
STONY BROOK UNIVERSITY

CEAS Technical Report CEAS-832

Simple Performance Bounds for Multicore and
Parallel Channel Systems

Carlos Fernando Gamboa and Thomas G. Robertazzi

July 19, 2010

1

Abstract

A simple modification of existing divisible load scheduling algo-
rithms, boosting link speed by M for M parallel channels per link,
allows time optimal load scheduling and performance prediction for
parallel channel systems. The situation for multicore models is more
complex but can be handled by a substitution involving equivalent pro-
cessor speed. These modifications yield upper bounds on such parallel
systems’ performance. This concept is illustrated for ideal single level
(star) tree networks under a variety of scheduling policies. Less than
ideal parallelism can also be modeled though mechanisms of inefficiency
require further research.

1 Introduction

Recent technological trends have included the use of multiple cores on pro-
cessor chips [1,33] and also the use of parallel communication channels [2]
between two computing nodes. There is a large body of literature (more than
one hundred journal papers from 1988 to the present) on the mathematics of
scheduling networked computing, called divisible load theory (DLT). With
a slight modification of existing mathematical DLT models, they can be
applied to analyze these two technologies.

The modification for the case of parallel channels is to replace the inverse
communication speed parameter of a single link, z, by z/M. where M is the
number of channels per link. The case of modeling multicore systems is more
complex and the inverse computing speed of a (virtual) processor can not
be replaced by w/G where G is the number of cores per virtual processor, in
general. However replacing inverse processing speed variables by equiavlent
processing speeds allows the performance of ideal multicore systems to be
calculated.

These modifications allow divisible load theory to provide performance
bounds for the ideal situation: a processor node has G cores and a link has M
channels per link. Elaborating on this point is the purpose of this paper. We
note that future research can model multicore and parallel channels where
less than an ideal speedup is achieved, leading to predications of less than
ideal performance.

1.1 Divisible Load Theory Models

There has been a steady amount of research in divisible load theory since the
original work of Cheng and Robertazzi [6] and Agrawal and Jagadish [31] in

2

1988. Most of these studies develop an efficient load distribution strategy
and protocol in order to achieve optimal processing time in networks/grids
with a single root processor. The optimal solution is obtained by forcing
the processors over a network to all stop processing at the same time in-
stant. Intuitively, a proof by contradiction holds that this is done because
the solution could be improved by transferring load if some processors were
idle while other are still busy [7]. Studies for network topologies including
linear daisy chains, tree and bus networks using a set of recursive equa-
tions were presented in [6,8,9] respectively. There has been further work in
terms of load distribution policies for hypercubes [10] and mesh networks
[11]. The concept of equivalent networks [12] was developed for complex
networks such as multilevel tree networks. Research has also considered
scheduling policy with multi-installment [13], multi-round algorithms [14],
independent task scheduling [15], fixed communication charges [16], detailed
parameterizations and solution reporting time optimization [17] and com-
binatorial optimization [18]. Though divisible load theory is fundamentally
a deterministic theory, it has been shown that there is some mathematical
equivalence to Markov chain models [19].

There is a smaller amount of literature on divisible load modeling with
multiple sources. A 2002 paper on multi-source load distribution attempts to
integrate Markovian queueing theory and divisible load scheduling theory
[20]. In 2003 the authors in [21] studied two source grid scheduling with
memory capacity constraints. Also studied is two source grid scheduling in
a 2009 journal paper [30]. Researchers in 2005 investigated [22] the use of
linear programming to maximize throughput for large grids with multiple
loads/sources. In 2005, other researchers [23] created a numerical solution
for a linear daisy chain network with load originating at the ends of the
chain. Mathematical programming solutions and flow structure in multi-
source problems was studied in 2006 [24]. Recently some workers used a
partitioning scheme mentioned in [24] to develop interesting multisource
partitioning and load distribution algorithms in [29].

Surveys of divisible load theory appear in [3,4,5,27,28,32].

1.2 This Paper

In section II a review of the basic single level tree model analysis for the the
three scheduling strategies to be used in this paper is presented. Section III
discusses notation for parallel link systems speedup expressions and section
IV contains the actual expressions. Section V presents results for single
level trees under two scheduling strategies for multicore systems. Section VI

3

discusses performance results. The conclusion and an open question appears
in section VII.

2 The model

2.1 Notation and overview

Due to its realistic and tractable nature, DLT models and analysis are a
suitable tool to be able to model interactions among different cores located
on a chip. In this section are presented different DLT scheduled policies
that will be used in this study originally presented in [32]. Contrary to the
methodology used initially in [32] to obtain optimal distribution of loads on
a per processor basis, a different approach to handle the mathematical rela-
tionships among processors is proposed. The focus is to obtain the speedup
expression for a network topology.

A single level tree network topology is shown in Fig. 1

Figure 1: Single level tree network

This network topology considers only one channel of communication per
root processor to children processor pair.

The variables or parameters used on this model are:

αi: The load share fraction assigned to the ith link-processor pair.

wi: The inverse of the computing speed of the ith processor.

zi: The inverse of the link speed of the ith link.

4

Tcp: Computing intensity constant: the entire load is processed in
wiTcp seconds by the ith processor.

Tcm: Communication intensity constant: the entire load can be trans-
mitted in ziTcm seconds over the ith link.

Ti: Is the total time measured from the beginning of the scheduling
process up to the end of the computation of the data by the ith pro-
cessor.

Tf : Is the time when the last processor finishes reporting. Tf=max(T1,T2,...,TN)
Three different scheduling protocols will be reviewed for this network

topology. The mathematical representation obtained for this fundamental
model will allow us to extrapolate it to two different network topologies that
are envisioned that could be used for the design of M channels per link and
G cores per virtual processor systems.

2.2 Sequential distribution, staggered start

As presented in different studies, in this paper Gantt chart-like timing di-
agrams for modeling the load distribution in the network are used. The
horizontal axis represents time, communication time is presented above the
axis and computation time is presented below the axis.

In order to find the optimal load distribution on each processor all pro-
cessors need to finish at the same time [3,7].

Tf (P0) = Tf (P1) (1)

Tf (P2) = Tf (P3) (2)

Tf (PN−1) = Tf (PN) (3)

The equations below state that the communication and processing time
on a processor is equal to the processing time of the next processor.

α0w0Tcp = α1z1Tcm + α1w1Tcp

α1w1Tcp = α2z2Tcm + α2w2Tcp

αiwiTcp = αi+1zi+1Tcm + αi+1wi+1Tcp

αN−1wN−1Tcp = αNzNTcm + αNwNTcp

5

Figure 2: Timing diagram of single level tree with sequential distribution
and staggered start

The normalization equation for N+1 processor is :

α0 + α1 + α2 + α3 + · + αi + · + αN−1 + αN = 1 (4)

Expressing this equation in terms Si

α0 = α1S0 (5)

α1 = α2S1 (6)

αi = αi+1Si (7)

αN−1 = αNSN−1 (8)

6

where

Si =
(zi+1Tcm + wi+1Tcp)

wiTcp
(9)

After solving the previous equation system for α0 with the normalization
equation the following expression is obtained:

α0 =
1

1 +
N−1∑
i=0

i∏
j=0

1
Sj

(10)

This study will be focus on the speedup metric which is defined as the
ratio of computation time on one processor to the computation time on
the entire N children network. Specifically the speedup will be studied for
a homogeneous single level tree networks. So it is intended to measure the
parallel processing advantage using the speedup relationship of conventional
DLT theory as:

Speedup =
Tf0
TfN

(11)

Where Tf0 represents the time processing the entire load on one processor
so that α0 equals to 1. Thus,

Tf0 = α0w0Tcp (12)

Tf0 = 1 · w0Tcp (13)

and

TfN =
1

1 +
N−1∑
i=0

i∏
j=0

1
Sj

w0Tcp (14)

Here TfN represents the finish time in an N children network as in the
single level tree network presented in Fig. 1.

As mentioned before, for the speedup for a homogeneous single level tree
network, in that particular case every Si = S for i from 1=N so link speeds
are equal on the network and the processor speed as well. Thus equation
(14) can be rewritten as:

TfN =
1

1 + 1
S0

(1 +
N−1∑
i=1

1
Si)

w0Tcp (15)

7

And the corresponding speedup will be:

Speedup = 1 +
1

S0
(1 +

N−1∑
i=1

1

Si
) (16)

2.3 Simultaneous distribution, staggered start

Figure 3: Timing diagram of single level tree with simultaneous distribution
and staggered start

Different than the previous protocol, the processors now simultaneously
receive the data and only start to process it as soon as each processor receives
it entire load assignment Fig. 3.

Again, for a time optimal load allocation it is assumed that all of the
processors stop computing at the same time. The equations that describe
this model are:

8

α0w0Tcp = α1z1Tcm + α1w1Tcp

α1w1Tcp + α1z1Tcm = α2z2Tcm + α2w2Tcp

αiwiTcp + αiziTcm = αi+1zi+1Tcm + αi+1wi+1Tcp

αN−1wN−1Tcp + αN−1zN−1Tcm = αNzNTcm + αNwNTcp

Equation (4) can be used as this is the normalization equation.
Expressing the previous equation system in terms of g1 and si for i from

1 to N-1.

α0 = α1g1 (17)

α1 = α2S1 (18)

αi = αi+1Si (19)

αN−1 = αNSN−1 (20)

where

Si =
(zi+1Tcm + wi+1Tcp)

ziTcm + wiTcp
(21)

and

g1 =
(z1Tcm + w1Tcp)

w0Tcp
(22)

The corresponding, solution time optimal, fraction of load for this par-
ticular schedule protocol can be found, in a manner similar to that in the
previous section, as

α0 =
1

1 + 1
g1

(1 +
N−1∑
i=1

i∏
j=1

1
Sj

)

(23)

The general expression for speedup will be,

Speedup =
1
1

1+ 1
g1

(1+
N−1∑
i=1

i∏
j=1

1
Sj

)

(24)

9

When a homogenous network is considered the speedup can be expressed
as

Speedup =
1
1

1+ 1
g1

(1+
N−1∑
i=1

i∏
j=1

1
1
)

(25)

Simplifying the above equation,

Speedup = 1 +
1

g1
(1 +N − 1) (26)

The final expression will be

Speedup = 1 +
1

g1
(N) (27)

2.4 Simultaneous distribution, simultaneous start

Fig. 4 presents the last protocol considered here.
In this case the processors are able to process the load as soon as they

receive the initial transmission. It is assumed that all finish at the same
time to achieve a time optimal distribution of load.

α0w0Tcp = α1w1Tcp

α1w1Tcp = α2w2Tcp

αiwiTcp = αi+1wi+1Tcp

αN−1wN−1Tcp = αNwNTcp

Note, that it is assumed that communication speed is faster than com-
putation speed for each processor link pair so,

αiziTcm < αiwiTcp

By expressing the previous equation system in terms of fi the previous
equation system can be written as,

10

Figure 4: Timing diagram of single level tree with simultaneous distribution
and simultaneous start

α0 = α1f0 (28)

α1 = α2f1 (29)

αi = αi+1fi (30)

αN−1 = αNfN−1 (31)

where

fi =
(wi+1Tcp)

wiTcp
(32)

The optimal load fraction assigned to the root processor is

α0 =
1

1 +
N−1∑
i=0

i∏
j=0

1
fj

(33)

11

Here the speedup will be,

Speedup = (1 +
N−1∑
i=0

i∏
j=0

1

fj
) (34)

Considering a homogeneous network, the equation below represents the
speedup for the simultaneous distribution, simultaneous start protocol. In
this case it is assumed that all of the processors on the network are similar
with the exception of the root processor which has inverse computing speed
w0. Thus the speedup is,

Speedup = 1 +
1

f0
(1 +

N−1∑
i=1

i∏
j=1

1) (35)

After simplifying the above equation,

Speedup = 1 +
1

f0
(N) (36)

3 M Parallel Channel per Link: Notation

In this section the specific notation used in developing speedup expressions
for M parallel channels per link in single level tree topologies is presented.
The actual speedup expressions appear in the next section.

Fig. 5 shows a single level tree architecture consistent with N+1 pro-
cessor and M channels per link (χ) per processor pair. In this model the
root core will be able to distribute the load assigned to every core in parallel
fashion using M available channels (χ). Every connection pair is similar,
thus there is always the same amount of channels available for every root
core child core pair in the network.

The variables used in this model need to be presented at this time;

zj : The inverse of the link speed of the jth link.

wi: The inverse of the computing speed of the ith processor.

χi,j : The zj / M inverse of the link speed with M channels per the jth

link and ith processor.

12

Figure 5: Single level tree network M parallel interconnection channels

j: Represents the link number between root processor and ith children
processor.

A homogeneous network topology is considered during this study. Thus
all of the communication channels on the network are the same. In addition
all of the cores used on the system are identical as well. Thus

χi,j =
zij
M

(37)

where

i=1 · · ·N number of processors .

j=1 · · ·M parallel channels per processor pair.
For this particular case the mathematical expressions obtained to de-

scribed the optimal load assignment on the past section can be extrapolated
for the network architecture shown in Fig. 5 by adjusting the proper pa-
rameter, in this case the link speed parameter.

4 Speedup for M parallel channels per link

In the past sections different speedup expressions were reviewed for different
schedule protocols for the network architecture presented in Fig. 1. These
expressions were defined in terms of dummy variables which involved the
link speed and the processor speed. By redefining the dummy parameter
according to the new network topology with M parallel channels per link,

13

new speedup expressions can be found. The following sections will show the
speedup for the network topology presented on Fig. 5.

4.1 Speedup for sequential distribution staggered start with
M parallel channels per link

Equation (16) shows the speedup for a network topology of one link to one
processor. The dummy parameter defined in there is Si,

Si =
(zi+1Tcm + wi+1Tcp)

wiTcp
(38)

When considering this parameter for M parallel channels per link the
expression needs to be adjusted. The parameter adjusted is the speed of
the link zi. Using equation (37), B will be the new name for the dummy
variable for this protocol on the new architecture.

Bi =
(
zji
M Tcm + wi+1Tcp)

wiTcp
(39)

In the case of using a homogeneous network topology where the M chan-
nel speeds are equal and the speed of processors is the same on all the cores
in the network, equation (40) can be used. Thus,

Bi =
(z
M Tcm + wTcp)

wTcp
(40)

and

B0 =
(z
M Tcm + wTcp)

w0Tcp
(41)

The speedup found for this protocol and this architecture after equation
(16) is:

Speedup = 1 +
1

B0
(1 +

N−1∑
i=1

1

Bi
) (42)

14

4.2 Speedup for simultaneous distribution staggered start
with M parallel channels per link

Following the same methodology as in section (II) the speedup expression
for this protocol will be obtained from equation (24). The dummy variables
used to relate link speed and processor speed for this protocol were:

Bi =
(χ(i+1),jTcm + wi+1Tcp)

χi,jTcm + wiTcp
(43)

and

G1 =
(χ1,jTcm + w1Tcp)

w0Tcp
(44)

Equation (24) yields equation (45) representing the speedup equation
using the new dummy variables according to this network topology,

Speedup =
1
1

1+ 1
G1

(1+
N−1∑
i=1

i∏
j=1

1
Bj

)

(45)

For a homogeneous network case from equation (27) and substituting
the parameters,

Speedup = 1 +
1

G1
(N) (46)

4.3 Speedup for simultaneous distribution simultaneous start
with M parallel channels per link

The last scheduling protocol considered is for the network topology pre-
sented on Fig. 5. Following the same methodology used before, the dummy
parameters represent the relationship among processors and links in the case
of M=1, the conventional case considered in section (2.4). As can be seen the
dummy variable does not depend on speed of the link. Thus, the speedup
for this network architecture remains the same.

15

5 Speedup for G parallel cores per virtual proces-
sor

The case of G parallel cores per processor is somewhat more involved than
the case of M channels per link.

There are two considerations. As an example, consider the single level
tree (star) topology of Fig. 6. While virtual processor nodes (children nodes)
can be made faster and faster by adding more cores, eventually if this pro-
cess continues the single link speed would be slower than than the increased
virtual processor speed. Thus load distribution to achieve a parallel process-
ing advantage would make no sense [3]. For there to be an actual system
speedup the link speed must eventually be increased, perhaps by adding
parallel channels, as well as by simply increasing the number of cores.

The second consideration involves levels of load distribution. Again, as
an example consider the network of Fig. 6. Load must be distributed both
from the root node to the virtual processor children nodes and within the
virtual processor nodes. What are the possibilities for load distribution?
There are two large families of load distribution policies: sequential and
simultaneous.

If the internal virtual processor load distribution is sequential (i.e. load
is distributed to one core at a time) then an G core virtual processor is not G
times faster than a single core. This is because it well known [3] that under
sequential load distribution speedup saturates with an increasing number
of cores. On the other hand, if the load distribution is simultaneous (i.e.
load is distributed to each core simultaneously (in parallel)) then it is well
known that the system speedup is of the form 1+kG where k is a constant
depending on the system parameters of the specific version of simultaneous
load distribution used (see equations (27) and (46) and also reference [32]).
This is a linear, not a proportional, relationship. Thus in both cases the
single core speed can not be simply replaced by G times the core speed for
G cores per virtual processor. Similar arguments can be made at each level
of tree distribution.

However by substituting the equivalent processing speed [3,12,32] of the
ith subnetwork for wi, ideal performance for scheduling policies can be eval-
uated. Here we have equivalent elements in a linear system sense: an “equiv-
alent” element exactly mimicing the behavior of a larger sub-network. Two
examples of the use of equivalent elements are given below.

The network topology considered in Fig. 6 consists of a root processor
P0 that distributes or assigns load to N virtual equivalent processors which

16

are composed of G different cores each. The load assignment among root
processor and virtual processor can be done using the previous schedule
protocols from the classical DLT sections (2.2), (2.3) and (2.4). Within the
virtual processor the cores are organized in a single level tree fashion, DLT
is used to distribute the load among cores on every virtual processor. It is
assumed that every load assignment is arbitrarily partitionable.

Figure 6: Single level tree network G parallel cores

Where,

P0: Is the root processor with inverse computing speed w0.

g: Represents the core number that belongs to the ith virtual processor.

G: Represents total number of cores per virtual processor.

πi,g: The inverse of the computing speed of the gth core on the ith

virtual processor.

zi: The inverse of the link speed of the ith link per virtual processor.

zi,g: The inverse of the link speed of the gth link between the gth core
and the root distributor in a virtual processor.

5.1 Speedup for sequential distribution and staggered start
with M parallel cores

Using similar methodology as the one presented in previous section and
referring to Equation (16) which shows the speedup for a network topology

17

one link to one processor. The dummy parameter defined in there is Si,

Si =
(zi+1Tcm + wi+1Tcp)

wiTcp
(47)

Let BP be the dummy parameter for G parallel cores distributed in N
virtual processors for this protocol on the new architecture. As shown in
equation (14)

Speedup = 1 +
N−1∑
i=0

i∏
j=0

1

BPj
(48)

where

BP0 =
(z1Tcm + weq1Tcp)

w0Tcp
(49)

and for i = 1 to N virtual processors

BPi =
(zi+1Tcm + weqi+1Tcp)

weqiTcp
(50)

The single level tree core network for the the virtual processor can be
collapsed into one single node that will allow us to find the equivalent com-
putation speed weq,

weqi =
1

1 +
G−1∑
i=0

i∏
j=0

1
SCj

(51)

Here G is the number of cores in every virtual processor and SC is
the constant of the related interconnection links and cores on every virtual
processor.

SCg =
(zi,g+1Tcm + πi,g+1Tcp)

πi,gTcp
(52)

The sequential distribution staggered start policy is used also within the
virtual processor to distribute load among cores processors.

18

5.2 Speedup for simultaneous distribution and simultaneous
start with M parallel cores

Another scheduling protocol to assign load to the rest of the virtual pro-
cessors is simultaneous distribution, simultaneous start. Equations (34) and
(36) represent the speedup expressions for this protocol. When the incoming
load on every virtual processor arrives the load is partitioned and assigned
using the simultaneous distribution and simultaneous start presented on
section (2.4).

The new dummy parameter fcg is:

fcg =
(πi,(g+1)Tcp)

πi,gTcp
(53)

For this case the weq will be expressed as:

weqi =
1

1 +
G−1∑
i=0

i∏
j=0

1
fcj

(54)

Considering a homogeneous network the equation below represents equiv-
alent computation speed weq for the simultaneous distribution simultaneous
start protocol. In this case it is assumed that all of the cores in the network
are similar with the exception of the root processor which is π0. Thus the
dummy parameter fcg evaluated for values different than g = 0 will be one,
while fc0 with g = 0 will be,

fc0 =
πTcp
π0Tcp

(55)

Thus by simplifying the weqi using (55) it can be expressed as,

weqi =
1

1 + 1
fco

(1 +
G−1∑
i=1

i∏
j=1

1)

(56)

After simplifying the above equation,

weqi =
1

1 + 1
fco
G

(57)

19

To find the general speedup of the entire network topology for this pro-
tocol the equation (34) (which represents the standard speedup of this pro-
tocol) will need to be modified to take into account the virtual processors
comprised of the different G cores. Thus,

Speedup = (1 +
N−1∑
i=0

i∏
j=0

1

CPj
) (58)

where CP is :

CP0 =
weq1Tcp
w0Tcp

(59)

and for i = 1 to N virtual processors

CPi =
(weqi+1Tcp)

weqiTcp
(60)

In the same way for the homogenous case equation (36) can be used
to obtain the general expression for speedup for this protocol when all the
virtual processors have the same equivalent computation speed weq leading
to equation (61).

Speedup = 1 +
1

CP0
(N) (61)

Note that weqi+1 = weq in the homogeneous case, by substituting equa-
tion (59) into the equation (61) the speedup for this network topology can
be obtained as:

Speedup = 1 +
w0Tcp
weqTcp

(N) (62)

Equations (57) and (62) are used to denote the speedup in terms of the
G cores and N virtual processors, resulting in equation (63)

Speedup = 1 + w0
(fco +G)

fco
N (63)

20

6 Performance Results

The scheduling protocols, Sequential Distribution Staggered Start and Si-
multaneous Distribution Staggered Start were simulated for a singe level tree
network with M parallel channels per link with the following parameters:

wi = 100 for i=1 to 10, 20 40.

w0 = 90.

zi = 100 for i=1 to 20.

π0 = 95.

πi = 100 for i=1 to 10.

Tcp = 1

Tcm= 1
In Fig. 7 are shown results for the sequential distribution and staggered

start for single level tree M parallel links network topology. Three different
networks size were simulated composed of 10, 20 and 40 processors. On
the vertical axis the value of speedup is presented. On the other hand the
horizontal axis presents the number of parallel links.

Figure 7: Speedup for a single level tree M parallel links with sequential
distribution and sequential start

It can be seen that the speedup saturates as the number of links is
increased. That is, the speedup is limited by computing power as the number

21

of links increases and the latency goes to zero. Also, the speedup increases
with increasing numbers of processors.

Figure 8: Speedup for a single level tree with M parallel links simultaneous
distribution and staggered start

Fig. 8 represents the simulations results for the protocol with simultane-
ous distribution and staggered start. The speedup plot for the network of 10
processors, for instance, rapidly saturates to 10 after 5 parallel links. After
this point adding extra links will not result in a gain as one approaches zero
transmission latency and one is limited solely by processing speed. In addi-
tion the speedup is constrained by the network size, as shown on different
plots for the network simulated.

Fig. 9 shows the simulation for a single level tree network with G par-
allel cores. The network topology simulated consisted on a single level tree
network that uses the simultaneous distribution and simultaneous start to
assign load from root to virtual nodes. This protocol is used to distribute
load among cores on every virtual processor. On the vertical axis is shown
the metric for speedup and on the horizontal axis are the number of cores
simulated per virtual processor basis. The linear growth exhibited is in line
with previous studies [32]. Notice the high values of the speedup for different
network sizes.

7 Conclusion and an Open Question

The single level tree examples of this paper demonstrate the ease with which
idealized (bounding) multicore and parallel channel performance can be cal-

22

Figure 9: Speedup for a single level tree with G parallel cores simultaneous
distribution and simultaneous start

culated for a wide variety of load distribution strategies and interconnection
networks.

To obtain results for parallel systems with less than ideal performance,
processing/link speeds in divisible load theory models could be replaced
by values that are less than ideal speedups. The outstanding open research
question though is creating accurate models of system features and behavior
that lead to less than ideal performance. This is probably highly system and
feature dependent. This problem should lead to a fair amount of interesting
and useful future work.

References

[1] J. D.Ownes, W. J. Daily, R. Ho, D.N. Jayasimha, S. W. Keckler, L. Peh,
Research Challenges for ON-CHIP Interconnections Networks IEEE
Computer Society, pp. 272-1732, 2007.

[2] M. Moges and T.G. Robertazzi, “Wireless Sensor Networks: Scheduling
for Measurement and Data Reporting,” IEEE Trans. on Aerospace and
Electronic Systems, vol. 42, no. 1, pp. 327-340, Jan. 2006.

[3] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi: Scheduling
Divisible Loads in Parallel and Distributed Systems. IEEE Computer
Society Press, Los Alamitos, CA, 1996.

23

[4] V. Bharadwaj, D. Ghose, T.G. Robertazzi, “Divisible Load Theory: A
New Paradigm for Load Scheduling in Distributed Systems,” Cluster
Computing, vol. 6, pp. 7-18, 2003.

[5] T.G. Robertazzi, “Ten Reasons to Use Divisible Load Theory,” Com-
puter, vol. 36, pp. 63-68, 2003.

[6] Y.C. Cheng and T.G. Robertazzi, “Distributed Computation with Com-
munication Delays,” IEEE Trans. on Aerospace and Electronic Systems,
vol. 22, pp. 60-79, 1988.

[7] J. Sohn and T.G. Robertazzi, “Optimal Divisible Load Sharing for Bus
Networks,” IEEE Trans. on Aerospace and Electronic Systems, vol. 32,
pp. 34-40, 1996.

[8] Y.C. Cheng and T.G. Robertazzi, “Distributed Computation for a Tree
Network with Communication Delays,” IEEE Trans. on Aerospace and
Electronic Systems, vol. 26, pp. 511-516, 1990.

[9] S. Bataineh and T.G. Robertazzi, “Bus Oriented Load Sharing for a
Network of Sensor Driven Processors,” IEEE Trans. on Systems, Man
and Cybernetics, vol. 21 pp. 1202-1205, 1991.

[10] J. Blazewicz and M. Drozdowski, “Scheduling Divisible Jobs on Hy-
percubes,” Parallel computing, vol. 21, pp. 1945-1956, 1996.

[11] J. Blazewicz and M. Drozdowski, “The Performance Limits of a Two
Dimensional Network of Load Sharing Processors,” Foundations of Com-
puting and Decision Sciences, vol. 21, pp. 3-15, 1996.

[12] T.G. Robertazzi, “Processor Equivalence for a Linear Daisy Chain of
Load Sharing Processors,” IEEE Trans. on Aerospace and Electronic
Systems, vol.29, pp. 1216-1221, 1993.

[13] V. Bharadwaj, D. Ghose, V. Mani, “Multi-installment Load Distri-
bution in Tree Networks with Delays,” IEEE Trans. on Aerospace and
Electronic Systems, vol. 31, pp. 555-567, 1995.

[14] Y. Yang, H. Casanova, “UMR: A Multi-Round Algorithm for Schedul-
ing Divisible Workloads,” Proc. Int’l Parallel and Distributed Processing
Symposium (IPDPS’03), 2003.

[15] O. Beaumont, A. Legrand, and Y. Robert, “Optimal Algorithms for
Scheduling Divisible Workloads on Heterogeneous Systems,” 12th Het-
erogeneous Computing Workshops HCW’2003, 2003.

24

[16] J. Blazewicz and M. Drozdowski, “Distributed Processing of Dis-
tributed Jobs with Communication Startup Costs,” Discrete Applied
Mathematics, vol. 76, pp. 21-41, 1997.

[17] A.L. Rosenberg, “Sharing Partitionable Workloads in Heterogeneous
NOWs: Greedier is Not Better,” Proc. IEEE Int’l Conf. on Cluster
Computing, pp. 124-131, 2001.

[18] P.F. Dutot, “Divisible Load on Heterogeneous Linear Array,” Proc.
of the Int’l Parallel and Distributed Processing Symposium (IPDPS’03),
2003.

[19] M. Moges and T. Robertazzi, “Optimal Divisible Load Scheduling and
Markov Chain Models,” Proc. of the 2003 Conference on Information
Sciences and Systems, Baltimore, MD, 2003.

[20] K. Ko, and T. Robertazzi, “Scheduling in an Environment of Multiple
Job Submissions,” Proc. of the 2002 Conf. on Information Sciences and
Systems, 2002.

[21] H. Wong, B. Veeravalli, D. Yu and T. Robertazzi, “Data Intensive Grid
Scheduling: Multiple Sources with Capacity Constraint,” IASTED In-
ternational Conference on Parallel and Distributed Computing and Sys-
tems (PDCS 2003), 2003.

[22] L. Marchal, Y. Yang, H. Casanova and Y. Robert, “A Realistic
Network/Application Model for Scheduling Loads on Large-Scale Plat-
forms,” Proc. of the Int’l Parallel and Distributed Processing Symposium,
2005.

[23] T. Lammie and T. Robertazzi, “A Linear Daisy Chain with Two Di-
visible Load Sources,” Proc. of 2005 Conf. on Information Sciences and
Systems, 2005.

[24] D. Yu and T. Robertazzi, “Multi-Source Grid Scheduling for Divisible
Loads,” Proc. of 2006 Conf. on Information Sciences and Systems, 2006.

[25] D. Piriyakumar and C. Murthy, “Distributed Computation for a Hyper-
cube Network of Sensor-Driven Processors with Communication Delays
Including Setup Time,” IEEE Trans. on Systems, Man and Cybernetics,
vol. 28, pp. 245-251, 1998.

25

[26] J. Hung and T. Robertazzi, “Scalable Scheduling for Clusters and Grids
using Cut Through Switching,” International Journal of Computers and
Applications, vol. 26, pp. 147-156, 2004.

[27] M. Drozdowski, Scheduling for Parallel Processing, Springer, New York,
2009.

[28] H. Casanova, A. Legrand and Y. Robert, Parallel Algorithms, CRC
Press, Boca Raton, Florida, 2009.

[29] J. Jingxi, B. Veeravalli and J. Weissman, “Scheduling Multi-Source
Divisible Loads on Arbitrary Networks,” to appear IEEE Trans. on
Parallel and Distributed Systems.

[30] M.A. Moges, D. Yu and T.G. Robertazzi, “Grid Scheduling Divisible
Load from Two Sources,” Computers and Mathematics with Applica-
tions, pp. 1081-1092, 2009.

[31] R. Agrawal and H.V. Jgadish, “Partitioning Techniques for Large Grain
Parallelism,” IEEE Transactions on Computers, vol. 37, no. 12, pp.
1627-1634, 1988.

[32] T.G. Robertazzi, Networks and Grids: Technology and Theory
Springer, NY, 2007.

[33] N.R. Tallent and J.M. Mellor-Crummey, “Identifying Performance Bot-
tlenecks in Work Stealing Computations,” Computer pp. 44-50, Dec.
2009.

26

