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Abstract - In Chapter 8 of the book, "Graphs and Networks: Transfinite and Non- 

standard," (published by Birkhauser-Boston in 2004), nonstandard versions of transfinite 

graphs and of electrical networks having such graphs were defined and examined but only 

for the first two ranks, 0 and 1, of transfiniteness. In the present work, these results are 

extended to higher ranks of transfiniteness. Such is done in detail for the natural-number 

ranks and also for the first transfinite ordinal rank w. Results for still higher ranks of trans- 

finiteness can be established in much the same way. Once the transfinite graphs of higher 

ranks are established, theorems concerning the existence of hyperreal operating points and 

the satisfaction of Kirchhoff's laws in nonstandard networks of higher ranks can be proven 

just as they are for nonstandard networks of the first rank. 

Key Words: Nonstandard graphs, nonstandard electrical networks, hyperreal operating 

points, Kirchhoff's laws 

1 Introduction 

In a prior publication [2, Chapter 81 we defined and examined nonstandard versions of 

graphs that are conventionally infinite as well as those that are transfinite but only of the 

first rank of transfiniteness. We also examined nonstandard, resistive, electrical networks 

having such graphs and established an existence theorem for their operating points (i.e., 

their hyperreal current-voltage regimes) as well as Kirchhoff's laws for those nonstandard 

networks. In this work, we shall extend these results to graphs and networks having higher 

ranks of transfiniteness. We do so in detail for the natural-number ranks and also for 



the first transfinite-ordinal rank w. Results for still higher ranks of transfiniteness can be 

established in virtually the same way; the development for the successor-ordinal ranks (resp. 

limit-ordinal ranks) are virtually the same as that for the natural-number ranks (resp. the 

rank w ) .  

All this is accomplished through a recursive analysis proceeding along increasing ordinal 

ranks. The first two steps of that recursion concern the ranks 0 and 1. These have been 

explicated in [2, Chapter 81 and will not be repeated here. Our notation and terminology 

is the same as that  used in [2]. 

2 Nonstandard p-Graphs 

Let p be a natural number no less than 2. Our development of a nonstandard p-graph 

starts with a given sequence (GK : n E N), where 

is a standard transfinite graph of rank p. Here, we are defining the branches (i.e., the 

members of B,) as pairs of 0-nodes (i.e., members of x:). This differs from the definition 

of branches given in [2, page 61 based upon elementary tips but only in a nonessential way. 

We can indeed use all the ideas and results given in [2, Chapter 21.' Thus, 

is the ( p  - 1)-graph of G t .  

The extremities of Gg-' are taken to  be its (p -  1)-tips and also the exceptional elements 

of the p-nodes of GK. (The exceptional element, if it exists, of a p-node x p  is the unique 

node of rank less than p contained in xp; see [2 ,  page 111.) Let 7,-' be the set of (p- 1)-tips 

of Gg-'. Let a typical p-node of G: be denoted by x : , ~ .  We are indexing those p-nodes 

by k, and we let Ii' be the index set for those ynodes.  In accordance with the partitioning 

defined by the x:,~ , %'-' is partitioned into subsets , where is the set of all the 

( p  - 1)-tips in x:,,+.. Thus, 

7'-' n = UX~K<:;', 

'In this regard, see how the definition G1 = { X O ,  B, X') of a 1-graph given in [2, page 1631 differs from 
the definition 9' = { B ,  X O ,  X 1 )  of a 1-graph given in [2, page 81 in that nonessential way. 



where K serves also as the index set for that partitioning. 

If a p-node xEtk of G$ has an exceptional element x:,~ (a < p), let Z n , k  denote the 

singleton set Z n , k  = {xZjk). Otherwise, let Z n , k  = 0. In either case, by the definition of 

any standard ynode  x:,~, Zn,k n 24 = 0 whenever k # I ,  and we have 

If e, and f, are two extremities in the same p-node xKYk of Gg, we say that en and fn 

are shorted together, and we write en =: fn to denote this fact. 

Out next objective is to make an ultrapower construction of the nonstandard p-nodes 

and thereby obtain the nonstandard p-graph " G p .  We already have at hand the nonstandard 

0-graph Go = { *XO, *B) [2, page 1551 and the nonstandard 1-graph G1 = { *XO, *B, *X1) 

[2, page 1641. So recursion will yield the nonstandard p-graphs 

where *X' is the set of nonstandard p-nodes. 

To this end, let 3 be any chosen and fixed nonprincipal ultrafilter. Let (en) be a sequence 

where each e, is an extremity of G$-'. Two such sequences (en) and (f,) are said to  be 

equivalent if e, = f, for almost all n (modulo 3 ) ;  i.e., {n: en = f n )  E 3. This partitions the 

set of all extremities into equivalence classes; indeed, reflexivity and symmetry are obvious 

and for transitivity we have, with (g,) being another sequence of extremities, 

(71.: en = f,) n {n: f, = gn) C {n: fn = gn) 

so that (en)  is also equivalent to (g,). Each such equivalence class will be called a nonstan- 

dard extremity and denoted by e = [e,], where (en) is any representative of that equivalence 

class. 

Given any sequence ( e n )  of extremities, let Nt,-l be the set of all n for which en is a 

( p  - 1)-tip of G$-', and let N ,  be the set of all n for which en is an exceptional element of a 

p-node of G$. Consequently, N,,-I U N,  = N and Ntp-I n N, = 0. So, exactly one of N,,-I 

and N ,  is a member of 3 .  If it is Nip-, (resp. N,), we define (en) as being a representative 



of a nonstandard ( p  - 1)-tip tp-' = [en] (resp. a representative of a nonstandard exceptional 

element) x = [e,]). 

In the latter case of an exceptional element, the en are nodes of Gg-' for almost all n, 

but they need not be of the same rank; their ranks can vary through values no larger than 

p - 1. There are no more than finitely many such ranks. Let K be the finite set of such 

ranks, and let Fk denote the set of all n for which the rank has the value k. The sets Fk are 

finitely many, pairwise disjoint, and their union is a member of 3. Therefore, exactly one 

of those sets F(p) is a member of 3 [2, page 19, fact (4)]. Consequently, we can identify 

the rank of x as the rank p of that unique set F(p), and so we may denote x as xP. 

Next step: Let e = [e,] and f = [f,] be two nonstandard extremities. Let N e f  = {n:  

e, x fn )  and N,"f = {n : en 8 f,). So, exactly one of Nef  and N,cf is a member of 3. 

If it is N e j  (resp. N > ) ,  we say that e is shorted to f ,  and we write e x f (resp. we say 

that e is not shorted to f ,  and we write e 8 f ) .  Also, we take it that e is shorted to itself. 

This shorting is an equivalence relation for the set of all nonstandard extremities. Indeed, 

reflexivity and symmetry are again obvious, and transitivity follows from 

{IL : e, x f,} n {n: fn x g,} 2 {n: en x g,). 

The resulting equivalence classes are defined to be the nonstandard p-nodes, and we use the 

boldface notation xp to denote a typical one. 

Various properties of standard nodes transfer directly to nonstandard nodes. For in- 

stance, if the nonstandard node p-node xp has a nonstandard exceptional element xP = [en] 

( p  < p) ,  we have that for almost all n, en x fn,  where f = [f,] is a nonstandard ( p  - 1)-tip 

in xp; that is, every nonstandard exceptional element is shorted to a t  least one nonstandard 

(p  - 1)-tip. This also implies that every nonstandard ynode  has at least one nonstandard 

( p  - 1)-tip. 

For similar reasons, the exceptional element of a nonstandard p-node cannot be the 

exceptional element of any other nonstandard p-node, and no nonstandard p-node can 

have two or more nonstandard exceptional elements. 

Let *Xp denote the set of all nonstandard p-nodes as determined by the given sequence 

(Gg) of standard p-graphs. By recursion we can now define the nonstandard p-graph *Gp 



as the ( p  + 2)-tuple given by (1) above. 

3 Nonstandard Graphs of Rank w' 

We now take it that our recursive construction of the p-graphs can be continued indefinitely 

through all the natural-numbers ranks. That is, given any sequence (G:) of standard c3- 

graphs,2 we can construct as in the preceding section each set *XP of nonstandard p-nodes 

from the sequence (Gg), where Gg is the p-graph of the c3-graph G:, this being so for 

every p  E N. Furthermore, for the sake of simplicity, we shall assume that none of the G: 

contains Gnodes. As a result, the nonstandard graph G' we shall specify in a moment 

will not possess any nonstandard G - n ~ d e . ~  

Thus, we can now define the nonstandard c3-graph 'G' as the sequence 

where the entries * X p  extend throughout all the natural-numbers p  E N. 

4 Nonstandard Graphs of Rank w 

We now start with a given sequence (GE) of standard w-graphs: 

where none of the GK has any G-node-in accordance with our assumption in Section 3. 

We have 

G: = {x:, B,,X;. . . , X:, . . .) 

as the w'-graph of Gl.  The extremities of G: are its ;-tips and the exceptional elements 

of the w-nodes of G;. Those exceptional elements, if they exist, are nodes of Gz with 

natural-number ranks. 

Given any sequence (e,,) of extremities, one from each Gz, let N p  be the set of all 

n for which e, is an w'-tip, and let N ,  be the set of all n for which e, is an exceptional 

'See [2, Section 2.51 for the definition of such a c3-graph. 
31t may be possible to construct an equivalence class [xi] (modulo 3) of standard c3-nodes to obtain 

nonstandard ;-nodes x", but there is a problem concerning the ranks of the embraced nodes of the z i .  We 
have not resolved this matter. 



element. Thus, NtJ n N, = 0 and NtG u N, = N. Consequently, exactly one of N,G and N, 

is a member of F. If it is N,G (resp. N,), (en) is a representative of a nonstandard G t i p  

t" = [en] (resp. a representative of a nonstandard exceptional element x = [en]). In either 

case, we also refer to e = [en] as a nonstandard extremity. 

Now, let e = [en] and f = [f,] be two nonstandard extremities. Let Nef = {n: en x fn)  

and N,Cf = {n : en % f,). So, exactly one of N, and N,Cf is a member of 3. If it is Nef 

(resp. NG),  we say that  the nonstandard extremities e = [en] and f = [f,] are shorted 

together, and we write e =: f (resp. e and f are not shorted together, and we write e 8 f ) .  

Also we take it that  e is shorted to  itself, i.e., e x e. This shorting is an  equivalence relation 

on the set of nonstandard extremities, whose transitivity is shown by 

as usual. The resulting equivalence classes are the nonstandard w-nodes; typically, they will 

be denoted by xw. 

Note that  each nonstandard w-node may or may not have a nonstandard exceptional 

element. In the event that  it does have one, say, x = [en], where the en are standard nodes 

xgn of natural-number ranks pn for almost all n,  there are two cases to  consider. In the 

first case, the ranks p,, assume only finitely many values for almost all n. As was argued 

in Section 2, there will he exactly one rank p for which {n : pn = p )  E 3. This allows us 

to identify the rank of x as being p, and we now write xP for that  nonstandard exceptional 

element x. 

The other case arises when, for every N E 3, the set {p, : n E N )  assumes infinitely 

many values. In this case, we can identify the rank p = [p,] of x as being a hypernatural 

number that  is not a standard number, and we may denote x by xP again. 

Here, too, every nonstandard w-node xw possesses a t  least one nonstandard L3-tip. Also, 

if xw possesses an exceptional element xP, that node xP will be shorted to a t  least one 

nonstandard ;-tip, and moreover xP will not be the nonstandard exceptional element of any 

other nonstandard w-node. Furthermore, xw cannot have two or more different nonstandard 

exceptional elements. These facts, too, follow directly from the properties of standard w- 

nodes. 



Finally, let *XW denote the set of nonstandard w-nodes induced by the originally assumed 

sequence (GK) of standard w-graphs. We may now define the nonstandard w-graph GW 

induced by (GK) to  be the set4 

5 Nonstandard Resistive Electrical Networks 

Let *GV be a nonstandard graph of rank v, where 1 5 v 5 w, induced by a sequence (Gk) of 

standard v-graphs. *GV can be converted into a nonstandard, resistive, electrical network 

*Nu by assigning positive resistances to  every branch of every Gk and voltage sources t o  

some of those branches, which we take to be in the Thevenin form (i.e., each branch voltage 

source is connected in series with the branch resistance). This induces hyperreal-valued 

branch resistances rb and hyperreal branch voltage sources e b  in the nonstandard branches 

b of 'G", where again in any branch the hyperreal voltage source is connected in series with 

the hyperreal resistance if that  source exists there. This inducement of *Nu is exactly the 

same as that  for the nonstandard network *N1 of rank 1 explained in [2, pages 165-1661. 

The question arises as to whether W" has a hyperreal operating point, that  is, a set of 

hyperreal branch currents ib and a set of hyperreal branch voltages v b  satisfying in each 

nonstandard branch b Ohm's law: 

and Tellegen's equation in a certain way. The answer is "yes," and it is established in 

virtually the same way as it was established for nonstandard 1-networks *N1 in [2, Section 

8.91. In fact, Theorem 8.9-2 holds word-for-word with W" as it does for *N1. Now, however, 

the solution space *L is based upon loops of ranks up to v instead of up to  1. Similarly, 

nonstandard versions of Kirchhoff's current law and Kirchhoff's voltage law5 again hold as 

stated in Theorems 8.9-3 and 8.9-4 respectively, with *N1 replaced by *Nu. Since all of this 

4Since we have assumed that no G';: possesses any G-nodes, a set *x' of nonstandard G-nodes does not 
appear in the set (3).  

'Please see the website www.ee.sunysb.edu/- zeman (in particular, the Errata for [2]) for a rather obvious 
correction to pages 167 and 168 of that book. 



is virtually identical to the development given in [2, Section 8.91, we will say no more about 

it, other that  to note that these nonstandard results for linear networks can be extended to  

nonlinear resistive networks by exploiting Duffin's theorems noted in the last paragraph of 

that  Section 8.9 of [2 ] .  

6 Nonstandard Graphs and Networks of Still Higher Ranks 

Let us briefly remark that all our results can be extended t o  still higher ranks. The results 

for successor-ordinal ranks can be obtained by mimicking our development for natural- 

number ranks. For limit-ordinal ranks, the development mimics that  given above for rank 

W .  
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