NETS u-l; kﬁ;." PA CTRESS

D. V. Thampuran

In a uwniform Hvaﬂe completeness can be defined in terms eof the con-
vergence of each member of a particular class of nets. It will be shown

in this paper that compactness for an arbitrary topological space can be
characterized in the same way. Covering properties associated with cer-
tain cother nets will also be considered in this paper.
i

Terms and expressions not defined in this paper will have the same

meaning as in Kelley [ 5]. To save space only a few of the terms more

directly related to our topic will

Let M be a nonempty set wit topology for
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M. Denote complementation with respect to M by c; thus cA
A C M.

Let D be a nonempty set and let 2 direct D. Let I be a net that maps
D intd M. For brevity let us agree that I is eventually in A € M iff there
iz an element m of D such that if ne D and n = m then I, ¢

Definiticn.A topclogical space is compact 1ff every open cover has

a finite subcover.

Definition.d net I is a S-net (or C-net) iff for each A ¢ § and every
point x e A ®
1. there is B e § such that x ¢ B < A and
2. I is eventually in B or eventuslly in cB.
It is obvious that I is a J-net iff X is a closed set and x ¢ cX
Amply there is a closed set Y such that X< ¥, x e ¢Y and I is eventu~

ally in Y or eventually irn cY.



Theorem 1. The topological space (M,S) is compact iff every S-net
in M converges.

Proof. Let the space EG compact and let I be a §-net in M. If pos-
sible, let I not converge. Then x ¢ M implies there is an open set A
containing x such that T is not eventually in A. Now there is an open
set By such that x e B C A and I is eventually in B or eventually in
ch, Hence I is eventually in ch= Let B = {Bxﬁx ¢ M}. Then B is an open

5

cover and so there is a finite number By, ..., B_, of members of B,

n?

which covers M. But I is eventually in each ¢By, =1, ..o5 nand so I

b

is eventually in their intersection which is the empty set N and this is
a contradiction.

. To prove the converse, assume every S»net converges and let 3 be a
family of closed sets with the finite intersection property. Then the
family ¥ of all finite intersections of members of {§ is directed by .
Choosing a point

IA from each A in ¥ we find I = [IA; A e U} is a net in

M. Suppose U has empty intersection. Let X be a closed set and ¥et X € ch
Now there is A ¢ U such that x ¢ cA and so Y= AU X is a closed set such
that x'e¢ c¥, XC Y and I is eventually in Y. Hence I is a S-net and so
converges to some point y. It is easily verified that y is in each mem-
ber of U which.is a contradiction and this proves the theorem.

Definition. A poin£ X is a clustér point of a net I iff I is eventu-
ally in the complement of no nelghborhood of x.

Theorem 2. A net I is a C-net iff I converges td each of its clustér
points. :

Proof. Let I be a C-net and let x be a cluster point of I. If A is
an open set containing x then there is an open set B such that x ¢ B C A
and I is eventually'in B or eventually in cB. Hence I.is e?éntually in' B

LB

and so is eventually in A.



To prove the converse assume I is a net that converges to each of its

=)

cluster points. If A is an open set and xe A then x is either a cluster poin’
or not a cluster point of I. In the former case x ¢e AC A and I is event-
ually in A. In the latter case there is an open set E such that x ¢ E and

I is eventually in cE. Then B = AN E is open, x e B&C A and I is eveﬂtu—
ally in cB.

Corollary. A topological space is compact iff every C-net has a clus-
ter point. Hence a topologiczl space is compact iff every C-net has a
convergent subnet.

Corollary. In a uniform space every Cauchy net is a C-net and so con-
pactness implies com;leteness.

One way of defining Cauchy nets and completeness for arbitrary topo-
logical spaces is shown in [ 7). BHere, too, every Cauchy net turns out to
be a C-net. Hence we can simply say compactness implies completeness.

Every convergent net in a uniform space is a Cauchy net. Hence in a
compact uniform space every C-net is a Cauchy net and so these two kinds
of nets are identical. If a C-net in a uniform space is not a Cauchy net
then the space is not compact.

It is easy to prove the nexi theorem.

Theorem 3. A net with no cluster points is a C-net. Hence 1f a net
I is not a C-net then I has a cluster point.

Corollary. A topological space is compact iff every net hag a clus-
ter point. . s

The result in this corollary is well known and has been deduced by

other methods.

3

Corollary. If a net I in a uniform space is not a C-net then I has

Ll
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a convergent Cauchy subnet. Hence a uniform space is compact iff it is
complete and every C-net has a Cauchy subnet. Also, a uniform space is
totally bounded iff eﬁery C-net has a Gauchy_subnct.

A net I is a universal nst iff A C M implies I is eventually in A
or eventually in cA. Obviously a universal net converges to each of its
cluster points and hence a universal net is a C-net. By virtue of the
axiom of choice every C-net has a universal subnet and so we can say a
épace is compact iff every universal net converges or every universal
net has a cluster point.

If Iis a C-net and J is a subnet of I then J is algo a C-net.

Let I be a net which is such that A is a neighborhood of x implies
there is a neighﬁorhood Bof x, BC A and I is eventually in B or event-
ually in c¢B. Then I converges to each of its cluster points and so is a
C-net. Thatlevery C-net sgtisfies the conditions impoted on I is obvious.'
Hence a net J is a C-net iff A is a neighborhood of x implies there is a neigh-
borhood B of x such that BC A and J is eventually in B or eventually in c¢B.

Lemma. If a net I in a comﬁact space has one aﬁd only one cluster
point x then I converges to x.

Proof. Let A be an open set containing x. If y ¢ cA then there is
an open neighbbrhood By of y such that I is eventually in cBy. Now
B = [By: ¥y ¢ cA} is an open cover of cA and ch is compact. Hence a fi-
nite subfamily B, ..., B, of B covers cA. But I is eventually in each
of eB: 5 sy cBn and so is eventuzlly in their intersection ﬁhich is a
subset of A. Hence I converges to x. | g

The next theorem now follows easily.

Theorem li. If a net I in a compact space has only one cluster point



then I is a C-net.
Theorem 5. A convergent act in g Hansdorff space is a C-net.
Proof. Let a net I converge to a point x in a Hansdorff space. If
y is a point of the space distincth fr§m.x then there are disjoint neigh-
borhoods A and B for x and y respectively and I is eventually in A. Hence
x is the only cluster point of I. Consequently, I converges to each of
its cluster points. This completes tne proof.
Let us call a net I a C-subnet when I is both a C-net and a subnet
of some net. The following corollaries are then immediazte.
‘Corollary. In a Hansdorff space every net, which is not a C-net,
has a convergent C-subnet.
Corollary. In a Hansdbrff space every net has a C-subnet.
Corollary. A Hansdorff space is compact iff every net has a conver-
gent C-subnet.
Let (M,3) be a topological space, A4 a subset of M and U the relati-

vization of § to A. Since A is compact iff (A,Ul) is compact we see that’

A is compact iff every C-net in A converges in the topological space (A}l),

Theorem 5 can be used to give a new proof of the well-known result
that_a compact subset of a Hansdorff space is closed. Let A be a compact
subset of a Hansdorff space aﬁd let x be a point of the closure of A.
There is then a net I in A converging to x. Hence I is a C-net and there-
fore x ¢ A.

Let (M,%) be a topological space; (D,<) a directed set and I:D -+ M
a C-net in (M,5). Let AC M and Il the relétivization of § to A. ﬁuppose

I has the property that for each m ¢ D there is n ¢ ﬁ such that n 2z m

and I ¢ A. Take E = {n: ne D, I, ¢ A}, Define J: E+ Mby J = I, for
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n ¢ E. Then (E,<) is a directed set and J is a C-subnet of I in (U,5).
Klso J is a C-net in (4,1).

Theorem 6. Let (Iv;T,iE] be a topcloegical space, A a closed subset of
M and U the relativization of § to U. If I is a U-net then I is a §~net.

Proof. If X ¢ § then Y

(XN cA) ¢ Sand Z = (XN A) ¢ U. Hence
x e Y implies x ¢ Y © X and I is eventually in cY. If x ¢ Z then there
is B e U such that x ¢ BC Z and I is eventuvally in B or eventually in

¢B N A. But B

1

AN F for some F e §. So x ¢ 2 implies there is G = (FNX) ¢ §
such that x ¢ G € X and I is eventually in G or eventually in cG.
Corollary. A closed subset of a compact space is compact.
: Let (M,5) and (P,U) be topological spaces and let f: M -+ P be con-
tinuous. If I is a C-net in M then £ O I need not necessarily be a C-net
in P even if f is an open continuous map. But if M is compact, P is Heus-
dorff and f is onto then the image £ © I of a C-net in M is a C-net in P»‘
Definition. Let M denote the family of all subsets of M. A net I in
Mis a M-net iff A ¢ M and x ¢ A imply there is B.e¢ M such that x ¢ B A

and I is eventually in B or eventually in cB.
I’; is easily verified ﬁhat anet I is aM-net iff X e M and x e ¢X
imply thefe is ¥ ¢ M such that x ¢ ¢c¥, X< Y and I is eventually in Y or
eventually in cY.
Definition. The space (M,3) is M-compact iff every family of subsets
of M, the interiors of whoss members cover M, has a finite subcover.
Theorem 7. The space (M,S) is M-compact iff every M-net has a cluster

point.

This theorem can be proved in the same way as theorem 1.



Lemma. Every M-net has a clusier point iff every C-net has a cluster
point.

Proof. If every‘ﬁtnet has a cluster point but a C-net has none, then
it is easily seen that the C-net is a M-net and so has a cluster point.
The converse is obvious.

Theorem 8. The space (M,§) is compact iff every T-net has a cluster
point;

Corollary. Compactness and M-compactness are identical.

It is also obvious from their definitiﬁns that compactness and M-con-
pactness are identical. This is related to the fact that the Kuratowski
closure function defining a topology is idempotent. But the situation can
change if the function defining the space is no longer idempotent as in
Fréchet space, Eech space or some of the abstract spaces studiéd by Ham-
mer [ 37.

A universal net is a M-net. A C-net may not be a M-net and a M-net
may not be a C-net. A subnet of a T-net is also a M-net. The image of a
M-net under an open continuous map need not be a‘méﬁet.

A-net I is a C-net iff A is open and x ¢ A imply there is B open
such that x ¢ B and I is eventually in BN A or eventually in cB. Alsc a
net I is a C-net iff A is open and x ¢ A imply there is B open such that
x € Band I is eventually in AN B or eventually in c(4N B). Obviously
M-nets can also be characterized in a similar way.

Let B be a base for the topology §. Let us call a net I a B-net iff
Ac B and x ¢ A imply there is B e B such that x ¢ BC A and I is eventu-
ally in B or eventually in c¢B. Then every cover of M by mémbers of B hés

a finite subcover iff every B-net converges. It is also obvious that a



net is a C-net iff it is a B-nel, and that a B-net can be defined in a

few other equivalent ways.

te

Definition. Let © be a subbase for the topology §. A net I is a
6’-net iff A e % and x ¢ A imply there is S ¢ © such that x ¢ S and I
is eventually :m S‘ﬂ A or eventually in cS.

The following theorem can then be proved.

Theorem 9. Every cover of M by members of & has a finite subcover
iff every &'-net converges.

For convenience let us say that (1) the space M is ©-compact iff
every cover of M by members of © has a finite subcover (2) x is a S-clus-
ter point of a net I iff x ¢ S ¢ & imply I is not eventually in cS (3) a
net I S-converges to a point-x iff xe¢ S ¢ & imply I is eventually in S
and (4) a net I is a S-net iff 4 ¢ © and x ¢ A imply there is B ¢ & such
that x ¢ B and I is eventually in AN B or eventually in ¢B. The follow-
ing results can then be proved.

Lemma. A net @-converges to x iff it converges to x.

Theorem 10. A space is ©-compact iff every S-net S-converges.

Theorem 11. A net I is g ©-net iff I S-converges to each of its
S-cluster points.

Corollary. A net without any &-cluster points is a ©-net. Hence if
a ;mt is not a ©-net then it has a ©-cluster point.

Corollary. A space is G-compact iff every S-net has a S-cluster
point. Hence a space is Gwcompact iff- every net has a ©-cluster point.

Theorem 12. A net I is a &-net iff I is a &'-net.

A cluster poinf of a net is obvicusly a ©-cluster point of.it and.
'80 a O-net converges to each of its cluster p'oj.rxts and a S-net is a C-net.

A space is S-compact iff each @-net has a cluster point.



A universal net is a ©-nct and so G-compactness of a space implies

compactness. That compactness implies U-compa

o

tness is evident; this can
also be seen from the fact that a E-net is a C-net.

Lot us say a net I is a & -net iff A e ®, x ¢ A inply there is B e ®
suéh that x ¢ BC A and T is eventually in B or eventually in cB. It is
clear that a &, -net is a ©-net and so B-compactness implies every ©, -net
converges. But a universal net is a & -net and so a space is compact % i

every &, -net converges or every &; -net has a cluster point.

Tet us call a net I a &, -net iff A ¢ © and x ¢ A imply there is B e ]
2 18]

such .tha.t x ¢ Band I is eventually in AN B or eventually in c(ANB). It
is then easy to see that a ©-net is a O,-net. If U = {sNT:5¢9, TeS}
then every cover of M by members of U has a finite subcover implies every
©,-net converges. A S;-net converges to each of its cluster points and
g0 is a C-net. Since a universal net is a & -net we find that a space is
compact iff every $;-net converges:

It is also easy to see that a net T is a C-net if A is open and
x € A imply there is S ¢ © such that x ¢ S and I is eventuaglly in AN S
or eventually in c(an s). The axiom of choice enables us to say that every
C-net converges if every ©-net does so.

Next let U .be an open cover of the topological space (M,‘j-) . .Fulr the
sake of brevity let us agree to say that (1) the space is U-compact iff
every cover of M by members of ¥ has a finite subcover {2) % ié a ﬂlmclugu
ter point of anet I iff xe¢ A ¢ Y jr@ply I is not eventually in cA and
(3)_ a net I U-converges to x iff x ¢ A e U imply I is eventually in A.

Definition. A net I is a U-net iff A e U and x ¢ A imply there is

B ¢ ¥ such that x e Band I is e{rentually in'A N B or eventually in cB.

U is a subbase of a certain topology J, for M and hence the following



‘results are obvious.

Theoren 13. A net Y-converges iff it converges in the topology §, .

Thsorem_lh. The space is ¥-compact 1ff every ¥U-net U-converges.

Theorem.iS. A net is an ¥-net iff it Y-converges to each of its
Y-cluster points.

Corollary. If a net has no ﬁ-clustey points then it is an ¥Y-net.
Therefore every net which is not an Y-net has an ﬂ—éluster point.

Corollary. The space is U-compact iff every U-net has an U-cluster
point. So the space is U-compact iff every net has an U-cluster point.

A universal net is an YU-net and so the space is U-compact iff every
universal net U-converges. Y is a subbase for J; and every J;-net U-con-
verges iff every universal net ﬂ—cénverges. Thus mucompactness is equi-
valent to the compactness of (M,Sy).

Definition. Let ¥ be an open cover of (M,5). A net I is an U'-net
iff X e § and x ¢ X imply there is A ¢ U such that x ¢ A and I is even-
tually in AN X or eventually in cA.

Theorem 16. The space is Y-compact iff every ¥’-net converges in

Corollary. Every ¥Y-net Y-converges iff every 91’ -net converges.

An ¥/ -net converges to each of its clustér points as well as to each
of its U-cluster points and so an 9’-net is an Y-net. An U'-net is a
C~net and compactness implies U-compactness. A cluster point of a net is
an U-cluster point of it and an U-net U-converges to each of its cluster

points.

We can also define ¥; and U, nets in a way similar to those of G -
and &, nets. It is easy to see what their properties would be. It is
also obvious that a net I is a C-net if X e § and x ¢ X implies there

is A ¢ ¥ such that x ¢ A and I is eventually in AN X or eventually in
c(ANX).

10.



Finally these considerations can be extended to an arbitrary cover
of M. Let @ be an arbitrary family of subsets of M such that each point
of M is contained in a member of «. Now & is the subbase for a topology
U for M. We can study covering properties of the topological space (M,U)
in the same way as that of (M,3).

If (M,d) is a pseudometric space and § is the topology of the pseu-
dometric d then we can use sequences to characterize compactness. For'
instance we can define a sequence 1 to be a C-sequence iff A is open and
x ¢ A implies there is an open set B such that x ¢ B and I is eventually
in AN B or eventually in cB. | )

Theorem 17. A sequence I in a pseuwdometric space is a C-sequence iff
I converges to each of its cluster peoints.

It is obvious that a sequence without any cluster points is a C-se-
quence. Hence if a sequence is not a C-sequence then it has a cluster
point. Now a pseudometric space is campact'iff every sequence has a clus-
ter point. Thus we have proved

Theorem 18. A pseudometric space is compact iff every C-sequence con-
verges.

We know that if a net has no cluster points then it is a M-net and
50 if a net is not a M-net then it has a cluster point. Defininé a M-

sequence in a way analogous to that of a M-net we find similarly that

e
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sequence is not a M-sequence then it has a cluster point.

Theorem 19. A pseudometric space is compact iff every M-sequence

has a cluster point.

.

A1l of the results involving nets can also be expressed in terms of
directed functions {as in McShane and Botts [ 6 1), filters or filterbases

%s in Bourbaki [ 1]). A nonempty family ¢ of nonempty subsets of ¥ is a

e



filterbase iff A, Be @ imply there is C ¢ © such that CC AN B. A filﬁcr
is a. filterbase ¢ such that 4 B and A ¢ ¢ imply B ¢ . An ultrafilter

is a maximal filter. A filterhase ¢ may be defined to be eventually in a
set A iff there is F ¢ ¢ such that F C A. Then a C-filterbase can be de-
fined to be a filtérbase ¢ which has the property that A is open and x ¢ A
imply there is an open set B such that x ¢ B and ¢ is eventually in AN B
or eventually in c¢B. Let us say a filterbase 9 converges to a point x iff
@ is eventually in each neighbtorhood of x. It is obvious what the other
definitions and results would be. Directed functions may be handled in

the séme WAy «

We can also express the results in terms of families of sets with the
finite intersection property. Let us say a family ¢, of subsets of M, with
the finite intersection property is a C-family iff A is open and x e A
+dmply there exist an open set Band a F e ¢ such that x e Band FC AN B
or F C cB. If we define convergence of a C-family in the obvious way then
we can say a topelogical space is compact iff every C-family converges.

It is clear how to obtain other reseults of this sort.

We can also use filterbases all of whose members are closed sets. For
instance a space is compact iff every C-filterbase, all of whose members
are closed sets, converges. Other results of this kind are obvious.

‘ -Several other variations are also possible.

Let us say a point x is a cluster point of a filterbase ¢ iff ¢ is
not eventually in the complement of any neighborhood of x. Tet £ : M- M
be a continuous onto map and let (M, §) and (M', §') be topological spaees,
If a filterbase ¢ in M has a cluster point x ¢ M then f(x) is a cluster
point of fo. This fact can be used to prove that (M, 3') is compact if

KM, §) is. For if ¢’ is a C-filterbase in M’ then f”l@' has a cluster
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point in M when (M, §) is compact and sc ¢ has a cluster point in M . An
immediate consequence of this is the result that the coordinate spaces

i

are compact if the product space is compact. if ¢ 1is a C~-filterbase in

M’ then £ %’ need not be a C-filterbase in M.

Let us agree that a filterbase ¢ is finer than a filterbase o’ iff
F' ¢ @’ implies there is F ¢ @ such that F < F'. Tt is easy to show that
if ¢ is a C-filterbase in the product space of a finite number of com-
pact spaces then there is a filterbase ¢’ in the product-space which has
a clpster point and which is finer than ¢; hence this product space 1is
compact.

When we come to the product of an arbitrary number of compact spaces
it appears C-filterbases by themselves are unable to show that the procduct
space is compact. But this is hardly surprising since Kelley [ L] has
proved that the Tychonﬁff product theorem on compact spaces is equivalent
to the axiom of choice. In this coﬁnection.it may be noted that to prove
the result that a space is compact iff every C-filterbase converges it is
not necessary to use the axiom of choice while it was used in the proof of
Theorem 1 where C-nets were employed.

The following results are immediate consequences of the Tychonoff
prphuct theorem. Let (M,S3) be the product of the compact spaces (Mj,Sj),
je : where J is an index set. Let I be a C-net in (M,3). Then the pro-
jectiﬁn of T into each coordinate space converges. If a coordinate spacé
(Mj,ﬁj) is Hausdorff then the projectﬁon of I into this space is a C-net.
Every C-net in the product space of compact uniform spaces must bg a Cauchy
net.

It is evident that a product space is compact iff each projection, of

every C-net in the product space, converges.



Let us now consider a different kind of covering property.
Definition. A topological space (1i,%) is a-compact iff every family
- M, of subsets of M with the properties
1. the interiors of members of M cofer M
2. X is oﬁen implies there is A e M such that X C A or ¢cX C A,

has a finite subfamily which covers M.

Definition. A filterbase ® in a topological space (M,S) is an o-filter-
base iff X is open implies ¢ is eventﬁally in X or eventually in cX.

Lemma. An o-filterbase converges to each of its cluster points.

Lemma. A topological space is a-compact iff every family T, of subsets
of M with the finite intersection property and with the property that X
is open implies there is A ¢ M such ﬂhat A< X or ACcX, has the property
that the clesures of the members of & have a2 nonempty intersection.

Theorem 20. A space is a-compact iff every o-filterbase converges.

Proof. Let every a-filterbase converge and let It be a family of sets
with the finite intersection property and with the property that X is open
implies there is A ¢ N such that A € X or A C cX. Then the family B of all
finite intersections of members of M is an @-filterbase and so has a clus-
ter point. Hence the required result follows.

To prove the converse let us suppose that if ! is a family of sets
with the finite intersection property and with the property that X is
open implies there is A e ! such that A € X or A € cX then the closures
of members of N have a nonempty intersection. Let ¢ be an o-filterbase.
~Then @ has a cluster point.

Corcllary. A space is a-compac£ iff every o-filterbase has a cluster

‘point.

=
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An ultrafilter is an @-filterbase and so we can say a space is com-

pact iff each a-filterbase converges. Hence a space is compact iff it is

It has been shown by Thampuran [ 7 ] that given a topological space

f

(M,5) there is a qﬁasiuniform.sﬂructure U, from which we can get back the
topology J, such that Cauchy filterbases defined with respect to U are
identical with o-filterbases. It can also be shown that starting from a
given topological space we can find a syntopogenous structure 6 from
which the given topology can be derived, such that the compressed grilis,
of Csészér [ 2], defined with respect to © also coincide with @-filterbases

If we agree that the terms Cauchy filterbase and o-filterbase are

synonymous, that a space is complete 1ff every Cauchy filterbase converges

and that a family R of subsets of M contains small sets iff X is open im-

plies there is A ¢ M such that A € X or A C c¢X then we can say: a topo-

Jogical space is complete iff every family %t of sets which containg small
it K ¥

sets and which has the finite intersection property is such that the clo-
prop o

sures of members of M have a nonempty intersection. This is similar teo the

.correspondiﬁg characterization of completeness for uniform spaces.

Among nets the anzlogue of a w-filterbase is a net 1 vhlch is such
thet X is open implies.l is eventually in X or eventually in cX.

Let (M,3) be a topological space. Denote by T the family of all sub-
sets X of M such that X is open or cX is open.

Definition. A nonempty family ¢ of subsets of M is a T-family iff @

is a subfamily of T and ¢ has the finite intersection property.

Let us say ¢ is a maximal T-family iff no T-family properly contains @.

Lemma. ¢ is a maximal T-family iff X is Open implies X e @ or cX ¢ .



If ¢ is a T-family there is an ultrafilter § containing @. If ¢’ is
the intersection of § and T then ¢’ is a maximal T-family.

Theorem 21. Each T-family is contained in a maximal T-family.

Letlus say a maximal %~family'@ 18 eVenﬁually in a subset A of M iff
there is F ¢ @ such that F © A. Define cluster points, convergence, etc.,
of T-families in the same way as for filterbases. Then a maximal T-family
converges to each of its cluster points and all the o-filterbases converge
iff each maximal T-family converges. Therefore a space is w-compact (and
hence compact) iff each maximal T-family converges.

For brevity let us say a T-family ¢ is a C/-family iff A is open and
x ¢ A imply there is F ¢ ¢ such that F is openand x e FC A or F is
élosod and x e ¢cF C A. Then every C-filterbase converges iff every C'-
family converges. Hence a space is compact iff every G’»family converges.

These considerations can he easily extended to bases, subbases etc.
For instance the following results can be stated.

Definition. Let (M,S) be a topological space and let U be a gubfamily
of 3. A filterbase ¢ in M is a PB-filterbase iff A.e.ﬁ implies @Iis eventu~
ally in A or eventually in ch.

Let (M,5) be a topological space and let U be an open cover of M.

Let U be the topology for M which has ¥ as subbase. Let us say a filter-

base ¢ is an U-filterbase iff A ¢ U and xe¢ A imply there is B ¢ U such that

x € B and ¢ is eventually in AN B or eventually in cB.
Theorem 22. In the space (M,U) every B-filterbase converges iff every

U-filterbase converges.

-

Corollary. The space (M,Ul) is compact iff every B-filterbase con-

verges in (M,1).

16.



.BY the U-interior of a subset X of M we will mean the in%erior of X
in the space (M,U) and by ihc interior of X we will mean the interior of
¥ dn ﬁhé space (M,5).

Definition. Let (M,3) be a topolegical space and let U be an open
cover of M. Then M is Bﬁcgmpact iff every family M, of subsets of M with
the properties (1) A ¢ ¥ implies there is R ¢ N such that ACR or cACR
and (2) the U-interiors of members of M cover M, has a finite subfamily
which covers M.

Theorem 23. ¥ is B-compact iff every B—filterbase_converges in (M,U).

Corollary. (M,U) is compact iff it is B-compact.

Definition. Let (M,S) be a topological space and let U be a family
of open subsets of M. Then M is y-compact iff every family M, of subsets
of M with the properties (1) A ¢ ¥ implies there is R ¢ M such that A CR
or ¢cA C R and (2) the interiors of members of M cover M, has a finite
subfamily which covers M.

Theorem 2. M is y~-compact iff every B-filterbase has a cluster point
in (M,3).

 Corollary. (M,3) is compﬁct iff M is y-compact.

It is obvious that y~compactness implies B-compactness.

Let (M,S) be a topological space and let ¥ be an open cover of M.
Denote by 7’the family of sets obtained by adjoining to U the complement
of each member of U. Let us call a nonempty subfamily ¢ of v/ a v/-family
iff ¢ has the finite intersection property and that A ¢ ¥ implies A ¢ @
or cA ¢ 9. Then M is B-compact iff every T’'-family ¥-converges. If (4,3)
is compéct then every Tf-family has a cluster point and if each T!-family
converges then (M,S) is compact. If U is a subbase for § then (M,S) is

compact iff every T’—family converges.



A filterbase finer than an a-filterbase is also an a-filterbase. The
continuous image of an a-filiterbase is also an o-filterbase. Let £ : M+ M’
be continuous and ¢’ be an a-filterbase in M'; then Y’ need not be an
a-filterbase even if f is an open map. If M is a~compact and f is onte
then M’ is o-compact. A product space is a-compact iff each coordinate

space is o-compact. A more detailed investigation of the properties of o-

filterbases will be found in [ 7].

»

Let (M,3) be the product of the spaces (ﬂjjﬁj) for j in some index
set J. Let Pj denote prejection into the j-th coordinate space and let ﬂj

be an open cover of Mj‘ Denote by U the family of all sets of the form

-1
i
pj J}

space is. As a particular case of this we get the result that the product

j e J. The product space is then B-compact iff each coordinate

of compact spaces is compact. Several other results of this kind can be

easily obtained. . -
Finally let us consider ultrafilters and their covering properties.
Definition. A filterbase ¢ in M is an ultrafilterbase iff X is a sub-

set of M implies there is F ¢ @ such that FS X or F < cX. '
Definition. A topological space (M,3) is ultracompact iff every fam-

ily M, of subsets of M with the properties (1) X< M implies there is

Re® such that XC R or ¢cXC R and (2) the interiors of members of M is

" a cover of M, has a finite subfamily which covers M.

It is easy to prove the following theorem.

Theorem 25. A topdlogical space is ultracompact iff every ultrafil-

terbase converges.

Corollary. A space is ultracompact iff every ultrafilter converges.

Corollary. A space is cempact iff it is ultracompact.



For arbitrary families of subsels of M it is possible to get several
results on the same lines as those for families of open subsets of M. The
_fo];LO':fsiﬁg are 2 few of such results.

Definition. Let B be a family of ';au_hse'ts. of M. Then a filterbase ¢
in M is a §-filterbase ifi B e B implies ¢ is eventﬁal}_y in B or eventu-
ally in cB.

If B is a cover of M denote by U the topology for M which has B as
subbase.

Definition. Let B be a cover of M. Theﬁ M is 6-c0mpact iff every fam-
ily R, of subsets of M with the properties (1) B ¢ B implies there is
R e M such that BC R or ¢cBC R and (2) the U-interiors of the members of
N cover M, has a finite subfamily which is a cover of M.

Theorem 26. M is &-compact iff every 6-filterbase converges in (MM).

Corollary. (M,U) is compact iff it is &-compact.

Definition. Let (M,3) be a topological space and let B be a family
of subsets of M. Then M is A-compact iff every family R, of subsets of M
with the properties (1) B ¢ B implies there is R ¢ % such that B C R or
¢B C R and tE) the interiors of the members of M cover M, has a finite
subfamily which covers M.

: Theorem 27. M is A-compact iff every 6-filterbase has a cluster point
in the space (1M,53). =g

Corollary. (M,3) is compact iff it is A-compact.

A filterbase finer than an ultrafilterbase is also an ultrafilter-
base. An ultrafilterbase converges to each of its cluster points. The con-
tinuous .image of an ultrafilterbase is an ultrafilterbase. The continuous
image of an ultracompact space is ultracompact. A product space is ultra-

compact iff each coordinate space is ultracompact; one consequence of this

Nl



result is the Tychonoff pr@duct theorem. The inverse image of an uwltra-
filterbase under an open continuoﬁs msp need not be an ultrafilterbase.

Some aspects of covering properties associated with certain nets and
filterbaseslhave been considered in th@ preceding pages; other aspects,
such as the role nets play in compactification, will be taken up in sub-
sequent. papers.

There are certain similarities between the covering properties asso-
ciated with nets or filterbases defined with respect to.cpen sets and
those defined with respect to all ihe subsets of the épace, For instance:

1. Space is compact iff every C-net converges; space is compact 1ff
every M-net has a cluster point. .

2. Space is U-compact iff every U-net ﬁ-ccnve?ges; space is YU-compact
iff every M-net has an ¥-cluster point.

3. Space is a-compact iff every o-filterbase converges; space is a-
compact iff every ultrafilterbase CONVErges.

It is also interesting to note that a net I is an ¥'-net iff I con-
verges to éach of its U-cluster points. This result more or less summarizes
the relationship between convergence and ¥-cluster points.

Only a few nets and filterbases have been studied in this paper. Co-
vering properties associated with certain others are considered in a forth-
doming paper. |
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