
NET[j AND (X1iIPAGTNESS

In a uniform spaC:G cor::plr::tsuc3S can be defined in -::.Grms of the COll-'

vcrgonc.e of e2.ch member of a parti cular class of nets. It wiI] be S!l01m

in thispaper that compactness for an arbitrary topological space can be

charac terized in the sai11e Hay. Covering propertie~, associa"Li':d 'vlith cer-

tain other nets I.Jill also be considerc-1rl in this paper.

Terms a '1d expressions r.ot defined in this pc:.per willhave the same

meaning as in Kelley [ 5J. To save space only a feH of the terms more

d.irect.l~1 relat.ed. to our topic wj 11 be dl::i.i::lnedhere.

Let M be a nonempty set with null set N and let 3 be a topology for

1'1..Denote complero.entation 1-nth respect to M by c; thus cA M - A for

Ac H.

Let D be a nonern.pty set and let;:: direct D. Let I be 8. net tLa"G r,;ap:s

D into H. Fo:,' br-c'vi t;! Jet us agree tbat I h. eventually in. A c M j,.ff

is an element :m of D such that if n e D and D ~ m then I € A.n

Definiticn.A topological space is Gompaet if? every open cover has

a. f:i.ni te su'bcover.

Defini tion..A. net I is a 3-net (or C-net) iff for each A E: 3 and every

point x € A

L there is B c ~ ::31lch that ;x: € B C A and

2. I is eventually in B or eventualJ.:y' in cB.

It is obvious that I is a ~-net iff X is a closed set and x e eX

.implytwre is a .cLosed set Y such that X C Y.} X E: cY and I is eventu-

aJ~Jr in Y or eventually ir.. cY,



2.

Theorem 1. The topologj l'C:ll ~;Pil(',:; (1'1,3) is compact iff every 3-net

in M converges.

Proof. Let the space be conp2~ct ard let I be a 3. not in M. If pos-

sible, let I not converge. Then x E: }1 implies there is an open set A

containing x such that I is nQt eventually in A. Now there is an open

set B such that x €B C A w1d I is eventua]~y in B or eventually inx x x

cB . Hence I is eventuall y in cD , Let 9..\ ::. fB :x E: M}. Then Q3 is an Op enx x l. x

cover and so thGre is a fini te munber ~, ..., Bn' of members of ~,

which covers M. But I is eventually in each cBi' i = 1, ..., n and so I

is eventually in their intersection whichis the emptyset N and this is

a contradiction.

To prove the converse, assurne every 3-net converges and let [5 be a

family of closed sets with the finite intersection property. Then the

family ~ of all fini te intersectio::1s of members of [) is directed b~l c.
'.

Choosing a point IA from each A in ~ '-18 .find I

H. Suppose ~ has empty intersection. Let X be a closed set and let x € cX.

Now' there is A € ~ such that x € cA and so Y::. AU X is a closed set such

that X'E; cY, XC Y and I is eventu.ally in Y. Hence I is a 3-net and so

converges'to some point y. It is easily verified that y is in each mem-

ber of~ which is a contrac~ction &~d this proves the theorem.

Defini tion. A point x is a cluster point of a net I iff I is eventu-

ally in the complement of no neighborhood of x.

Theorem 2. A net I is a C-net iff I converges to each of its cluster

points.

Proof. Let I be a C-net and let x be a cluster point of I. If A is

an open set containing x then there is an open set B such that x € B C A

and I is eventually in B or eventually in cB. Hence I is eventually in' B

and so is eventually in A.
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To prove the converse a5~;p s I L, ::J.11<-'1.that converbe~ to each of its

cluster points. If A if an opr" I, set 'cy,cl x (; A t.h,m x is ei ther a cluster poinL,

or not a cluster point of I. Jr. tl10 fCLh:?1' case x e A C Ii. and I is event-

ually in A. In the latter case there j t, ;:1.11open set E such that x e E and

I is eventually in cEo Then B '" 1'..Ii E if~ open, x € B C A and I is cventu-

ally in cB.

Corollary. A topological flhGC is compact. iff every C-net has a clus-

tel' point. Hence a topological sPQce is compact iff every C-net has a.

convergent subnet.

Corollary. In a uniform space every Cauchy net is a C-nct and SO com-

pactness implies completeness.

One way of defining Cauchy T1..8'tsand compJ.eteness for arbitrary topo-

logical spaces is shm-ill in [7J. Bere, too, eVGr~TCa11chy net turns out to

be a C-net. Hence He can simply sa;:-: compactness implies completeness.

Every convergent net in a. uniform space is a Cauchy r.et. Hence in a

compact uniform space every C-n81.:.is a Cauchy net and so these tvlO kinds

of nets are identical. If a C-n8t in a uniform space is not a Cauchy net

then the space is not compact.

It is easy to prove the next theorem.

Theorem 3. A net 1\rith no cluster points is a C-net. Hence if a net

I 1'8 not a C-net then I has a cluster point.

Corollary. A topological space is compact iff every net has a. clus-

tel' point.

The result in this corollary is well known and has been deduced by

other methods.

Corollary. If a net I in a uniform space is not a C-net then I has
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a convergent Cauchy subnet. Henc.c.:; a u'11form space is compact iff it.is

complete and every C-net hat~ a CauclJY .'1ubnet.Aloo, a uniform space is

totally bounded iff every C-rwt.has a Ca".lch~T subnct..

A net I is a universal th'jG iff A.eM in:plies I is eventually in A

or eventual13r in cA. Obviously a uni ver::~al net converges to each of its

cluster points and hence a universal net is a C-net. By virtue of the

axiOTIlof choice every C-net has a universal subnet and so. we can say a

space is compact iff every w..iyersal net converges or every universal

net has a cluster point.

If I is a C-net ~~d J is a subnet of I then J is also a C-net.

Let I be a net which is such that A is a neighborhood of x in~lies

there is a neighborhood B of x, B c A ~nd I is eventually in B or event-

ually in cB. TIlenI converges to each of its cluster points and so is a

C-net. That every C-net satisfies the conditions imposed on I is obvious.

Hence a net J is a C-net iff A is a neighborhood of x implies there is a neigh-

borhood B of x such that B C A and J is eventually in B or eventually in cB.

Lelruma. If a net I in a con~act space has one and only one cluster

point x then I converges to x.

Proof. Let A be an open set containing x. If y e cA then there is

an open neighborhood By of y such that I is eventually in cBy' Now

~ = [By: y e cA} is an open cover of cA and cA is compact. Hence a fi-

nite subfamilyB:1., ..., B of!B covers cA. But I is eventua.lly in eachn

of cEt, ..., cBn and so is eventually in their intersection which is a

subset of A. Hence I converges to x.

The next theorem now follows easily.

Theorem 4. If a net I in a co~act space has only one cluster point
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then I is a. C-net.

Theorem 5. A convergent :,.tin ~. !-J'?llsdorffGpace is a C-net.

Proof. Let a net I conYG.:-ge to a p,)int :x in a Hansdol'ff space. If

y is a point of the space dist.inct fror,l x then there are disjoint neiiY1-

bor-hoods A a.nd B fo~ x and y :cespecti vely and I is eventually in A. Hence

x is the only cluster point of I. Consequently, I converges to each of

its cluster points. This completes the proof.

Let us call a net I a C-subnet 1-1he11.I is both a C-net and a subnet

of some net. The follol.Jing corollaries are then immediate.

Corollary. In a Hansdorff space 8yery net, which is not a C-net,

has a convergerLt C-subnet,.

Corol.lary. In a Hansdorff space ever:! net has a C-subnet.

Corollary. A Hansdorff space is compact. iff every net has a conver-

gent C-subnet.

Let (M,3) be a topological space, A a subset of M and U the relati-

vization of 3 to A. Since A is compact iff (A,U) is cOlnpact we see that

A is compact iff eyery C-net in A converges in the topological space (A,U).

Theorem 5 can be used to give a new proof of the well-knovm result

that a compact subset of a Eansdorff space is closed. Let A be a compact

subset of a Hansdorff space and let x be a point of the closure of A.

There is then a net I in A converging to x. Hence I is a C-net and there-

fore x € A.

Let (11,3) be a topological space, (D,~) a directed set and I:D -. H

a C-net in (H,3). Let A C M and U the relativization of 3 to A. Suppose

I has the property that for each m € D there is n € D such' that n ~ m

and In e A. Take E = en: n € D, In e A}. Define J: E -JoM by In = In for
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neE. Then (E,::;) is a diN~ci;,ed. ::;et. and. J is a C-subnet of I in (N,:J).

Also ,J is a C-net in (A,U).

Theorem 6. Let (M,~) be 2. ~;opoloc;ical space, A a closed subset of

M and U the relati vization of ~ to U. If I is a U--net then I is a J-net.

Proof. If X e J then Y (x n cA) e J and Z = (X n A) e U. Hence

x e Y implies x eye X and I is eventual1y :in cY. If x e Z then there

is B e U such that x e B c Z and I is eventually in B or eventua1ly :i.n

cBn A. But B = An F for some F e J. SO xc Z impl:ies there is G = (FnX) € J

such that x e G c X and I is eventually in G or eventua~ly in cG.

Corollary. A closed subset of a compact space is compact.

Let (M,J) and (p,U) be topo~ogical spaces and let f: M ~ P be con-

tinuous. If I is a C-net in }1 then f 0 I need not necessarily be a C-net

in P even if f is ~~ open continuousw~p. But if M is compact, P isHaus-

dorff and f is onto then the i:mage f 0 I of a C-net in 11 is a C-net in P.

Definition. Let ~ denote t.he family of all subsets of H. A net I in

M is a ~-net iff A e :m a..~d x e A imply there is B. e 9Y.such that x e B C A

and I is eventually in B or eventually in cB.

It is easily verified that a net I is a ~-net iff X e ~ and. x e cX

imply there is Y e 9] such that x e cY, Xc Y and I is eventually in Y or

eventually in cY.

Definition. The space (M,J) is ~-compact iff every family of subsets

of M, the interiors of whose members cover M, has a finite subcover.

Theorem 7. The space (M,J) is ~-compact iff every ~-net has a cluster

point.

This theorem can be proved in the samo way as theorem 1.
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Lemma. Every J}(-net has a. cl'.Lster point iff every C-net has a cluster

point.

Proof. If every :Dc-net h3.3 a. clusl:.c1:' poj.nt but a C-net has none, then

it is easj.ly seen that the C-net is a ~D!-Det and SO has a cluster point.

The converse is obvious.

Theorem 8. The space (M,~~) j.s compact iff evory :ffl-net has a cluster

. .t.
pOlnv.

Corollary. Compactness and ~-compactness are identical.

It is also obvious from their definitions that compactnei:Js a..l1d9J1-com-

pactness are identical. This is related to the fact that the Kuratowski

closure function defining a topology is idempotent. But the situation can

change if the fu:nction defining the space is no longer idempotent as in
, v

Frechet space, Cech space or some of the abstract spaces studied by Ham-

mer [ 3 ] .
A universal net is a <JR.-net. A C-net. may not be a TJt-net and a Tn-net

may not be a C-net. A subnet of a 9JI-net is also a 9JI-net. The image of a

~-net under an open continuousmap need not be a em-net.

A net I is a C-net iff A is open a..l1dx € A imply there is B open

such that x € B a..l1dI is eventually in B n A or eventually in cB. Also a

net I is a C-net iff A is open and x e A imply tllere is B open such that

X € B and I is eventually in An B or eventually in c(An B). Obviously

~-nets can also be characterized in a silnilar way.

Let ~ be a base for the topology 3. Let us call a net I a ~-net iff

A e ~ and x e A imply there is B e ~ such that x e B C A and I j.s eV8:r;1tu-

ally in B or eventuaJJ.y in cB. Then every cover of }1 by members of ~ has

a finite subcover iff every ~-net converges. It is also obvious that a
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nd. is a C-net iff it is a SE-naL, a.r'd that a ~-l1et can oe defined in a

few other equ:ivalent \fay::;.

Defini tion. Let (5 be a subb;:;.se for the topology 3. A net I is a

5' -net iff A e J and x € A imply tlwrc is S E:5 such that x E: S and I

is eventually in S n A or eventu~lly in cS.

The fol101-n.ng theorem can then be proved.

Theorem 9. Every cover 'J1' }1 by ITlE:mbers of (5 has a fini te sub cover

.
ff

""" , tl . every ~ -ne converges.

For conve:.."1ience let us saj that (1) the space M is E).-compact iff

every cover of }1by memberfi of 5 has a finite subcover (2) x is a 6-clus-

tel' point of a net I iff x € S e E5 j.mply I is not eventually in cS (3) a

net I 6-converges to a point-x iff x € S e (5 imply I is eventually in S

and (4) a net I is a E)-net iff A e \5 and x € A imply there is B E:is such

that x € B and I is eventually in A n B or eventually in cB. The follo"\f-

ing results c~~ then be proved.

Lemma. A net6-converges to x iff it converges to x.

Theorem 10. A space is 6-compact iff ever";l 6-net 6-converges.

Theorem 11. A net I is a6-net iff 16-converges to each of its

6-cluster points.

Corollary. A net vrlthout any o-cluster points is aE5-net. Hence if

a net is not a 6-net then it has a 5-cluster poj.nt.

Corollary. A space is 6-compact iff every IS-net has a 5-cluster

point. Hence a space is 6-compact iff. every net has a 6-cluster point.

l~eorem 12. A net I is as-net if~ I is a Sf-net.

A cluster point of a net is obviously a 6-cluster point of it and

'so a E5-net converges to each of its cluster points a..'1da 6-net is a C-net.

A space is 6-compact iff each5-net has a cluster point.



A universal net j.G a.8-nct. <-era so (5-cornpactness of a space implies

compactness. That compactness 'j'~p}'i S~: ';'''-compactness is evident; this can

also be seen from the fac.t; U.3.t a ~.-nGt is a C-net.

Let us say a net I is aQ~-net iff A e 6, x e A implythereis B e 6

such that x e B C A and I is eventually in B or eventually in cB. It is

clear that a 61 -net is a ~-net and so (-5-compactncss implies every 61 -net

converges. But a universal net is a i1?l-net and so a space is compact iff

every ~l -net converges or everJr ~l -net. bas a cluster point.

Let us call a net I a ei2 -net iff A e 6 and x e A imply there is BeG

such tha.t x e B and I is eventually in A n B or eventually in c(An B). It

is then easy to see that a 6-net is a O2-net. If ~ = [sn T:S e~, T e J}

then every cover of M by members of ~ has a finite subcover implies every

62 -net converges. A O2 -net converges to each of its cluster point.s and

so is a C-net. Since a universal net is a 62-net we find that a space is

compact iff every 62 -net converges.

It is also easy to see that a net I is a C-net if A is open and

x e A in~ly there is S e 6 such that xeS and I is eventually in A n S

or eventually in c(An S). The axiom of choice enables us to say that every

C-net converges if every 6-net does so.

Next let ~ be an open Gover of the topological space (M,J). For the

sake of brevity let us agree to say that (1) the space is ~-compact iff

every cover of M by members of ~ has a finite subcover (2) x is a ~-clus-

tel' point of a net I iff x e A e ~ i~ply I is not eventually in cA and

(3) a net I ~-converges to x iff x € A e ~ imply I is eventually in A.

D3fini tion. A nE~t I is a ~-net iff A e ~ and x € A imply there is

.B e ~ such that x e B and I is eventually in.An B or eventually in cB.

~ is a subbase of a certain topology J 1 for 11 and hence the following
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results are obvious.

Theorem 13. A net ~l-con\T<['g,:r;iff' jt converges in the tupoloGY ~~ 1 .

Theorem Ih. The spaGC is ;~(-cO:1:pac.1.,iff every 91-net ~-converg(~s.

Theorem 15. A net is an n--n>J1 if:f it.~-converges to each of j.ts

~-cluster points.

Corollary. If a net has no ~l-clusterpoints then it is an ~-net.

Therefore every net eITdChis not an ~-net has an ~-cluster point.

Corollary. 7ho space is ~-compact iff every ~-net has an ~-cluster

point. So the space is ~-corr.pa.ctiff every net has an ~-cluster point.

A u...'1iversalnet is an ~-net a..Tld so the space is ~-compact iff every

universal net ~!-converges. ~ is a subbase for ~~h and every ~h-net %I-con-

verges iff every universal net ~-convergec. Thus ~--cornpactness is equi-

valent to the compactnessof (M'~l).

Definition. Let ~ be rol open cove~ of (M,~). A net I is an ~'-net

iff X e ~ and x e X imply there is A e ~{such that x € A and I is even-

tUB-lly in A n X or eventually in cA.

Theorem 16. The space is ~l-compact iff every ~I -net converges in

, I
Corollary. Every ~-net ~--converges iff every ~ -net converges.

An ~/-net converges to each of its cluster points as well as to each

of its ~-cluster points and so an ~/-net is an ~-net. An ~/-net is a

C-net and compactness implies ~-compactness. A cluster point of a net.is

an ~-cluster point of it and an ~-net ~-converges to each of its cluster

points.

We can also define ~l and ~ nets in a v.'3.ysimilar to those of G:t

and 62 nets. It is easy to see i-m.attheir properties Hould be. It is.

also obvious that a net I is a C-net if X e ~ and x e X implies there

is A E:~ such that x € A and I is eventually in A n X or eyentually in

c(AnX).
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Finally the:-;e considera t.) (>ItS Gem be extended to an arbi trary cover

of M. Let Q' be an arbitrary f1->]',:J.:v of S'losets of M such that each point

of M is contained in a meJr.bcr o.f .;(. No,v Ci i:s "the subbase for a topology

U for M. We can study covering propcrtiGs of the topologicalspace (M,U)

in the same way as that 01' (M,3).

If (H,d) is a pseudometric space and 3 is the topology of the pseu-

dometric d then 1,e can use sequences to characterize compactness. For

instance we can define a sequence I to be a C-sequence iff A is open and

x e A implies there is an open set B such that x € B a.YldI is eventually

in A n B or eventually in cE.

Theorem 17. A sequence I in a pseudometric space is a C-sequence iff

I converges to each of its cluster points.

It is obvious that a sequence without any cluster points is a C-se-

quence. Hence if a sequence is not a C-sequence then it has a cluster

point. Now a pseudometric space is campact iff every sequence has a clus-

ter point. Thus we have proved

Theorem 18. A pseudometric space is compact iff every C-sequence con-.

verges.

We know that if a net has no cluster points then it is a m-net and

so if a net is not a ~~net then it has a cluster point. Defining a ]~

sequence in a way analogous to that of a m-net we find similarly that if a

sequence is not a m-sequence then it has a cluster p0int.

Theorem 19. A pseudometric space is compact iff every m-sequence

has a cluster point.

All of the results involving nets can also be eA~ressed in terms of

directed functions (as in McShane and Botts [ 6 ]), filters or filterbases

~s in Bourbaki [1 ]). A nonempty family cp of nonempty subsets of 11is a



filterbase iff A, B E; cp imply thcre is C E;cp such that C cAn B. A filter

is a filtcrnasecp such that Ji..c. .B and fl. S cp imply B € ep. An ultrafilter

is a 1113.ximalfIlter. A filterb808 cp !Tny be defined to be eventually in a

set A iff there is F € ep such that F' C A. Then a C-filterbase can be de-

fii1ed to be a .filterbase ep \-ihich has the property that A is open and x € A

imply there is an open set B such that x e B and ep is eventually in A n B

or eventually in cB. Let us say a filterb,:J.se cp converges to a point x iff

~ is eventually in each neighborhood of x. It is obvious what the other

defini tions and results vJOuld be. Directed functions may be handled in

the same way.

We can also exprG8S the results in terms of fa.miHes of sets vrlth the

fini te intersection property. JJct us say a family cp, of subsets of M, with

the finite intersection property is a C-f~~ly iff A is open and x e A

imply there exist an open set B and a F e cp such that x e Band F cAn B

or F C cB. If we define convergence of a C-family in the obvious way then

we can say a topological space is compact iff every C-fa.mily converges.

It is clear how to obtain other reseults of this sort.

We can also use filterbases all of whose members are closed sets. For

instance a space is compact iff every C-filterbase, all of whose members

are closed sets, conve;-ges. Other results of this kind are obvious.

Several other variations are also possible.

Let us say a point x is a cluster point of a filter-base cp iff cp is.

not eventually in the complement of any neighborhood of x. Let f : M ~ M'

be a continuous onto map and let (M, 3) and (M', 3') be topological spaces.

If a filterbase ep in M has a cluster point x e M then f(x) is a cluster

point of fep. This fact can be used to prove that (M', 3') is compact if

(M, 3) is. For if '1/ is a C-filterbase in 11' then rlep' has a cJ_uster



point in H when (1'1, ~) is compact ar:.d ;c'()cpi h,~3 a cluster point in M'. An

innnediate consequence of this is the ::"E;sc,lt 1.I'li:, the' coordinate spaces

are compact if th8 product space is compact. IfcpI

M' then f-~' need.not be a C-filterb~se in M.

Let us agree t.hat a filterbase ql is fin(~r than a filterbase cp' iff

is a C-filterbase in

F' E:cp' implies there is F € cp such that Fe F'. It is easy to shol-/ that

if cp is a C-filterbasc in the product spa(.;e of a fini ts number of com-

pact spaces then there is a filterbase cpI in the product-space which has

a cluster point and which is finer th~l cp; hence this product space is

compact.

When we come to the product of an arbitrary nD~ber of compact spaces

it appears C-filterbases by themselves ar'e unable to sho'\'1 that the product

space is compact. But this is hardly surprising since Kelley [ ~.] has

proved that the Tychonoff product theorem on compact spaces is equivalent

to the axiom of choice. In this connection it lnay be noted that to prove

the result that a space is compact iff every C-filterbase converges it is

not necessary to use the axiom of choice while it was used in the proof of

Theorem 1 where C-nets were employed.

The following results are immediate consequences of the Tychonoff

pr9duct theorem. Let (M,~) be the product of the compact spaces (Mj'~j)'

j € J where J is an index set. Let I be a C-net in (M,~). Then the pro-

jection of I into each coordinate space converges. If a coordi~~te space

(Mj'~j) is Hausdorff then the projection of I into this space is a C-net.

Every C-net in the product space of ,compact uniform spaces must be a Cauchy

net.

It is evident that a product space is compact iff each projection, of

every C-net in the product space, converges.

13.
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Let us no\.r consider a different kind of covering propertJT.

D3fini t.ion. A topologica.l. q.)~,-C8:jl.i~5) is a-compact iff every family

. !n j of subsets of 11Hi th the proper t,i es

1. the interiors of mcmbet's of ~l Gover H

2. X is open implies there is A € !n such that X C A or cX C A,

has a finite subfamily Hhich covers M.

D3finition. A filterbase ~ in a topological space (M,3) is an a-filter-

base iff X is open implies c.pis eventuallJT in X or eventually in cX.

Lemma. p~ a-filterbase converges to each of its cluster points.

Lemma. A topological space is a-compact iff every family!n, of subsets

of M with the finite intersection property and Idth the property that X

is open implies there is A € !n such that A C X or A C eX, has the property

that the closures of the members of !n have a nonempty intersection.

Theorem 20. A space is a-comp~ct iff every a-filterbase converges.

Proof. Let every a-filterbase converge and let !n be a f&~ly of sets

wi th the finite intersection property and \'ll th the property that X is open

implies there is A € !n such that A C X or A C eX. Then the family ~ of all

finite intersections of members of !n is an Q'-filterbase and so bas a clus-

tel' point. Hence the required result follows.

To prove the conv~rse let us suppose that if !n is a family of sets

with the finite intersection property and ~Dth the property that X is

open implies there is A e!n such that A C X or A C cX then the closures

of members of !n have a nonempty intersection. Let c.pbe an a-filterbase.

Then c.p has a cluster point.

Corollary. A space is a-compact iff every a-filterbase has a cluster

. poj.nt.
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An ultrafilter is an Q'-filterb:1,fjG o-..ndso we can 'Say a space is com-

pact iff each Q'-filterbase converges, Hence a space is compact iff it is

Q'-compact.

It has been shown by Thampm'an [ 7 J that given a topological space

(M,~) there is a quasiuniform structure U, from whieh 1\'0 can get back the

topology~, such that Cauchy filterbases defined ,nth respect to U are

identical wi th Q'-filterbases. It canalso be sho1\Tllthat starting from a

given topological space v18 can find a syntopogenous structure 6, from

which the given tapology can be derived,. such that the compressed grills,

of Csaszar [2 J, defined vnth respect to e also coincide vrith 0'-filterbas3s.

If we agree that the terms Cauchy filterbase and Q'-filterbase are

synonYITlo~s, that a space is complete iff every Cauchy filterbase converges

and that a family 91 of subsets of 101contains small sets iff X is open im.-

plies there is A € ~ such that A C X or A C cX then we can say: a topo-

logical space is complete iff every family 91 of sets ,'Thich contains small

sets and which has the finite intersection property is such that the clo-

sures of members of !)1have a nonerr-pty intersect.ion. This is similar to the

corresponding characterization of completeness for uniform spaces.

Among nets the analogue of a Q'-filterbase is a net I 1\~ich is such

that X is open implies I is eventually in X or eventually in cX.

Let (M,3) be a topological space. Denote by 7 the family of all sub~

sets X of M such that X is open or cX is open.

Defini tion. A nonempty family cp,of subsets of M is a 7-family iff cp

is a subfamily of T and cp has the finite intersection property.

Let us say cp is a maximal 'i-family iff no 'T-faIllily properly contains cpa

Lemma. cp is a maximal 7-family iff X j,s open implies X € cp or cX € cp.
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If q) is a T-family there is an ultrafili,er ~t cont~dning cp. If cp' is

the intersection of * and T t.hen \,y' 1:1 a max:1n!G.l T-family.

Theorem 21. Each T-family :is cOlltaj,ned in a 1Tkwmal T-family.

Let us say a may.imal T-fa.milJ'" qJ is eventually in a subset A of Miff

there is F e cp such that F cA. D3fine cluster points, convergence, etc.,

of T-families in the sa.me Hay as for filt.erbases. Then a maximal T-family

converges to each of its cluster points ffildall the a-filterbases converge

iff each ma..ximal 'f-family converges, Therefore a space is a-compact (and

hence compact) iff each maximal 'f-family converges.

For brevity let us say a T-.fanily cp is a C' -family iff A is open and

x e A imply there is F e cp such that F is open and x e F C A or F is

closed and x e cF C A. Then every C-filterbaseconvergesiff every C'-

fa:m.ily converges. Hencea space j.s compact iff every C' -family converges.

These considerationscan be easily extended to bases, subbases etc.

For instance the following results can be stated.

Definition. Let (H,~) be a topological space and let ~ be a subfamily

of 3. A filterbasecpin M is a f,-filterbaseiff A e ~ implies cp is eventu-

ally iri A or eventuallyin cA.

Let (M,~) pe a topological space and let ~ he an open cover of M.

Let U be the topology forM 1ihich has ~ as subbase,Let us say a filter-

base cpis an ~-filterbase iff A e ~ and x ~ A impl;}' there is B e ~ such that

x e B and cp is eventually inA n B or eventuallyin cB.

Theorem 22. In the space (r1',U) every ~-filterbase converges iff every

~-filterbase converges.

Corollary. The space (M,U) is compact iff every ~-filterbase con-

verges in (M,U).



By the tt-interior of a subset. X of 1'1He "rill mean the interior of X

in the space (H,U) and 1Jy th0 int.erior of X He Hillmean the interior of

X in the space (M,~).

Defini tion. Let 0-1,~) be a topological space and let ~{be an open

cover of M. Then M is ~-compact iff every fcU'dly 91, of subsets of M w:i.th

the properties (1) A € ~ implies there is R e ~Q such that A C R or cA C R

and (2) the U-interiors of members of 9'1 cove:..~ Jv1, has a finite subfamily

which covers H.

Theorem 23. M is ~-compact iff every ~-filterbase converges in (M,U).

Corollary. (M,U) is compact iff it is S-coIT~act.

Defini tion. Let (M,3) be a topological space and 18t ~ be a fanlily

of open subsets of M. Then 1-1is y-compact iff ever; family 91, of subsets

of M with the properties (1) A € ~ implies there is R € 91 such that A C R

or cA C R and (2) the interiors of members of !J1cover 11, has a finite

subfamily vnlich covers M.

Theorem 24. M is y-compact iff ovel~Jr ~-filterbase has a eluster point

Coroll~~y. (M,3) is compact iff M is y-compact.

It is obvious that y-coMpactness implies ~-compactness.

Let (M,3) be a topological space and let ~ be an open cover of M.

Denote by T'the family of sets o1Jtained by adjoining to ~ the complement

of each member of~. Let us call a nonempty subfamily ~ of T' a T'-family

iff cp has the finite intersection property and that A € ~1 implies A € ~

or cA € ~. Then M is ~-compact iff every T'-family ~-converges. If (M,S)

is compact then every Tt'-family has a cluster point and if each T(-family

converges then (M,3) is compact. If ~ is a subbase for 3 then (M,3) is

compact iff every T'-family converges.
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A filterbase finer than <-1..11c\"--filterbasc is also an o'-filterbase. The

continuous image of an a-filterl);J,88 .is ;),180 an Q'-filterba3e. Let f : }1... M'

be continuous and~' be an Q'-filt~rbas8 in H'; then f-]~' need not be an

Q'-filterbase even if f is an open map. If M is a-compact and f is ont.o

then M' is a-compact. A product space is a-compact iff each coordinate

space is a-compact. A more Qetailed investi~ation of the properties of 0'-

filterbases i-dll be found in [ 7 ] .
Let (M,3) be the product of the spaces (Mj~3j) for j in some index

set J. Let Pj denote projection into the j-th coordinate space and let 91j

be an open cover of Mj. Denote by ~ the familyof all setsof the form

Pjl ~j' j e J. The product space is then f3-compact iff each coordinate

space is. As a particular case of this He get the result that. the product

of compact spaGes is compact. Several other results of this kind can be

easily obtained.

Finally let us considerultrafilterscmd their covering properties.

Defini tion. A filterbase cp in M is an ultrafilterbaseiff X is a sub-

set of M implies there is F e cp such that F C X orFC eX.

- Definition. A topological space (M,3) is ultracompactiff every fam-

ily~, of. subsets of M with the properties (1) XC M implies there is

Rem such that Xc R or eXC R and (2)the interiors of members of rcis

a cover of M, has a finite subfamily which covers M.

It is easy to prove the follo-.ving theorem.

Theorem 25. A topological space is ultracompact iff every ultrafil-

terbase converges.

Corollary. A space is ultracompact iff every ultrafilter converges.

Corollary. A space is compact iff it is ultracompact.



For arbitrary families of subsot:.) of M it is possible to get several

results on the same lines as thoDe for families of open subsets of 11. The

folloiiing are 2. few of such resuJ..ts.

D3fini tion. Let ~ be a fam.i1y of subsets of M. T'nen a filterbase <p
o

in 11 is a o-filterbase iff B e ~ implies cp is eventually in B or eventu-

ally in cB.

If ~ is a cover of M denote by U the topology for 1-1l-lhich has ~ as

subbase.

DefinitioIl. Let ~ be a cover of M. Then M is o-compact iff every fam-

ily 9C, of subsets of M Ionth the properties (1) B E:~ irrlplies the;e is

R € 9C such that B C R or cB C R 2.TId (2) the U-interiors of the members of

~~ cover M, has a finite subfa~ily which is a cover of M.

Theorem 26. M is o-compa.ct iff every o-filterbase converges in (M,U).

Corollary. (M,U) is compact iff it is o-compact.

Definition. Let (M,~) be a topolog:i.cal space and let ~ be a family

of subsets of M. Then'M is A-compact iff every family ~~, of subsets of M

with the properties (1) B € ~ implies there is R e 9Csuch that B C R or

cB C R and (2) the interiors of the members of 9C cover M, has a finite

subfamily which covers M.

Theorem 27. M is A-compact iff every o-filterbase has a cluster point

in the space (M,~).

Corollary .(H,~) is compact iff it is A-compact.

A filterbase finer than an ultrafilterbase is also an ultrafilter-

base. An ultrafilterbase converges to each of its cluster points. The con-

tinuous image of an ultrafilterbase is an ultrafilterbase. The continuous

image of an ultracompact space is ultracompact. A product space is ultra-

compact iff each coordinate space is ultracompact; one cons,equenca of this
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result is the T;ychonoff produ,c.t theorem. The inv8rse image of an ul tra-

filterbase \ll1der em open contin:uou.c 1I!'Jp Heed not be an ultrafilterba.se.

Some aspects of covedng proper'ties associated Hi th certain nets and

filterbases have been con~idel'ed in the preceding pages; other aspects,

SQch as the role nets play in compactification, will be taken up in sub-

sequent papers.

There are certain similarities bet.ween tho covering properties asso-

eiated with nets or filterbases defined iflth respect to open sets and

those defined. vnth respect to all the subsets of the space. For ~nstance:

1. Space is con~act iff every C-net converges; space is compact iff

every m-net has a cluster point.

2. Space is ~-compact iff every ~J-net ~1-converg6s; space is ~-compact

iff every m-net has an ~-cluster point.

3. Space is a-compact iff every Cc'-filterbase converges; space is a-

compact iff every ultrafilter-base conyerges.

It is also interesting to note that a net I is an ~/-net iff I con-

verges to each of its ~-cluster points. Thisresultmore or less swmnari~es

the relationship between convergence and ~-cluster points.

Only a few nets and filterbases have been studied in this'paper. Co-

vering properties associatedvnth certainothers are considered in a forth-

coming paper.
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