NONSTANDARD GRAPHS BASED ON TIPS AS THE
INDIVIDUAL ELEMENTS
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Abstract — From any given sequence of finite or infinite graphs, a nonstandard graph
is constructed. The procedure is similar to an ultrapower construction of an internal set
from a sequence of subsets of the real line, but now the individual entities are the tips of the
branches instead of real numbers. The transfer principle is then invoked to extend several
graph-theoretic results to the nonstandard case. After incidences and adjacencies between
nonstandard nodes and branches are defined, several formulas regarding numbers of nodes
and branches, and nonstandard versions of Eulerian graphs, Hamiltonian graphs, and a
coloring theorem are established for these nonstandard graphs. This work is a revision and

expansion of CEAS Technical Report 793, University at Stony Brook, January 2002.
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1 Introduction

!

In the book [5] (see Sec. 19.1), R. Goldblatt constructed a nonstandard graph by applying
the transfer principle to a set V of vertices with the set E of edges defined by a symmetric
irreflexive binary relationship on V. Thus, the conventional graph (V, E) is transferred to
the nonstandard graph *G' = (*V, "E). This result was used to establish in a nonstandard
way the standard theorem that, if every finite subgraph of a copventiona.l infinite graph G
has a coloring with finitely many colors, then G itself has such a finite coloring.

On the other hand, in several recent works (8], [9], [10], [12], {13], the idea of nonstan-
dard transfinite graphs and networks was introduced and investigated. The basic idea in
those works was to start with a given transfinite graph, to reduce it to a finite graph by

shorting and opening branches, and then to obtain an expanding sequence of finite graphs



by restoring branches sequentially. If all this is done in an appropriate fashion, it may
happen that the sequence of finite graphs fills out and restores the original transfinite graph
once the restoration process is completed. If in addition there is an assignment of electrical
parameters to the branches, the final result may be sequences of branch currents and branch
voltages, from which hyperreal currents and voltages can be derived. The latter hyperreal
quantities will then automatically satisfy Kirchhoff’s laws, even though Kirchhoff’s laws
may on occasion be violated in the original transfinite network when standard real numbers
are used.

However, this is only a partial construction of a nonstandard graph in the sense that the
completion of the restoration process—if successful—results in the original standard trans-
finite graph. The sequence of restorations only provides a means of constructing hyperreal
currents and voltages satisfying Kirchhoff's laws. Another approach might start with an
arbitrary sequence of conventional graphs and construct from that a nonstandard graph in
much the same way as an internal set in the hyperreal line *R is constructed from a given
sequence of subsets of the real line R, that is, by means of an ultrapower construction
[5, page 36]. In this case, the resulting nonstandard graph has nonstandard branches and
nonstandard nodes. Thus, that nonstandard graph is much different from those of [8] - [13].

Our objective in this work is to develop this latter approach to nonstandard graphs.
To conform with all our prior works, we use electrical terminology by writing ‘branches”
instead of “edges” and “nodes” instez{xd of “vertices.” Moreover, A or card A denotes the
cardinality of a set A. IV denotes the set {0,1,2,...} of all natural numbers. A sequence
of elements a, will be denoted by (a,: n € IV) or more simply by (a,), where the index n
is understood to traverse IV.

Actually, there are two essentially equivalent ways of accomplishing our objective. One
way is to adopt the approach that leads to the construction of transfinite graphs [7]. Thus,
given a sequence ((7,,: n € IV) of finite or conventionally infinite graphs G,,, each branch
of G, is viewed as a set of two tips,! with the intersection between any two branches being

empty. The union of all the branches is a set 7, of tips. Thus, 7'_,:1 is even if (G, is a finite

'Called “elementary tips” in [7).



graph, but f may be any infinite cardinal number since G,, is allowed to be any, possibly
infinite, conventional graph.? Then, the set 7, is partitioned arbitrarily to get the nodes of
G, each node being a set of the partition. With B,, (resp. X, ) being the set of branches
(resp. nodes) of G,,, we write &, = {B,,, X,,} but remember that it is the tips that play the
role of individuals when constructing our nonstandard graph. An individual is an entity
that is not a set—it has no members—unlike a branch or a node. This is the approach
we adopt in this work. Another consequence of this approach is that there are no isolated
nodes in G,. However, there may be parallel branches (i.e., two or more branches incident
to the same two nodes) and also self-loops (i.e., a branch incident to just one node).

The other way of constructing the nonstandard graphs considered herein is to use the
nodes of each G, as the individual entities and then define the branches of G, as pairs
of nodes. This is a conventional way of defining a graph. The former way is readily
generalized to get tips of higher ranks representing infinite extremities of graphs and yields
thereby transfinite graphs. However, there is a problem (which may yet be overcome)
in identifying nonstandard tips of higher transfinite ranks as the infinite extremities of
nonstandard graphs. That problem arises from the fact that the infinite extremities of a
graph are defined as certain equivalence classes of one-way infinite paths, and that in turn
requires infinitely many conditions and thereby infinitely many sets in the chosen ultrafilter
for the ultrapower construction employed herein. Those infinitely many sets may have an
empty intersection, thereby preventinlg an ultrapower construction of a nonstandard one-
way infinite path. An equivalent way of viewing this problem is to note that a symbolic
sentence representing a one-way infinite path would have to be infinitely long and thereby
not a legitimate sentence in symbolic logic.

The latter more conventional way also encounters the same difficulty. In any case,
the two approaches are equivalent, if we disallow isolated nodes, self-loops, and parallel
branches.

Because of this problem regarding the extension of our nonstandard graphs to nonstan-

dard transfinite graphs, we will be dealing only with the lowest rank of transfiniteness. So,

2The prior works on nonstandard graphs cited above required that each G, have at most a finite branch
set; thus in this regard we have greater generality now.



we drop any reference to transfinite ranks; that is, (—1)-tips, 0-nodes, and 0-graphs are

henceforth called simply tips, nodes, and graphs.

2 Nonstandard Graphs

A standard graph is a conventional (finite or infinite) graph. However, we use an unconven-
tional definition, as given in [7, Sec. 1.3], just to conform with our prior works on transfinite
graphs. In particular, each branch is taken to be a set of two tips (also called “elementary
tips”) with the branches being pairwise disjoint. The set T of all tips is the union of the
branches. Alternatively we can start with a set 7 consisting of either a finite even number
of tips or infinitely many tips and then partition 7 into two-element subsets, each subset
being defined to be a branch. B denotes the set of branches. Next, we partition 7 arbi-
trarily and define each subset of the partition to be a node. X denotes the set of nodes.
Thus, a conventional graph or synonymously a graph G is a pair G = {B, X} derived from
an initially given set 7 of tips. Under this definition, there are no isolated nodes in G.

Next, let (G,,: n € N) be a sequence of graphs.? Thus, G, = {B,, X,.} for each n, and
each set 7, of tips in G,, can be obtained by taking the union of all the branches in B,, or
alternatively all the nodes in X,,. We allow B, N B,, # § when n # m; as a result, nodes
in different (7,, and (,, may also have nonempty intersections.

Furthermore, let F be a nonprinciple ultrafilter in IV {5, pages 18-19]. A nonstandard
tip "t is an equivalence class {(t,,)] of sequences (t,,) of tips t,, € 7,, where two such sequences
(tn) and (s,) are taken to be equivalent if {n € N:t, = s,) € F, in which case we write
“tn = Sp a.e.” or “t,, = s, for almost all n.” For the sake of a simpler notation, we also write
“¢ = [t,]” where it is now understood that the ¢, are the members of one (i.e., any one)
representative sequence (t,) in the equivalence class. That this truly defines an equivalence
class can be shown as follows. Reflexivity and symmetry being ol;vious, consider transitivity.
Given that (t,) = (s,) a.e. and that (s,) = (r,) a.e.,let Nyy = {n:t, = s,} € F, and
let Ny, = {n:s, = r,} € F. By the properties of an ultrafilter filter, N;; 0 N, € F.
Moreover, Ny, = {n:t, = r,} O (N N Ny, ). Therefore, Vy, € F. So, (t,) = (rn) a.e;

3More generally, we could let the index n traverse an arbitrary infinite set with hardly any alteration in
our development.



transitivity holds. We let *7 denote the set of nonstandard tips.

Next, we define the nonstandard branches. Let % = [t,] and *s = [s,,] be two nonstandard
tips. This time, let Nes = {n: {tn,sn} € Bn} and N, = {n: {t,,s.} ¢ Bn}. Since F is
an ultrafilter, exactly one of IV;; and IN{, is a member of F. If it is Ny, "bes = [{tn, sn}]
is defined to be a nonstandard branch; that is, *b;, is an equivalence class [b,] of sequences
of branches with (b,,) being one of those sequences and b, = {t,,s.}, n =0,1,2,.... If
N € F, then [{t,, s, }] is not a nonstandard branch.

We should now show that this definition is independent of the representatives chosen for
the branches. Let [{t,, s, }] and [{r,, ¢.}] be nonstandard branches. We want to show that,
if s, = r, a.e., then t,, = ¢, a.e. Suppose t,, # ¢, a.e., but s, = r,, a.e. Then, there exists
at least one n for which t,, s, = r,, and ¢, all belong to the same branch in G,. Hence,
the branch set in G, is not a partition of the set of tips in G,, into two-element subsets—a
contradiction.

Next, we show that we truly have an equivalence relationship among all sequences of
standard branches. Reflexivity and symmetry again being obvious, consider transitivity.
Let *b = [{tnsn}], P = [{f., 5.}, b = [{fn, $n}], and assume that *b = b and b = *b. We

want to show that *b = *h. Set

Ny = {n: {t,,sn} € B,} € F,

H

Nl'; = {n: {invgn} € B,} € F,
Ny = {n: {t’n,én} € B,} e F.

By our assumption, Ny N N; € F and Nyn N; € F. Because, F is an ultrafilter, Ny N IV N
N; € F. But, (Nyn Ng) D (N, n Nyn N;). Hence, Ny N IN; € F. Consequently, *b = *,
as desired.

Because of all this, we also write *b = {*, *s}, where *t = [t,] and *s = [s,], and we let
*B denote the set of all nonstandard branches .

We have yet to define the nonstandard nodes. For each n, we have a partition of 7,
into the nodes of (7,,. If t,, and s,, are members of the same node in G,,, we say that t,, and

s, are shorted together and write t,, = s,. Similarly, let % = [t,] and *s = [s,], and now



let Ny = {n:t, =s,}and N, = {n:t, # s,}. As before, exactly one of IV;; and IV, is
in F. If it is Ny, (resp. IN{), we say that % is shorted to "s (resp. "t is not shorted to *s),
and we write 't = *s (resp. "t # *s). This shorting is an equivalence relationship for the set
of all nonstandard tips, as can be shown much as before; indeed, for transitivity, assume
% = *sand *s = *v;since {n:t, = s,}N{n:s, =v, C {n:t, = v,}, we have * = ™.
The resulting equivalence classes of the corresponding partition are the nonstandard nodes.
Also, much as before, this definition can be shown to be independent of the representative
sequences of the nonstandard tips. To be specific, let *t = [t,] = [t.] and *s = [s,] = [3n].
Set Ny = {n:t, =t,} € Fand N, = {n: s, = §,} € F. Assume [t,] = [s,]. Thus,
Ny ={n:t, = s,} € F. We want to show that N, = {n:t, = 3,} € F so that [t,] = [3,].
We have (N; N N,N Ny,) C N,,, whence our conclusion.

Altogether then, we define a nonstandard node *z to be any set in the partition of the
nonstandard tips under the shorting together of such nonstandard tips. *X will denote
the set of nonstandard nodes. Finally we define a nonstandard graph *G' to be the pair
G = {*B, "X }.

Let us take note of a special case that arises when all the G,, are the same standard
graph G, that is, each (7, is constructed out of the same set 7 of tips in exactly the same
way. In this case, we call *G' an enlargement of G, in conformity with an enlargement *A of
a subset A of R [5, pages 28-29]. If (¢ is a finite graph, then its tips comprise a finite set of
even cardinality. For this case, each ml)nstandar(l tip of *G can be identified with a standard
tip of G (modulo the given ultrafilter F). In fact, *T = 7 because the enlargement of a
finite set equals the set itself. Consequently, the nonstandard branches and nodes can be
identified with the standard branches and nodes, and we have *G = (G. On the other hand,
if G is a conventionally infinite graph, 7 is an infinite set and its enlargement *7 has more
elements, namely, the nonstandard tips that are not equal to standard tips (i.e., "7\ 7 is
not empty). When this happens, *G has nonstandard branches and nodes that are different
from the standard branches and nodes of G.

Example 2.1. Let G be a one-ended path P (i.e., a one-way infinite path) in a standard



graph:

P = {zo,bo, 21,01,y Tm,bum,. ..}
where m = 0,1,2,.... Also, let (-, = G for all n € N, and let *G = {*B, *X} be the
resulting enlargement of (. Then, in terms of tips, let us set b,, = {tm,fm} and thus
Tm = {tm—1,tm} for each m = 1,2,3,...; however, it will be understood henceforth that
zo = {to} for m = 0. These are the only branches and nodes appearing in G.

Now, let (k, : n € IN) be any sequence of natural numbers. Set *t« = [t.] and
o = [fr,] where *k = [k,]. These are two nonstandard tips belonging to the nonstandard
branch *by = {*ta, T} = [{tk., 1k, }]- Then, 2o = {fwey, T} = [{fk,-1,tk,}] and
“Toeyr = {Tok, toks1} = [{Thn» th,41}] aTe two nonstandard nodes “incident to” *bs. We also
say that "z« and *zw4; are “adjacent to” each other. On the other hand, if (p,:n € IV) is
another sequence of natural numbers with p,, # k, a.e., then [{ts,,%,,}] is not a nonstandard
branch in *G because {fy,,%,,} is not a standard branch in G,, for almost all n. Similarly,
[{fk.-1,tp, }] is not a nonstandard node in *G. Note also, that, when k, is a fixed natural
number 7 for all #, then *b«; can be identified with the standard branch b, = {¢,,%,}, and *z+
can be identified with the standard node z, = {f,._,,t,.}. Altogether then, the enlargement

*G of (& is the nonstandard path:
P = {*3:07*()07*'1"1 b, a*:v’k»*b‘k’*z*k-i-l 1*bk'+l, . '}

= {zo,b0, 21,01 ..., T, bop, Topgr, Doy, .. o}

This generation of a nonstandard path by using an ultrapower construction is rather com-
plicated. Fortunately, the transfer principle allows us to write *P directly as a generalization
of P. O

Another special case arises when almost all the G, are (possibly different) finite graphs.
Again in conformity with the terminology used for hyperfinite internal subsets of *R [5,
page 149], we will refer to the resulting nonstandard graph *G as a hyperfinite graph.? As a
result, we can lift many theorems concerning finite graphs to hyperfinite graphs. It is just
a matter of writing the standard theorem as an appropriate sentence using symbolic logic

and then applying the transfer principle. We let "Gy denote the set of hyperfinite graphs.

*This should not be confused with a hypergraph—an entirely different object [2]-



3 Incidences and Adjacencies for Nodes and Branches

Let us now define these ideas for nonstandard graphs both in terms of an ultrapower con-
struction and by transfer of appropriate symbolic sentences. In the subsequent sections, we
will usually confine ourselves to the transfer principle. We henceforth drop the asterisks
when denoting nonstandard nodes and branches. These are specified as members of *X and
*B respectively.

Incidence between a node and an branch: Given a sequence (G, :n € IN) of standard
graphs G, = {X,, B.}, a nonstandard node z = [z,] € *X and a nonstandard branch
b = [b,] € *B are said to be incident if x,, and b,, share at least one tip for almost all n, that
is, {n: z, N b,} # 0} € F, where as always the nonprincipal ultrafilter F is understood to
be chosen and fixed. Also, the image ") of the empty set () under transfer is denoted simply
by 0.

On the other hand, we can define incidence between a standard node z € X and a

standard branch b € B for the graph G = {X, B} through the following symbolic sentence
(3zeX)(BbeB)(znb#0D)

By transfer, we have that « € *X and b € *B are incident when the following sentence is

true.

(3ze"X)(Abe "B) (znb#0)

These are equivalent definitions. We will denote the incidence between x and b by z Qb or
b z.

Adjacency between nodes: For a standard graph G = {X, B}, two nodes z,y € X are
called adjacent and we write x o y if the following sentence on the right-hand side of & is

true.

zoy « (Fz,ye X)(beB)(zNb#DAynb#0D)

By transfer, this becomes for a nonstandard graph *G = {*X, *B}

zoy <« (Fa,ye "X)(3be "B)(znb#PAynb#£0Q)



Alternatively, under an ultrapower construction, we have for *G = [G,] = [{ X, B,}] that
z = [z,] € *X and y = [y,] € *X are adjacent (i.e., z o y) if there exists a b = [b,] € *B
such that {n:z,, Nb, # 0and y, N, # 0} € F.

Adjacency between branches: For a standard graph, two branches b,c € B are called
adjacent and we write b 0« ¢ when the following sentence on the right-hand side of « is

true.

brac « (Jb,ce B)y(Jze X)(bNnz#BAcna #0)

By transfer, we have for nonstandard branches b and ¢
beac = (b,ce "B)y(Fz € *X)(bnz#DAcna #£0)

Under an ultrapower approach, we would have b = [b,] and ¢ = [¢,] are adjacent nonstan-

dard branches when there exists a nonstandard node z = [z,] such that

{n:b,Na, #Pandec, Nz, #0} € F.

4 Nonstandard Hyperfinite Paths and Loops

Again, we start with a standard graph G = {X, B}. A finite path P in G is defined by the

sentence

(3ke N\{0}) (3o, z1,-..,2k € X) (3 bo, by, ..byy € B)
(:L'oﬂbo#w/\boﬂ.’lfl#@/\III]ﬂb]#@/\blﬂﬂf-z;é@/\
Azp—y Nbit 0 A by Nz £ 0) (1)

That all the nodes in P are distinct is implied by the fact that the those k elements in the
set X are perforce distinct. Similarly, the branches in P, being &k — 1 elements of the set B,
are perforce all distinct; they are also regular (i.e., not self-loops) because each branch is
incident to two nodes. The length | P| of P is the number of branches in P; thus, |P| = k.

We may apply transfer to (1) to get the following definition of a nonstandard path *P.
(ke "N\ {0}) (3 xo,21,...,2k € *X) (I bo,b1,...bx—1 € *B)

(.’L‘oﬂbo#@/\boﬂ:l:l#@/\1:10()1#@/\1)10212#@/\...



Azpoa Nbor 20 A by Nag # 0) (2)

In this case, the length |*P| equals £ € *IV \ {0}; in general, k is now a positive hypernatural
number. We therefore call *P a hyperfinite path. To view this fact in terms of an ultrapower
construction of *G = [G,,], note that the G,, may be finite graphs growing in size or indeed
be conventionally infinite graphs. Thus, *P may have an unlimited length, that is, its length
may be a member of *IV\ V.

A standard loop is defined as is a standard path except that the first and last nodes
are required to be the same. Upon applying transfer, we get the following definition of a

nonstandard loop.
(ke "N\ {0}) 3zo,a1,.... 261 € *X) (3 bo, b, . ..bx—q € *B)
(2oNboZO AboNzy Z0A 21 Nb ZDAbiNzy DA ...
ATpy N1 ZOA b1 N D) Abg_y Nxo #0) (3)
5 Connected Nonstandard Graphs

A standard graph G = {X, B} is called connected if, for every two nodes z and y in G,
there is a finite path (1) terminating at those nodes, that is, zo =  and zx = y. Let C
denote the set of connected standard graphs, and let P(G) be the set of all finite paths in
a given standard graph G. Also, for ‘any P € P(@), let zo(P) and zx(P) denote the first
and last nodes of P in accordance with (1); & depends upon P. Then, the connectedness of

G is defined symbolically by the truth of the following sentence to the right of .
GeC < (Yz,ye X) (3P eP(G)) (20(P) = z) A (2k(P) = 9)) (4)

By transfer, we obtain the definition of the set *C of all connected nonstandard graphs: For
*G = {*X, *B}, for *P(*(7) being the set of nonstandard paths *P € *G, and for zo(*P) and

zk(*P) being the first and last nonstandard nodes of *P, we have
Ge o (Yoye X)(3Pe PG (wP)=2) A (@(P)=y)  (5)
"Here, k € *IN \ {0} as in (2).

10



Let us explicate this still further in terms of an ultrapower construction of *G = {G,)]
from an equivalence class of sequences of (possibly infinite) graphs, (G,) being one of
those sequences. With *P = [P,] denoting a nonstandard path obtained similarly from
a representative sequence (P,) of finite paths, P, being in G, we let zo(P,) and zx(P,)
denote the first and last nodes of P,. (Thus, k also depends on n of course.) Then,
zo(*P) = [zo( Pn)] and z+(*P) = [zx(Fy)] are the first and last nonstandard nodes of *P.
(In (5), *k is denoted by k € *IV \ {0}.) Then, *G is called connected if and only if, given
any nonstandard nodes *r = [z,] and *y = [y,] in *G, we have that, for almost all n, there
exists a finite path P, terminating at x, and y,. This can be restated by saying that there
exists a hyperfinite path *P in *G terminating at *r and ™y.

Later on, we will need a special case of *C: Let Cy denote the subset of C consisting of
all finite connected standard graphs G = {X, B}, where |X|,|B| € N \ {0}. Then, *Cy is

the subset of C obtained by lifting C; through transfer to a subset of *C. In this case,
G et o (G={X,"B} € T) A (I’X],|'Bl € "N \ {0}). (6)

We call such a *G a nonstandard hyperfinite connected graph.

6 Nonstandard Subgraphs

If A and C are sets of nodes with A C (', we get upon transfer the following definition of a
{

subset *A of a set *C of nonstandard nodes.
AC™C « (Vz e ™A)(z € *C)

Our purpose in this section is to define a nonstandard subgraph *G; of a given nonstan-
dard graph *GG. We let G denote the set of all standard graphs. By definition, G, = {X,, B,}
is a (node induced) subgraph of G = {X,B} € G if X; C X ‘and B, is the set of those
branches in B that are each incident to one or two nodes in X,. Let us denote the set of all
such subgraphs of G by G,((G). The following symbolic definition of G, € G;(G) uses tips
and is thereby somewhat complicated because we wish to allow both self-loops and parallel
branches.

Gy € Gy(G) =

11



(3G, ={X,,B,} €6)(3G={X,B}€ Q)
(Xs CX) A (Vb= {ts, 1y} € Bs)((Ir € Xs)(ts,tr € 2)) V((Fz,y € Xs)(th €z A T € 3)))

By transfer, we get the definition of a nonstandard subgraph *G, of a given nonstandard
graph *G. In this case, *G denotes the set of all nonstandard graphs, and *G,(*G) denotes

the set of all nonstandard (nose induced) subgraphs of a given *G €*@G.
G, € CuG) o
(3'Gs = {"Xs, "Bs} € G) (3G = {"X,"B} € G)
(("Xs C "X)A (Vb= {ts, 8} € "B,) ((3z € "X,) (ts, 8 € 2))V((32,y € "X,) (s € 2Ny € y)))

7 Nonstandard Trees

The symbols G, G,(G), C, Cy, and their nonstandard counterparts have been defined above.
Now, let L(G) be the set of all loops in the standard graph G, and let 7 be the set of all

standard trees. Then, a tree T can be defined symbolically by
TeT - (3T eC)(~(3LeL(T)) (7)

To transfer this, we let *£(*(7) be the set of all nonstandard loops in a given nonstandard
graph "G, as defined by (3), and we let *7" denote the set of nonstandard trees *T’, defined

as follows:

Te*T = (3Te T)(~(3"L e L(T))) (8)

Next, let 7;,((G) be the set of all spanning trees in a given finite connected standard

graph G = {X, B}. That T is such a spanning tree can be expressed symbolically as follows.

(B3G={X,B}eC;) 3T ={X1,Br} € T) (T € G;(G)) A (X = X7)) (9)

By transfer, we have the set *7,,(*7) of all spanning trees of a given hyperfinite connected

nonstandard graph *G, defined as follows:
T € "T,("G) &

(3°G = {*X,*B} € ;) (3T = {*X7, "Br} € *T) (('T € "G,("G)) A ("X =* X7)) (10)

12



8 Some Numerical Formulas

With these symbolic definition in hand, we can now lift some standard formulas regarding
numbers of nodes and branches into a nonstandard setting. For example, if p, ¢, and r are
the number of nodes, the number of branches, and the cyclomatic number respectively of a
given connected finite graph, then » = ¢ —p+ 1. Symbolically, this can be stated as follows.

Again, we use the notation G = {X, B} for a graph and T = { X7, Br} for a tree.
(Vp,g,r e N) (VG €Cr) (VT € 1,p(G))

(p=1XIAg=|BlAr=|B|-|Br|]) - (r=q-p+1))

By transfer, we obtain the following formula in hypernatural numbers.
(Vpog,r e "N) (VG € Cp) (VT € "T,p(°G))

((p=TXIAg=I"BlAr=[B|-[Br|]) - (r=9g-p+1))

Another example of such a lifting concerns the radius R and diameter D of a finite
connected graph G. It is a fact that R < D < 2R [3, page 37], [4, pages 20-21]. Again, we
need to express ideas symbolically.

Let A C IV be such that |A| € IV (i.e., A is a finite subset of IV). We use the symbols

@ = max A and @ = min A as abbrevigtions for the following sentences.
G=maxA ~ (Vce€ A)(3ae A)(@=¢c)

ga=minAd « (Vce A)(3a€eA)(a<c)

This transfers to

a=max"A o (Vece "A)(Jae "A)(@> )
a=min "A — (Vc€"A)(Fa€ "A)(a <L),

where now "4 is a hyperfinite subset of *N and @ and a are hypernatural numbers. *4 does
have a maximum element and a minimum element so that these definitions are valid [5,

pages 149-150].
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Now, for a given finite connected graph (& € Cy, let P, denote the set of all paths P,
starting at . The length |P;| of any P, € P, is the number of branches in P,. Also, let

&(G) be the set of eccentricities of the nodes in G = {X, B}. Symbolically, we have
e: € E(G) = (3z € X)(V Py € Py) (ex = max{|P|: P € Pz}).
So, for a hyperfinite connected graph *GG = {*X,*B} € *Cy, we have by transfer
ez €E('G) = (32 € "X)(V'Pr € "Pz) (e = max{|"P:|: "Px € "Ps}),

where now £(*G) is the set of hypernatural eccentricities in *G and *P, is any nonstandard
hyperfinite path in *G starting at the nonstandard node z.

Then, for any G = {X, B} € Cy, the radius R(() is defined by
(Ve € £(G)) (I R(G) € N) (R(G) = min{e;: z € X}),

which by transfer gives the following definition of the hypernatural radius R(*G) € "IN of
any ‘G = {*X, *B} €

(Ver € *(G))(3 R('G) € *N) (R("G) = min{e;: z € "X }),

Similarly, the diameter D(() of @ is defined by
(Ver € E(G)) (ID(G) € N)(D(G) = max{e,: z € X}),

which by transfer gives the hypernatural diameter D(G) € *N of *G.

(Ver € EC'G)) (3 D(*G) € *N) (D(*G) = max{e,: z € *X}),
So, we have the following sentence for the standard result:

(VG €Cyp) (R(G) £ D(G) < 2R(G)),

which by transfer yields the nonstandard result

(VG € T)) (R('G) < D('G) < 2R(G)).
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9 Eulerian Graphs

A finite trail is defined much as a finite path is defined except that the condition that all
the nodes be distinct is relaxed; however, branches are still required to be distinct. Thus,
the truth of the following sentence defines a trail T in a finite graph G = {X, B}, with T
having two or more branches. This time, we use the notation b, = {tm,fm} to designate

the two tips of the m-th branch. (Remember that = denotes a shorting between tips.)
(ke N\ {0})(3bo,by,...,bx € BY(Ym € {0,....k = 1}) (m = tins1)

That B is a set insures that the branches bg, by, ..., b are all distinct. On the other hand,
this sentence allows nodes to repeat in a trail.

For a closed trail, we have the truth of the following sentence as its definition.
(ke N\ {0,1}) (3 bo,b1,...,bp € B) (Ym € {0,...,k — 1}) (fm = tms1) A (T = to)

With @ denoting a trail, we denote the set of branches in @ by B(Q). Also, we let Q(G)
denote the set of closed trails in a given graph G = {X, B}.

By attaching asterisks as usual, we obtain by transfer the corresponding sentence for
trails in a given nonstandard graph *G' = {*X, *B}. Thus, a nonstandard trail "} is defined
by the truth of the following sentence, where now b,, = {t,n,fm} is a nonstandard branch

with the nonstandard tips t,, and .
(3ke *N\{0})(3bo,b1,...,bx € *B) (Vm € {0,...,k = 1}) (tm = tuy1)

A similar expression holds for a nonstandard closed trail (just append ; = t5). With *Q
denoting a nonstandard trail, we denote the set of nonstandard branches in *Q by *B(*Q).
Also, we let *Q(*G) denote the set of nonstandard closed trails in-a given nonstandard graph
G = {"X,*B}.

A finite graph G = {X, B} € C; is called Eulerian if it contains a closed trail that meets
every node of X. The degree d, of # € X is the natural number d, = |{b € B: b z}|.
The nonstandard version of this definition is as follows: Given *G = {*X, *B} € *Cy, for

any z € "X, the degree of z is d, = |{b € *B: b z}|. In this case, d, may be an unlimited



hypernatural number when *G is a hyperfinite graph. However, *G' might happen to be a
finite graph G € Cy, which from the point of view of an ultrapower construction can occur if
all the G, for *G = [(7,,] are the same finite graph GG € Gy; in this case, d, will be a natural
number for all z € *X.

Let &, (resp. *¢,) denote the set of all standard Eulerian graphs (resp. nonstandard
Eulerian graphs). Then, Eulerian graphs can be defined by asserting the truth of the

following sentence to the right of <, where as usual G = {X, B}.
Geé& < (3QeQG))((Ybe B)(be B(Q))

By transfer, the truth of the following right-hand side defines nonstandard Eulerian graphs.

Now, *G = {*X, *B}.
Ge T« (37Q € TUG) ((Voe "B) (be "B(Q)))

Now an ancient theorem of Euler asserts that a graph G is Eulerian if and only if the
degree of every node of (¢ = {X, B} is an even natural number. Symbolically, this can be

stated as follows.

Gebw & (VzeX)(ds/2€N)

Transferring this, we get the nonstandard version of this theorem of Euler:
t
GeE X, — (VzerX)(d/2 € "N)
10 Hamiltonian Graphs

In this section, it is assumed that each g;rapﬁ (7 = {X, B} is connected and finite and has
at least three nodes (i.e., I‘(I > 3). A graph G is called Hamiltonian if it contains a loop
that meets every node in the graph. Let £((G) denote the sét of all loops in G. Also,
for any loop L € L(G), let X(L) denote the node set of L. Then, a Hamiltonian graph
G = {X, B} € Cy is also defined by the truth of the following sentence to the right of —.

The set of Hamiltonian graphs will be denoted by H, where H C Cy.
GeEH - ALeLl(G)((Vze X)(xe X(L)))

16



By transfer of this sentence, we define a nonstandard Hamiltonian graph as follows, where
now *H is the set of nonstandard hyperfinite Hamiltonian graphs, £(*G) is the set of all
nonstandard loops in *G7, *X((L) is the set of nonstandard nodes in L € L(*G), and *G =
{*X, *B}.
Ge™M — (ALe LG))((Vz e "X)(x € "X(L))).
A simple criterion for a graph G = {X, B} to be Hamiltonian is that the degree d, of
each of its nodes = be no less than one half of | X| [1, page 134], [3, page 79]. Symbolically,

this condition is expressed as follows:
(Ve e X)(d: >21X]/2)) - GEH.
By transfer, we get the following criterion for a nonstandard Hamiltonian graph.
(Vz € *X) (d: 2 I"'X|/2)) —» G € "H.

A more general criterion due to Ore asserts that G = {X, B} is Hamiltonian if, for every
pair of nonadjacent nodes & and y, d. + d, > | X| [1, page 134], [3, page 79]. Symbolically,
we have

(Vz,y € X) ((~(z 09)) = (ds + dy 2 |X])) — G €H,

which by transfer becomes

!

(Va,y € X) ((~(z0y)) = (do + dy 2 |"X]))) — "G € "H.

Still more general is Posa’s theorem [1, page 132], [3, page 79]: If, for every j € IV
satisfying 1 < 7 < |X|/2, the number of nodes of degree no larger than j is less than j,
then the graph (¢ = {X, B} is Hamiltonian. The following symbolic sentence states this

criterion.
(VieN)(Vze X)(1<i<|X|/2)= (Hee X:d: <j}<J)) > GeH
By transfer the following criterion holds for nonstandard graphs *G = {*X, *B}.

(Vi€ N)(Vee X)(1<i<[X|/2)— ({re X:d, <j} <) — GeH

17



11 A Coloring Theorem

A simple graph-coloring theorem that is not restricted to planar graphs asserts that, if the
largest of the degrees for the nodes of a graph G = {X, B} is k, then the graph is (k + 1)-
colorable [6, page 82].> To express this symbolically, first let M (X, Ni41) denote the set
of all functions that map a set X into the set INiy; of those natural numbers j satisfying

1< j <k+ 1. Then, the following restates this theorem for the given graph G.
(3keN)(Vz,ye X)

((de < k) = ((3f € M(X,Neya)) ((z0y) — (f(=) # f(¥)))

To transfer this, we first let *M (*X, IVi4;) be the set of all internal functions mapping
the enlargement *X into INyyy. Then, this theorem is transferred to nonstandard graphs

simply by appending asterisks, as usual:
(ke N)(Vz,y€ *X)

((de < k) = ((37f € "M(°X, Niqa)) ((z0y) — (f(z) # F(¥)))))

Note here that the assumption of a natural-number bound k on the degrees of all the
nonstandard nodes has been maintained. This conforms to the fact that the enlargement of
the finite set Ny is Ngpq. As a cons‘equence, the conclusion remains strong after transfer.

On the other hand, we could generalize this transferred theorem as follows: In terms
of an ultrapower construction, we could replace Ny, by an internal set *IVi;, obtained
from a sequence (IVj, 4+1:n € N) of finite sets Ny, 4+, one set for each G, with regard to
*G = [G,]. But then, our conclusion would bve weakened to a coloring with a hypernatural

number *k = [k,)] of colors.

12 A Final Comment

Undoubtedly, other standard results for graphs can be lifted in this way to nonstandard

settings.

There exists a function f that assigns to each node one of k + 1 colors such that no two adjacent nodes
have the same color.
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