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Abstract - In a prior work the galaxies of the nonstandard enlargements of conven- 

tionally infinite graphs and also of transfinite graphs of the first rank of transfiniteness 

were defined, examined, and illustrated by some examples. In this work it is shown how 

the results of the prior work extend to transfinite graphs of higher ranks. Among those 

results are following principal ones: Any such enlargement either has exactly one galaxy, 

its principal one, or it has infinitely many such galaxies. In the latter case, the galaxies are 

partially ordered by there "closeness" to  the principal galaxy. Also, certain sets of galaxies 

that are totally ordered by that "closenessn criterion are identified. 

Key Words: Nonstandard graphs, enlargements of graphs, transfinite graphs, galaxies 

in nonstandard graphs, graphical galaxies. 

1 Introduction 

In some prior works, the ideas of "nonstandard graphsn [2, Chapter 81 and the "galaxies 

of nonstandard enlargements of graphs" [3] were defined and examined. However, all this 

was done only for conventionally infinite graphs and transfinite graphs of the first rank of 

transfiniteness. The purpose of this work is to define and examine nonstandard transfinite 

graphs of higher ranks of transfiniteness. 

This paper is written as  a sequel to [3] and uses a symbolism and terminology consistent 

with that prior work. We also use a variety of results concerning transfinite graphs, and 

these may all be found in [2]. We refer the reader to those sources for such information. For 

instance, the "hyperordinals" are constructed in much the same way as are the hypernatu- 

rals, and their definitions are given in [3, Section 51. Furthermore, we use herein the idea of 



"wgraphs," which are transfinite graphs based upon walks rather than paths. This avoids 

some of the difficulties associated with path-based transfinite graphs and is in fact both 

simpler and more general than the path-based theory of transfinite graphs. Wgraphs and 

their transfinite extremities are defined and examined in [2, Sections 5.1 to  5.61. Lengths of 

walks on wgraphs and "wdistances" based on such lengths are discussed in [2, Sections 5.7 

and 5.81. All this is assumed herein as being known. 

Our arguments will be based on ultrapower constructions, and, t o  this end, we assume 

throughout that a free ultrafilter 3 has been chosen and fixed. Finally, when adding ordi- 

nals, we always take it that ordinals are in normal form and that the natural summation of 

ordinals is being used [I ,  pages 354-3551. 

It is a fact about a transfinite graph GV of rank v that it contains subgraphs of all ranks 

p with 0 _< p _< v, called p-sections, that a t  each rank p the p-sections are p-graphs by 

themselves and induce a partitioning of the branch set of G", and that the one and only 

u-section is G" itself. We define the "enlargements" V" of a transfinite graph G" and of 

its p-sections in the next section. The galaxies of all ranks in *G" are defined in Section 3. 

A galaxy of rank p (0 5 p 5 v) is called a "p-galaxy." 

Within the enlargement *SP of an p-section S P  of G", there is either exactly one p-galaxy, 

the "principal p-galaxy," or infinitely many p-galaxies in addition to  the principal p-galaxy. 

The latter case arises when G" is locally finite in a certain way (Section 4), but it may arise 

in other ways as well. Moreover, the enlargements of all the p-sections within a (p  + 1)- 

section lie within the principal (p + 1)-galaxy of the enlargement of that (p + 1)-section, and 

so on through the sections of higher ranks. In that  latter case still, there will be a two-way 

infinite sequence of p-galaxies that are totally ordered according t o  their "closeness to the 

principal p-galaxy," and there may be many such totally ordered sequences of p-galaxies. 

When there are many p-galaxies in *SP, they are partially ordered, again according to  their 

closeness to  the principal p-galaxy (Section 5 again). 



2 Enlargements of v-Graphs and Hyperdistances in the En- 
largements 

First of all, the enlargement *Go = { *XO, *B ) of a conventionally infinite 0-graph and the 

enlargement G' = { *XO, *B, *X1 ) of a transfinite 1-graph are discussed in [3, Sections 2 

and 81. These prior constructs will be encompassed by the more general development we 

now undertake. We shall assume that the rank u is no larger than w. The extensions to  

higher ranks of transfiniteness proceeds in much the same way. 

Consider a wconnected transfinite wgraph of rank u (0 5 u 5 w): 

where XO is a set of 0-nodes, B is a set of branches (i.e., two-element sets of 0-nodes), 

and XP (p = 1,. . . , v) is a set of p-wnodes. It is assumed that each X P  (p = 0,.  . ., u) is 

nonempty except possibly for p = w'. In general, X" may be empty. 

The "enlargement" G" of G" is defined as follows: Two sequences (xfl) and (YE) of 

p-wnodes in G" (i.e., xfl, yg E XP) are taken to be equivalent if {n: x i  = y;) E 3. This is 

truly an equivalence relation on the set of sequences of p-nodes, as is easily shown. Each 

equivalence class xP will be called a p-hypernode and will be represented by xP = [xi] where 

the xfl are elements of any one of the sequences in that equivalence class. We let *XP 

denote the set of all such equivalence classes (i.e., the set of all p-hypernodes). Then, the 

enlargement *GV of G" is the set 

The elements of *B  are called hyperbranches and have been defined in [2, Section 8.11. Here, 

too, *XP is nonempty if p # w'; *x" may be empty. 

Next, we wish to define the "hyperdistances" between the hypernodes of G". The 

"length" I Wzy 1 of any two-ended walk Wzy terminating at two wnodes x and y of any ranks 

in G" is defined in [2, Section 5.71. Also, the wdistance d(x, y) between those two wnodes is 



where the minimum is taken over the lengths (WXyl of all the walks WXy in GV that terminate 

a t  x and y. The minimum exists because those lengths comprise a well-ordered set of 

ordinals. Furthermore, a wnode is said to  be maximal if it is not embraced by a wnode of 

higher rank. In these definitions, x and y may be either maximal or nonmaximal wnodes. 

Note that  the wdistance measured from any nonmaximal wnode z is the same as that 

measured from the maximal wnode x that  embraces z. We also set d(x, x) = 0. Thus, d 

is an ordinal-valued metric defined on the maximal wnodes in U;=oXP. (The axioms of a 

metric are readily verified.) 

Given two hypernodes x = [x,] and y = [y,] of any ranks in *GV, we defined the 

hyperdistance d between them as the internal function 

We say that a hypernode xP = [zfl] is maximal if it is not embraced by a hypernode y r  = [yz] 

of higher rank (y > p) (i.e., xfl is not embraced by y;l for almost all n). Upon restricting d 

to  the maximal hypernodes in 'GV, we have that this restricted d satisfies the metric axioms 

except that  it is hyperordinal-valued. In particular, we have by the transfer principle that 

the triangle inequality holds for any three maximal hypernodes x, y ,  and z, namely, 

3 The Galaxies of G" 

We continue to  assume that the rank v is no larger than w. Also, we assume a t  first that  the 

rank p is a natural number no larger than v. Consider the v-graph GV and its enlargement 

*GV. Two hypernodes x = [x,] and y = [y,] of any ranks in CV will be said t o  be in the 

same nodal p-galaxy J? if there exists a natural number p,, depending on x and y such 

that  {n: d(z,, y,) 5 wP .pZy) E 3. In this case, we say that x and y are p-limitedly distant. 

This defines an equivalence relation on the set Uf;=,*X? of all the hypernodes in G V ,  and 

thus Uf;,o*XY is partitioned into nodal p-galaxies. The proof of this is the same as that 

given in [3, Section 91 except that the rank 1 therein is now replaced by p. By the same 

arguments, we have that ,  for a 5 p, the nodal a-galaxies provide a finer partitioning of 



~ f ; = , * X y  than do the nodal y-galaxies. Moreover, any nodal p-galaxy is partitioned by the 

nodal a-galaxies ( a  < p) in that nodal p-galaxy. 

Corresponding to  each nodal p-galaxy i ' ~ ,  we define a p-galaxy rP of C" as the nonstan- 

dard subgraph of *GV induced by all the 0-hypernodes in i ' ~ ;  that is, along with the hyper- 

nodes of i'p, we have hyperbranches whose incident hypernodes are in I?P. Note that  every 

hyperbranch must lie in a single p-galaxy for every p because their incident 0-hypernodes 

are a t  a hyperdistance of 1. 

Let us now turn to  the case where p = w'. Now, v is either w' or w. The definition 

of the ;-galaxies is rather different. Two hypernodes x = [x,] and y = [y,] in +GV will 

be said to  be in the same 2-galazy I?' if there exists a natural number p,, depending on 

x and y such that {n : d(z,, y, 5 wPry) E 3. Thus, x and y are in I?' if and only if 

{n : d(x,, y,) < wW) E 3. In this case, we say that x and y are w'-limitedly distant. Here, 

too, the property of being &limitedly distant defines an equivalence relation on the set of 

all hypernodes in G". So, the nodal G-galaxies partition the set of all hypernodes. Then, 

the 6-galaxy I" corresponding to  any nodal w'-galaxy i'' consists of the hypernodes in r3 
along with the hyperbranches whose 0-hypernodes are in r3. 

Finally, the w-galaxies of a nonstandard w-wgraph 'GW are defined just as are the p- 

galaxies of natural number ranks. We now require that {n : d(x,, y, 5 wW - p,,) E 3 for 

some natural number p,, depending upon x = [z,] and y = [y,] in order for x and y t o  

be in the same nodal w-galaxy. When this is so, we again say that x and y are w-limitedly 

distant. The same partitioning properties hold. 

In general now, let GV be a v-graph where 0 5 v 5 w, possibly v = 3. The principal v- 

galaxy r: of GV is that v-galaxy whose hypernodes are v-limitedly distant from a standard 

hypernode of GV. We shall show later on that GV either has exactly one v-galaxy, its 

principal one, or has infinitely many of them. 

Let us now recall another definition concerning standard transfinite wgraphs. A p- 

wsection S P  of GV (p < v) is a maximal p-wsubgraph of the p-wgraph of GV that is p- 

wconnected. This p-wconnectedness means that, for every two wnodes in SP, there is a 

two-ended a-walk ( a  5 p) terminating a t  those wnodes. (When p = o', we have that  



a < G.) Furthermore, the branch set of any p-wsection SP is partitioned by the branch sets 

of the a-wsections lying in SP. 

Consider now any (p - 1)-wsection SP-' within a p-wsection S P .  A p-wnode (not nec- 

essarily maximal now) will be called incident to  S P  if xP embraces an a-wtip ta (a < p) 

belonging to  S P - I  (that is, SP-* contains a one-ended extended a-walk that is a represen- 

tative of ta). This definition includes the case where the a-walk is simply a single branch; 

we let the extremity of the branch be an (-1)-tip. Also, when p = w, p - 1 denotes w'. 

Lemma 3.1. Given any two p-wnodes zP  and yP incident to a (p - 1)-section, there 

exists an a-walk (a < p - 1) in SP- '  that reaches xP and yP. 

Proof. Let (resp. W r 2 )  be a representative walk for the al-wtip (resp. a2-wtip) 

embraced by zP (resp. yP). We have that a l , a 2  < p - 1. Let u (resp. v )  be a wnode of 

W$l (resp. W,Q2) not embraced by X P  (resp. yP). By the (p - 1)-wconnectedness of SP-', 

there is a two-ended walk W,, of rank no larger than p - 1 that terminates a t  u and v. 

Then, the walk that passes first from X P  along WF1 to  u,  then along W,, to v, and finally 

along Wt2 to yP is the asserted walk. 0 

Now, each p-wsection SP of GV is a p-wgraph by itself, and therefore the enlargement 

*SP of S P  has its own principal p-galaxy rg(SP). 

Theorem 3.2. If a < p 5 v and if Sa is an a-wsection lying S P ,  then the enlargement 

*Sa of Sa lies within the principal p-galaxy rg(SP) of*SP. 

Note. The conclusion means that every hypernode in *Sa is a hypernode in rg(SP), 

and consequently every hyperbranch in *Sa is a hyperbranch in rg(SP). 

Proof. Let x = [(x, x, x , .  . .)] be any standard hypernode in r$(SP), and let y = 

[(y, y, y, . . .)] be any standard hypernode in the principal a-galaxy r;(Sa) of *Sa. Since Sa 

lies in SP,  the standard wnodes x and y corresponding to  x and y are no further apart than 

the wdistance up - k for some k E N. (Indeed, there is a walk wconnecting them that does 

not pass through any wnode of rank greater than p.) Consequently, x and y are p-limitedly 

distant. Also, for every hypernode z = [t.,] in *Sa, y and z are a-limitedly distant, which 

implies that they are p-limitedly distant. So, by the triangle inequality (I) ,  x and z are 

p-limitedly distant. Thus, z is in rg(SP). 17 



Note that *Sa may (but need not) have other a-galaxies besides its principal one I'$(Sff), 

and *Sf' may have still other a-galaxies not in rg(SP). Also, there may be a p-galaxy 

(possibly many of them) consisting of a single A-hypernode when A > p. 

Furthermore, it is possible of GV to have exactly one p-galaxy. This occurs, for instance, 

when there is a single node in GV to which all the other nodes of GV are connected through 

two-ended p-paths, with each such path being connected to the rest of G" only a t  its 

terminal nodes. When GV has exactly one p-galaxy, then "GV has exactly one a-galaxy for 

every a such that p < a 5 v because, if two hypernodes are p-limitedly distant, then they 

are also a-limitedly distant. 

In view of all this, we again observe that the galaxies of GV can have rather complicated 

structures and dissimilarities. 

4 Locally Finite Sections and a Property of Their Enlarge- 
ments 

In this and the next section, the rank p is not allowed to  be w'. We now establish a sufficient 

(but not necessary) condition under which the enlargement *SP has a t  least one p-galaxy 

different from its principal galaxy I';(Sp). Let us first recall some definitions for standard 

wgraphs. 

Assume initially that p is a natural number. Two p-wnodes of SP will be called p- 

wadjacent if they are incident to the same (p  - 1)-wsection. A p-wnode will be called a 

boundary p-wnode if it is incident to two or more (p - 1)-wsections. A p-wsection S P  will be 

called locally p-finite if each of its (p- 1)-wsections has only finitely many incident boundary 

p-wnodes. These same definitions hold when p = w except that p - 1 is understood to  be 

L3. The case where p = L3 is prohibited in the statements of this section. 

In the following, we let p be a natural number or p = w.  

Lemma 4.1. em Let xP  be a boundary p-wnode. Then, any p-walk that  passes through 

xp from one (p - 1)-wsection sf- '  incident to  z p  to another (p - 1)-wsection 5'g-l incident 

to xP must have a length no less that wP (resp. when p = G, a length no less than w"). 

Proof. The only way such a walk can have a length less than wP is if it avoids traversing 



a ( p  - 1)-wtip in xP. But, this means that it passes through two wtips ernbraced by X P  of 

ranks less than p. But, that in turn means that sf-' and SP-' cannot be different ( p  - 1)- 

wsections. 0 

An immediate consequence of Lemma 4.1 is 

Lemma 4.2. Any two p-wnodes xP and yP that are p-wconnected but not p-wadjacent 

must satisfy d(xP, yP) > wP.  

Theorem 4.3. Let the p-wsection SP of GV be locally p-finite and have infinitely many 

boundary p-wnodes. Then, given any p-wnode xg in  SP, there is a one-ended p-walk WP 

starting at x t  : 

W P  = (xg,  W?, x;, WF1 , . . . ) xL, w;rn,. . .) 

such that there is a subsequence of p-wnodes x k , ,  k = 1,2,3,. . ., satisfying d(x& xg,) 2 

w P .  k .  

The proof of this theorem is just like that of Theorem 10.3 in [3] except that  the rank 1 

therein is replaced by the rank p herein. In the same way, Corollary 10.4 of [3] generalizes 

into the following assertion. 

Corollary 4.4 Under the hypothesis of Theorem 4.3, the enlargement *SP of SP has at 

least one p-hypernode not in its principal galaxy I'g(Sp) and thus has at least one p-galaxy 

I? different from its principal p-galaxy I'g(SP). 

5 When the Enlargement *Sp of a pwsection Has a pHypernode 
Not in the Principal pGa1a.y of *SP 

As always, we take GV to be a v-wgaph with 2 < v 5 (3, possibly u = 2. We continue 

to asssume that  the rank p of a p-wsection SP of GV is either a natural number or w,  but 

not L3. Let I': and I'f be two p-galaxies in the enlargement *SP of a p-section SP that  are 

different from the principal p-galaxy I'g of *SP. We shall say that I't is closer to I'g than i s  

I'i and that I'i is further away from I'g than is rt if there are a hypernode y = [y,] in I?; 

and a hypernode z = [t.,] in I'; such that, for some x = [x,] in I?; and for every mo E N, 

we have 

N o ( ~ o )  = { n :  d(zn, x,) - d(y,, x,) 2 wP . mo)  E 3. 



(The ranks of x ,  y, and z may have any values no larger than v other than w'.)  Any set of 

p-galaxies for which every two of them, say, rz and rc satisfy this condition will be said to  

be totally ordered according to their closeness to rg. That the conditions for a total ordering 

(reflexivity, antisymmetry, transitivity, and connectedness) are fulfilled are readily shown. 

For instance, the proof of Theorem 5.2 below establishes transitivity. 

These definitions are independent of the representative sequences (x,), (y,), and (z,) 

chosen for x ,  y, and z ;  the proof of this is exactly the same as the proof of Lemma 4.1 of 

[3] except that  the mr, are replaced by wP - mk. 

We will say that  a set A is a totally ordered, two-way infinite sequence if there is a 

bijection from the set Z of integers to  the set A that preserves the total ordering of 2. 

Theorem 5.1. If the enlargement *SP of a p-wsection SP of Gu has a p-hypernode that 

is not in the principal p-galaxy of *SP, then there exists a two-way infinite sequence of 

p-galaxies totally ordered according to their closeness to l?;. 

Note. Here, too, the proof of this is much like that of Theorem 4.2 of [3], but, since this 

is the main result of this work, let us present a detailed argument. As always, we choose 

and fix upon a free ultrafilter F. 

Proof. Let x = [(x, x, x, . . .)] be a standard hypernode in l?;. Also, let v = [v,] be the 

asserted hypernode not in I?;. The ranks of x and v can be any ranks other than w' and 

no larger than p. Thus, for each m E N ,  we have {n : d(v,, x) > wP - m) E 3. We can 

choose a subsequence (y,) of (v,) such that d(y,, x)  = wP - m, where the m, are natural 

numbers that  increase monotonically toward oo as n -t oo. Thus, y = [y,] is a hypernode 

in a p-galaxy I't different from r;. 
There will be a smallest n l  E N such that d(y,,x) - d(yo,x) > W P  for all n 2 7x1. Set 

w, = yo for 0 5 n < nl .  Thus, for 0 5 n < nl ,  we have that  d(y,,x) - d(w,,x) 2 0 and 

d(wn7 2)  2 0. 

Again, there will be a smallest 722 E N such that d(y,, ~ ) - d ( ~ , , ,  x )  > wP-2 for all n > - n2. 

Set w, = yo for n l  2 n < nz. Thus, for n l  5 n < nz, we have that  d(y,, x )  - d(w,, x) > wP 

and d(w,, x)  2 0. 

Once again, there will be a smallest ns E N such that d(y,,z) - d(y,,,x) > W P  . 3 



for all n > n3. Set w, = y,, for n2 5 n < n3. Thus, for n2 5 n < ns, we have 

that d(y,, x) - d(w,, x) > W P  2 and d(w,, x) > up. The last inequality follows from 

d(y,,, x) > d(y0, x) + 1 2 up for all n > n ~ .  

Continuing this way, we will have a smallest n k  E N such that  d(y,, x) - d(y,,-, , x) > 

W P  . k for all n 2 n k .  Set w, = y,,-, for nk-1 5 n < n k .  In this general case for 

n k - 1  5 n < n k ,  we have that d(y,, x) - d(wn, x) > wP . (k - 1) and d(w,, x) > wP . (k - 2). 

The last inequality occurs because d(y,,-, , x) > d(yn,-, , x) + u p  . (k - 2 )  > wP - (k - 2) for 

all n 2 n k - 2 .  

Altogether then, w, is defined for all n. Moreover, d(w,,x) increases monotonically, 

eventually becoming larger than m for every u p  - m E N. Therefore, w = [w,] is in a p- 

galaxy I'c different from the principal p-galaxy rg of *SP. Furthermore, d(y,, x) - d(w,, x) 

also increases monotonically in the same way. Consequently, the p-galaxy I?; containing 

w = [w,] is closer to rg than is the p-galaxy I'f containing y = [y,]. 

We can now repeat this argument with I?; replaced by r$ to find still another p-galaxy 

f'c of *SP different from rg and closer to r; than is rg. Continual repetitions yield an 

infinite sequence of p-galaxies indexed by, say, the negative integers and totally ordered by 

their closeness to I?;. 

The conclusion that there is an infinite sequence of p-galaxies progressively further away 

from than is I'i is easier to  prove. With y E I'i as before, we have that, for every m E N, 

{n  : d(y,, x) > wP . m) E 3. Therefore, for each n E N, we can choose zn as an element 

of (y,) such that d(z,, x) 2 d(y,, x) + wP - n and also such that d(z,, x) monotonically 

increases with n and eventually becomes larger than wP . m for every m E N. This implies 

that z = [z,] must be in a p-galaxy that is further away from I?: than is r{ 
We can repeat the argument of the last paragraph with rz in place of rf and with 

w = [w,] playing the role that y = [y,] played to find still another p-galaxy f'g further away 

from I?: than is r:. Repetitions of this argument show that there is an infinite sequence 

of p-galaxies indexed by, say, the positive integers and totally ordered by their closeness to  

I?:. The union of the two infinite sequences yields the conclusion of the theorem. 0 

By virtue of Corollary 4.4, the conclusion of Theorem 5.1 holds whenever G is locally 



finite. 

In general, the hypothesis of Theore~n 5.1 may or may not hold. Thus, *SP either has 

exactly one p-galaxy, its principal one I'g, or has infinitely many p-galaxies. 

Instead of the idea of "totally ordered according to  closeness to T;," we can define the 

idea of "partially ordered according to closeness to  I';" in much the same way. Just drop 

the connectedness axiom for a total ordering. 

Theorem 5.2. Under the hypothesis of Theorem 5.1, the set of p-galaxies of *SP is 

partially ordered according to the closeness of the p-galaxies to the principal p-galaxy I?:. 

Proof. Reflexivity and antisymmetry are obvious. Consider transitivity: Let r,P, I?;, 
and I'z be p-galaxies different from I?:. (The case where I'z = I'; can be argued similarly.) 

Assume that is closer to  I'; than is I?; and that  I't is closer t o  I'; than is rg. Thus, for 

any x in I'g, u in rg, v in I't, and w in I'c and for each m E N, we have 

and 

Nu, = {n :  d(w,, 2,) - d(vn, x,) 2 wP . m} E 3 

We also have 

Thus, Nu, E 3. Since 7n can be chosen arbitrarily, we can conclude that  I',P is closer to  I'g 

than is I?:. 0 
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