For higher ranks we argue inductively.
If p is a positive natural number u, we assume this lemma is true for every rank v < u.
Let P* be oriented in the direction of increasing indices m in the expression (9) for P*.
If the path cut occurs within a (u — 1)-path P£~! of P*, then the branches of P£~! are
appropriately partitioned at some y-node n” of P%~! where vy < g — 1, and this in turn
partitions all the (u — 1)-paths and thereby all the branches in P* according to {8, B2}.
The only other possibility is that the branch set of P# is partitioned by {B;,B;} at some
u-node of P*,

For p = &, our inductive argument applied to (15) or (16) yields a unique v-node of
natural-number rank 74 at which the path cut occurs. The argument also works for an
w-path (18), but now the rank v of the node at which the path cut occurs can be either a
natural number or w. &

Theorem 7.8. LetG¥ (0 < v < w) be a v-graph for which Condition 7.2 is satisfied. Let
Na, Ny, and n. be disjoint nonsingleton nodes (possibly of differing ranks) in G¥ such that n,
and ny are p-connected and ny and n. are p-connected. Then, n, and ny are p-connected.

Proof. Let P, (a < p) be a two-ended a-path that terminates at n, and ny and is
oriented from n, to n,, and let Pf: (B < p) be a two-ended (-path that terminates at n,

and n. and is oriented from n, to n.. Let PZ be PJ but with the reverse orientation. Pg,
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cannot have infinitely many a-nodes because it is two-ended.

Let {n;}ier be the set of nodes at which P2 and Pﬁ meet, and let A be that set of
nodes with the order induced by the orientation of PZ,. If Mj has a last node n;, then a
tracing along Pg} from n, to n, followed by a tracing along P,fi from n, to n. yields a path
of rank no larger than p that connects n, and n.. Thus, n, and n, are p-connected in this
case. This will certainly be so when {n;};es is a finite set.

So, assume N is an infinite ordered set (ordered as stated) without a last node. Let @,
be the path induced by those branches of P2 that lie between nodes of N; (i.e., as P2 is
traced from np onward, such a branch is traced after some node of A; and before another
node of 7). Let B; be the set of those branches. Since P extends beyond the nodes of
M, we also have a nonvoid set B consisting of those branches in Py that are not in B.

{B1, B} is a path cut for P%. Therefore, by Lemma 7.5, there is a unique (p1 + 1)-node

r1+1 p1+1
L n

, where p; +1 < a < p, at which that path cut occurs. Thus, Q; terminates at n
Let t;* be the p;-tip through which Q; reaches nf;‘“ (thus, nﬁ‘“ contains t{'). Every
representative of ¢{' contains infinitely many nodes of M.

Similarly, let N2 be {n;}ie; with the order induced by the orientation of P,fi. If N,
has a last node n,, we can in much the same way as before conclude that n, and n, are
p-connected (this time trace from n. to n, to n,). So, assume that N also does not have
a last node. Let Q)2 be the path induced by those branches of Pfc that lie between nodes
of N,. Since Pfc extends beyond the nodes of A, we have by the same argument as for
Q1 that @, terminates at some (p; + 1)-node n?2*!, where p; + 1 < 3 < p. Let 52 be the
pa-tip through which @ reaches n#2*1 (thus, n#2%! contains t5?). Every representative of
t5? contains infinitely many nodes of N;.

Thus, the tips ¢{* and t5? are nondisconnectable. Moreover, neither of them can be open
(i.e., be in a singleton node); indeed, those tips are traversed by PZ and P,f: respectively,
and the nodes of those paths are all nonsingletons. Furthermore, those tips are not shorted,
for, if they were, there would be a last node for M, and also for A3, a case we have already
treated and then assumed away. So, by Condition 7.2, there is an isolated two-ended path

rn+1

P} connecting the nonsingleton node n4'"" that contains t{' and the nonsingleton node
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nf2+1 that contains t5?, where the rank 7 satisfies ¥ = max{p; + 1,p2 + 1} < p. Thus, the
two-ended path obtained by tracing the part of PJ from n, to n§‘+l, then tracing P}, and
finally tracing the part of Pﬁ from n?2*! to n, is of rank no larger than p and connects n,
and n..

All possible cases have been treated. &

The last proof has established the following result.

Corollary 7.7. Let G¥, ny, ny, and n. be as in Theorem 7.6. Let PS5} be a two-ended
a-path connecting n, and ny, and let Pbi be a two-ended (3-path connecting ny and n.. Then,
there is a two-ended y-path P7 (v < max{a,B}) connecting n, and n. that lies in Py U Pﬁ
ezxcept possibly for one isolated subpath of P7.

Theorem 7.6 asserts that p-connectedness is transitive and therefore an equivalence
relationship between branches since p-connectedness is obviously reflexive and symmetric.
Thus, the branch set of G” is partitioned by p-connectedness. It follows from the definition
of a p-section that the branch sets of the p-sections in G¥ comprise a partition of the branch
set of G¥. This is what we will mean when we say that the p-sections of G¥ partition G".
A similar terminology refers to the partitioning of the branch set of a p-section §” by the
branch sets of the A-sections (A < p) in §”. In short, we have the following.

Corollary 7.8. Again let G be as in Theorem 7.6. Then, the p-sections of G¥ partition
GY, and similarly, if A < p, every p-section S? is partitioned by the A-sections within S°.

Here too, our discussion of connectedness in the context of pristine nodes is much simpler
than that given in [4, Sections 3.2 to 3.5] for the general case.

Finally, let us take note of still another simplification, this one arising from a strength-
ening of Condition 7.2 as follows.

Condition 7.9. If two tips belong to different nonsingleton nodes, they are discon-
nectable.

Lemma 7.3 is now replaced by

Lemma 7.10. Condition 7.9 holds if and only if the following is true. If two tips are
nondisconnectable, then either they are shorted together or at least one of them is open.

Of course, Theorem 7.6 and Corollaries 7.7 and 7.8 continue to hold when Condition 7.2
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is replaced by the stronger Condition 7.9. In fact, the proof of Theorem 7.6 can be reworked
(by asserting that the tips t{* and t5? are shorted) to strengthen the conclusion of Corollary
7.7 by deleting the phrase “except possibly for an isolated path.” For easy reference, let us
restate this result as

Corollary 7.11. Under Condition 7.9, let PJ, be a two-ended a-path connecting nodes
n, and ny, and let Pbﬁc be a two-ended B-path connecting nodes ny and n.. Then, there is a

two-ended y-path (v < max{a, 3}) connecting n, and n. that lies in P35 U P(fi.

8 Transfinite Versions of Konig’s Lemma

Another result related to connectedness concerns extensions of Kénig’s lemma [1, page 81]
to transfinite graphs. That lemma can be stated as follows.

Lemma 8.1 (Konig’s Lemma). If a 0-graph is 0-connected, has infinitely many 0-
nodes, and is locally finite (i.e., each 0-node has only finitely many incident branches), then,
given any 0-node, there is at least one one-ended 0-path starting from that 0-node.

We will now derive transfinite versions of this result. For this purpose, the open tips
— and thus the singleton nodes — can be ignored because no one-ended path can pass
through such a tip or node. Henceforth in this section, the only nodes we shall be referring
to are the nonsingleton ones, except occasionally in some passing remarks. This will yield
extensions of Konig’s lemma, which in one way are more general than those obtained in [4,
Section 4.2) because that prior development assumed that all nondisconnectable tips (not
just the nonopen ones) were shorted together. On the other hand, our present development
in the context of pristine nodes only will be more restricted in this other way, but this will
lead to some simplifications of the prior development.

Two p-nodes will be called p-adjacent if they are incident to the same (p — 1)-section.

Conditions 8.2. Let GV be a v-graph with 0 < v < w and with the following conditions
satisfied.

(a) G is v-connected.

(b) G¥ has infinitely many nonsingleton v-nodes.
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(¢) For each rank p = 0,...,v, every nonsingleton p-node is p-adjacent to only finitely

many nonsingleton p-nodes.!?

Condition 8.2(c) implies that every (p — 1)-section has only finitely many incident nons-
ingleton p-nodes. Moreover, it represents one way of extending the idea of local finiteness to
v-graphs. Indeed, since (—1)-sections are branches, Condition 8.2(c) implies local finiteness
for 0-nodes if end branches (i.e., branches incident to 0-nodes of degree 1) are ignored. In
the next section, we shall extend local-finiteness to v-graphs in another way (Condition 9.1),
which will disallow the possibility of infinitely many end branches incident to a 0-node.

Lemma 8.3. Under Condition 8.2(c), if two tips are nondisconnectable, they are of the
same rank.

Proof. Suppose the tips t¥ and ¢* are nondisconnectable and v < p. Consider two
representatives PY and P* of t” and t* respectively. Then, PY and P? meet at infinitely
many nodes of ranks no larger than +; let M be that set of nodes. Moreover, there will be
an infinite set A’ of p-nodes in P? such that between every two nodes of A’ there will be a
node of M. (Fig. 3 illustrates a particular case where p = 1, where the 1-nodes other than

1 comprise N1 and the 0-nodes of the 0-path of arcs comprise M.) Because of P7, the

n
nodes of M lie within a single (p — 1)-section $~1, and the nodes of A'? are all incident to
&§°~1, This contradicts Condition 8.2(c). &

Lemma 8.4. Assume Conditions 7.2 and 8.2(c) both hold. Let n} and nj be two p-
adjacent nonsingleton p-nodes (1 < p < w), both incident to the (p — 1)-section S*~! and
not connected by an isolated p-path. Then, there is an endless (p — 1)-path P?~! in $P~1
that reaches n% and nf. In addition, if n§ (¢ < p) is a (-node in SP~1, then there is a
one-ended (p — 1)-path in §*~! that starts at ng and reaches nf.

Proof. Fig. 4 illustrates some of our arguments. Consider the first case concerning nf}
and nf. Both n{ and nf contain (p — 1)-tips t’{"l and tg'l respectively with representatives
that lie in $P~1. Since n{ and n) are nonsingletons and different nodes, Condition 7.2 asserts

that tf'l and t’2’_1 are disconnectable. Therefore, we can choose the representative paths

P{™' and P{7! for t57" and 57" respectively such that they do not meet. Assume Py

12Remember that there are no pristine J-nodes.
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terminates at n, and P2" ~! terminates at n., with n, and n. being different nonsingleton
nodes in $?~!. Then, there is a two-ended S-path P,f: (B < p—1)in 8§71 that terminates at
ny and n.. Moreover, there will be a nonsingleton node n, in P{"1 such that the one-ended
path P27V in P?™! between nf and n, does not meet P. (Were this not so, the two-ended
B-path P,i would traverse a tip that is nondisconnectable from a (p — 1)-tip of n{; therefore,
by Lemma 8.3, the rank of the two-ended path Pbi would be no less than p, a contradiction.)
Let P;\b (A £ p—1) be the two-ended path in P{"1 from n, to ny,. We have that n, is
(p — 1)-connected to n, which in turn is (p — 1)-connected to n.. So, by Corollary 7.7, there
is a two-ended é-path P2, (6§ < p — 1) lying in P} U Pf: except possibly for one isolated
subpath of PS, and such that PJ, connects n, and n,. P, lies in $*~1. P, does not meet
P! except terminally. Similarly, there is a nonsingleton node ng in P{™' such that the
one-ended path PZ;' in P{~' between nf and ny does not meet PS,. Let PS, (£ < p— 1)
be the two-ended path in P from n. to ng. Again by Corollary 7.7, there is a 6-path Pfd
(6 < p—1)lying in P5. U Pfd except possibly for one isolated subpath of P, and such that
Pfd connects n, and ny. P,fd lies in S7°1. Pfd does not meet Py, ! except terminally. Then,
PLTY U P8 U P! contains the endless (p — 1)-path we seek. (That endless path is the
subgraph of the (p — 1)-graph of G* induced by the branches of P/, U P2, U PI)

A simple modification of this argument establishes the second conclusion. &

Note that in Lemma 8.4 we could allow n{ and nj to be singleton p-nodes so long as
their (p — 1)-tips are disconnectable. For a similar reason, we did not require that ng be a
nonsingleton.

Theorem 8.5. Let G¥ be a v-graph with 1 < v < w, v # &. Assume G satisfies
Conditions 8.2. Then, given any nonsingleton v-node ny, there is at least one one-ended
v-path starting at ng.

Proof. Corresponding to G¥ we set up a “surrogate” 0-graph G° by setting up one and
only one 0-node m? in G° for each nonsingleton v-node n% in G“ and inserting branches
as follows: Insert a branch between two 0-nodes m? and m{ of G° when and only when
the corresponding nonsingleton v-nodes n}, and nj in G are v-adjacent. (We will identify

corresponding nodes n¥ and m? by using the same subscripts.) By Conditions 8.2, G% is a
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0-connected, locally finite 0-graph with infinitely many 0-nodes. Therefore, we can invoke
Konig’s lemma (Lemma 8.1) to conclude that there is a one-ended 0-path P° in G° starting
at the 0-node mJ corresponding to n. Orient P° from m$ onward.

Let M be the singleton set {m3}. Also, let M? be the finite set of all 0-nodes in G°
that are 0-adjacent to m3. Let m? be the last node in M9 that P° meets. No node of P°
beyond m] will be in MJ U MY, Let M3 be the finite set of all 0-nodes in G° that are
0-adjacent to m9. Let mJ be the last node in MY that P® meets. No node of P° beyond
md will be in M3 U M?U MJ. We can continue recursively this way to get an infinite

alternating sequence

0.0 A40 .0 440 . 0
{ Mg, mg, M7, m, M3, m3, ...}

where, for each k > 1, M is the finite set of 0-nodes in G“ that are 0-adjacent to m%_,
and where mJ is the last node in MY that P® meets. Again, no node of P® beyond mJ will
be in (U5, M?.

Now let {n§,n{,n¥,...} be the sequence of nonsingleton v-nodes in G* corresponding
bijectively to the sequence {m3,m{, m3J,...} of 0-nodes in G° as stated above. As a result
of how the m{ were chosen and how 0-adjacency in G° corresponds to v-adjacency in G,
we have that each n} (k > 1) is v-adjacent to n}_, but not v-adjacent to any n! for
0 <1< k—1. Thus, for each k > 1, there is a (v — 1)-section S;"'l to which n}_; and n}
are both incident and to which no other n¥ (¢ # k — 1,7 # k) is incident. By Condition
7.2 and Lemma 8.4, there is an endless (v — 1)-path Pk'1 that reaches n',;'l and ny and
either is isolated or lies in S,:"l. In either case, Pk"1 is disjoint from all other E”'l, the
latter paths being determined similarly for i < k. Since there are infinitely many ny, we
can conclude that the branches of all the P -1 (k=1,2,3,...) induce a one-ended v-path,
as asserted. &

Corollary 8.8. Under the hypothesis of Theorem 8.5, given any nonsingleton node of
any rank in GY, there is at least one one-ended v-path starting at that node.

Proof. If { < v and if n¢ is a (-node, we can choose a one-ended path P; in the (v —1)-
section $¥~! containing n¢ such that Py starts at n¢ and reaches a boundary v-node n” of

8Y~! (Lemma 8.4 again, second conclusion). Let P} be a one-ended v-path starting at n¥;
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the existence of PY is assured by Theorem 8.5. Since $¥~! has only finitely many boundary
v-nodes (a consequence of Condition 8.2(c)), Py will eventually be disjoint from S¥~!. It
therefore follows from Corollary 7.7 that there is a one-ended v-path PY that starts at n¢
and lies in Py U Py except possibly for one isolated subpath of P¥. &

Here too, a minor modification of this proof allows the starting node n¢ to be a singleton.

Let us now consider the case where v = &.

Theorem 8.7. Assume that the G-graph G satisfies Conditions 7.2 and 8.2 withv = 3.
Given any pu-node n* (u < J), there is at least one G-path in G° starting at n*.

Note. Here too, n* need not be a nonsingleton.

Proof. Fig. 5 illustrates some of the ideas in this proof. The rank of every node in G
is a natural number. Moreover, there is no natural number that uniformly bounds all the
ranks of all the nodes of G¥. We can choose a p-section S* such that n# is a node of S*.
Proceeding recursively, for every positive natural number £ = 1,2,3,..., we can choose a
(4 + k)-section S#** such that the boundary (i + k)-nodes of S¥**~! are nodes of S#**.
SHtE-1 45 a (u + k — 1)-section of S#**,

Now, consider G¥\S*, the subgraph of G” induced by all the branches that are not in
S#. This will consist of no more than finitely many components because $* has only finitely
many boundary (u + 1)-nodes by virtue of Condition 8.2(c). At least one component C; of
G%\S* will be an &-graph. C; will also contain at least one boundary (u + 1)-node ni‘“ of
S#. Let PY be a one-ended p-path in $* starting at n# and reaching n%*! (see the second
conclusion of Lemma 8.4); P’ will not reach any other (1 + 1)-node.

Next, consider G¥\S#*!. This too will have only finitely many components. At least
one of them C; will be an G-subgraph of C; and will have a boundary (i + 2)-node ns*? of
S#*1. Moreover, C; N S#*+! will be a (i + 1)-section of G¥\S* along with some boundary
(1 + 2)-nodes of S#*! including n4*?. Therefore, we can choose in C; N S#+! a one-ended
(1 + 1)-path PP*! starting at n“*!, reaching n4*?, but not reaching any other (4 + 2)-node
(Lemma 8.4). In fact, P#*! will lie in S#¥+1\S¥. Thus, P{ reaches n¥*, P#*1 meets n4*?,
and P! and P*! are disjoint.

This process can be continued recursively for all k. Replace 1 by k£ and 2 by k+ 1 in the
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preceding paragraph, and consider G¥\S#+¥. This yields a component Cy,q of GZ\S#+*,
which is a dJ-subgraph of C and has a boundary (1 +k+1)-node n‘,:ﬂ”'l of §¥**. Moreover,
CrNS#* will be a (u+k)-section of G¥\S#+¥-1 along with some boundary (p+k+1)-nodes
of §*** including nﬂf *1. Furthermore, Ct NS#+* will contain nf**. Therefore, by Lemma,
8.4 again, there will be a one-ended (i + k)-path P,ﬁ”’k in Cx N §#1* starting at n£+k and
reaching n;c‘_tf“. In fact, PXTF will lie in SHHF\Sutk-1,

With k increasing indefinitely, we will generate in this way a one-ended path
1 1
{n#, PY nt* PR )

that sequentially meets infinitely many nodes whose natural-number ranks increase beyond
every natural number. It will in fact be an J-path in G¥ starting at n¥. &
Finally, let us note that all the results of this section can be applied to any section in

place of G¥ or G because a section is a graph by itself.

9 Countable Graphs

A v-graph will be called countable if its branch set B is countable. Countability of G” follows
from Condition 7.2 along with another extension of local finiteness to v-graphs defined by
Condition 9.1 below. Two p-sections S7 and S5 will be called (p + 1)-adjacent if they share
a common boundary node n?*! (i.e., if the (p + 1)-node n**! contains a p-tip of Sf and a
p-tip of S5). Furthermore, the (p+1)-adjacency of a p-section is the set of all other p-section
that are (p 4+ 1)-adjacent to S°. When p = —1, §? is a branch b, and its (p + 1)-adjacency
is the set of all other branches that are incident to a 0-node incident to b.

Condition 9.1. For each rank p = —1,0,...,v, every p-section has a finite (p + 1)-
adjacency.’3

Condition 8.2(c) does not imply Condition 9.1. Indeed, a p-section S° with a boundary
node n**! can have infinitely many (p + 1)-adjacent p-sections each having only n**! as its
one and only bordering node. (See Section 2.5 for the definitions of boundary and bordering

nodes.) This can satisfy Condition 8.2(c) but not Condition 9.1. Conversely, Condition 9.1

13When p = —1, this says that every 0-node is of finite degree.
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does not imply Condition 8.2(c) because two (p + 1)-adjacent p-sections can each have
infinitely many bordering (p + 1)-nodes, thereby satisfying Condition 9.1 but not Condition
8.2(c).

Theorem 9.2. Let the v-graph G* (0 < v < w) satisfy Conditions 7.2 and 9.1. Then,
GY is countable.

Proof. Consider any 0-section S° and choose any branch bg in it. Set Ho = {bo}. Let
H; be the set of all branches in S° that are 0-adjacent to by. H; is a finite set by Condition
9.1. Proceeding inductively, let us assume that Hg, H;,..., Hg~1 have been chosen as finite
sets of branches in S°. Let M, be the set of branches in S° that are 0-adjacent to branches
of Hi_1 and are not in U{‘__:ol H;. By Condition 9.1 again, H; is a finite set too. Moreover,
every branch in S° will lie in some H; because it is 0-connected to b through a two-ended
0-path. Consequently, S° is countable.

Next, let us assume that, for some natural number y, every (u — 1)-section is countable.
Consider any p-section S¥. It is partitioned by a set of (u — 1)-sections according to
Corollary 7.8. Observe that, by Condition 9.1, for each (u — 1)-section S#*~1 in S¥, there
are at most finitely many (u — 1)-sections in S* that are p-adjacent to S¥~1. Now, let Ho
be any (u — 1)-section in S*. Let H; be the union of all (u — 1)-sections in S* that are
p-adjacent to Hg. Recursively, having chosen My, My, ..., Hi—1, we let H; be the union of
all the (u — 1)-sections in S# that are p-adjacent to (u — 1)-sections in Hi—; but are not
in U::ol H;. Since all branches of S# are pairwise p-connected by two-ended u-paths in §¥,
Ui Hi will be §#. (When u = v, the H; may be void for all sufficiently large k.) By our
above observation, there are only finitely many (u — 1)-sections in each Hy. Hence, there
are only countably many (u — 1)-sections in each S*, and each (u — 1)-section is countable
by our inductive assumption. Consequently, S* is countable too. Now, if G* is a u-graph
(i.e., v = u), G is a p-section by itself and therefore is countable.

Consider next an (&)-section S°. Any two branches in S are connected by a two-ended

p-path in S, where p is some natural number. Consequently, upon choosing any 0-section
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8% in S¥ and letting S* be the unique y-section in which S° lies (Corollary 7.8), we obtain

s7 = s

0<p<d
Since each S* is countable, so to is $“. So, if v = &, G¥ is again countable.

Finally, G can have only countably many &-sections because of Corollary 7.8 and

Condition 9.1. Thus, when v = w, we again have that G” is countable. &
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Figure Captions

Fig. 1. (a) A 2-graph containing a nonpristine 2-node n?. The heavy dots denote 0-nodes,

the smaller circles denote 1-nodes, and the larger circle denotes a 2-node.

(b) The pristine 2-graph obtained by extracting the 0-node n° from the 2-node n?.
The one-ended 1-path between n° and 72 is the extraction path along which n°

is extracted from the nonpristine node n?.
Fig. 2. The 1-graph G! of Example 4.1.

Fig. 3. Mlustration for Example 7.4. The dots represent 0-nodes, the small circles represent

1-nodes, and the large circle represents a 2-node.
Fig. 4. Dlustration for the proof of Lemma 8.4.

Fig. 5. Nlustration for the proof of Theorem 8.7.
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