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Abstract

A scheduling model is studied where the computing time function of each node is a nonlinear function
of the size of its assigned load. Speedup and closed form solutions for optimal load allocation are
obtained for simultaneous load distribution. An iterative solution technique is presented for sequential load
distribution. Super-linear speedup is possible when the computing time function is a nonlinear function

of the amount of fractional load assigned.

Index Terms

Divisible load scheduling, Store and forward switching, Multilevel tree network, Nonlinear Compu-

tational Loads, Speedup.

1 INTRODUCTION

It is well known that many algorithms have a computational complexity that is a nonlinear function of problern
size. Such nonlinear loads and algorithms are considered here in the context of parallel processing. In this pe
we use divisible load scheduling techniques in order to make analytical progress and because divisible loads
of interest in their own right. A divisible load is an input load that can be arbitrarily partitioned among processor
and links in order to gain the benefits of parallel processing. No precedence relationships are assumed for the ir
data.
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We note, and discuss below, that algorithms of nonlinear complexity that assume the divisibility of the input da

are different from algorithms of linear complexity in terms of a need for post-processing. That is, generally th
results of nonlinear sub-problems solved on individual processors need to be integrated (post-processed) to cr
the overall solution. As a simple example, a large list that is to be sorted can be partitioned Anprogessors.
The sorted sub-lists then need to be merged (post-processed) to create the final sorted list. We make the empi
observation that to some extent the need to do post-processing arises as a result of the dependent nature of the
in nonlinear problems. Unlike the situation for divisible loads of linear computational complexity, where the dat
elements are relatively independent of each other, the elements of the solution for nonlinear problems depend:
the relationship between input data elements.

Tree networks are considered in this paper. A single level tree (star) is a fundamental interconnection topolo
Multilevel tree networks can be used as a spanning distribution tree embedded in other interconnection topolog
as well as being an interconnection topology of interest in itself. It is assumed that the optimal sequence of lo
distribution is applied in a single level tree or in subtrees of a multilevel tree [1] in order to achieve the minimun
processing time. That is, the sequence of load distribution by the root or parent node should follow the order
which the children link speeds decrease.

Three representative situations involving tree networks are considered here. First, speedup and closed fi
solutions for optimal load allocation are found for a single level tree using simultaneous load distribution (i.e. the ro
can transmit load to its children concurrently). For simplicity, the computing function has a quadratic computation
complexity in the amount of assigned load. Second, the optimal speedup of a multilevel layer homogeneous tres
found under simultaneous load distribution, store and forward switching, and quadratic computational complex
of the load. Finally, an iterative solution is developed for a single level tree using sequential load distribution.

It should be noted that sequential and simultaneous load distribution provide a wide variety of modelin
possibilities. Sequential load distribution has been well studied for loads of linear complexity and is realistic whe
a root can communicate with only one child at a time. The improved performance and scalability of simultaneol
distribution [2], [3] over sequential distribution motivate future server architectures where one server can distribu

load on multiple outgoing links simultaneously. This fits in well with the needs of grids such as the ATLAS physic:



experiments at CERN (Center European for Nuclear Research) where expensive international links need to be |
at high utilizations.

Most of the work on divisible load theory has used linear models. An exception is work by Drozdowski anc
Wolniewicz [4] who demonstrated super-linear speedup when processing time is a piecewise linear (and tf
nonlinear) function of assigned load in the modeling of the memory hierarchy of a computer. Drozdwoski an
Wolniewicz’s results were obtained through the use of mathematical programming. In this paper analytic resu
are presented.

Divisible Load Theory Review

Divisible loads are data parallel loads that are perfectly partitionable amongst links and processors. Such lo:
arise in the parallel and data intensive processing of massive amounts of data in grid computing, signal process
image processing and experimental data processing. Since 1988 [1], [5], [6], [2], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [3], [4], [22], [23] work by a number of researchers has developed
algebraic means of determining the optimal fractions of total load to assign to processors and links in a giv
interconnection topology under a given scheduling policy. Here optimality is defined in terms of speedup ar
execution times. The theory to date largely involves loads of linear computational complexity. That is, computatic
and communication times are proportional to the size of the load fraction assigned to a processor or link, respectiv

Divisible load modeling should be of interest as it models, both computation and network communication i
a completely integrated manner. Moreover, it is tractable with its linearity assumption. Optimal divisible loac
scheduling has been developed for various interconnection topologies [14], such as linear daisy chains [6], bu
[8], trees [7], [15], hypercubes [9], and two and three dimensional meshes [16], [17]. A number of schedulin
policies have been investigated including multi-installments [18] and multi-round scheduling [11], simultaneou
distribution [2], [13], simultaneous start [12], detailed parameterizations and solution time optimization [21], an
combinatorial schedule optimization [19]. Divisible loads may be divisible in fact or as an approximation as in th
case of a large number of relatively small independent tasks [10]. Introductions to divisible load scheduling thec
appear in [1], [5], [20].

The next section describes models and notations. Following that, the properties of computational time function



described in section 3. The scheduling performance using store and forward switching, simultaneous distributi
and staggered start protocols is derived in section 4, for a heterogeneous single level tree, and in section 5, f
layer homogeneous multilevel tree. In these two sections the computing time function is considered a function
power?2 of the size of assigned fractional load. In section 6 the performance of a single level tree using sequent
distribution is explored where the computing time function is of powef the size of the assigned fractional load.

Finally, the conclusion and lessons learned are stated in section 7.

2 MODELS AND NOTATION

In this paper only staggered start scheduling is considered. Staggered start means that load can not be proce
at a node until the node has completely received its fractional load. On the other hand, if a node begins to proces:
fractional load as soon as the load is received, the protocol is called simultaneous start [12] (this is not discussed
reasons of space). In the following sections a single level tree using simultaneous distribution (section 4) and us
sequential distribution (section 6) is modeled. Simultaneous distribution, where load is transmitted concurren
over multiple links, was first proposed by Piriyakumar and Murthy [13]. In sequential distribution a parent nod
can transmit fractional load to only one of its children at a time.

A heterogeneous tree is a tree with distinct computing speeds at different nodes. A layer homogeneous tree

equal computing speeds of nodes and equal communication speeds of links at the same layer in the tree.

2.1 Model and Notations for a Single Level Tree

A heterogeneous single level tree using staggered start is illustrated in Fig. 1 where each node contains a minia
timing diagram. A heterogeneous single level tree rootedod—o~ can be collapsed into an equivalent node,

noded

-, whose equivalent inverse computing speed is denofédThat is, a single level tree can be collapsed

into an equivalent processor with an equivalent computing speed equal to the speed of the original single le
tree. This is an important concept for a multilevel tree where one recursively collapses single level subtrees ir
equivalent nodes so as to obtain an equivalent processor for the entire multilevel tree network and obtain the spee
formulae for the tree. The concept of processor equivalence was introduced by Robertazzi in 1993 [1] [24].

The notation and symbols are as follows:



The entire load size n is already Quadratic Computing Model:
stored at the root node, node .- A Heterogeneous Single Level Tree

\ Using Staggered Start

The number of fractional load to node ;s
is denoted as n;, and n;=on.

nodeg., ((xon)ZWOTcp

((XZn)ZZ Tcm h ((xmn)zmTcm
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Fig. 1. A single level tree using the staggered start model. The worst-case running cost of an algotithey at

is assumed to b®(n?)

n : The number of records (or called objects or atomic pieces) of the entire load in a tree network. It is also calle
the size of the entire load.

n; = a;n : The number of records of a fractional loadmaide,;~ (wherei =0,1,2,...,m).

ap : The load fraction assigned to the root processor.

«; : The load fraction assigned to tlith link-processor pair (where=0,1,2,...,m).

w; : The inverse computing speed at thbk processor (wheré=0,1,2,...,m).

wy? : The equivalent inverse computing speed of the equivalent ned’,_, collapsed from a single level tree

rooted atnodeg> .

z; - The inverse communication speed on itielink (wherei =0,1,2,...,m).

T, : Computing intensity constant.

T. : Communication intensity constant.

Ty : The finish time. Time at which each processor accomplishes computation.

Definition 1: 49, the ratio of the inverse computing speed at an equivalent ned,’_, to that at the root

node,node~(~. The equivalent node is the result of collapsing a single level tree rooteddat (-~ .

71 = (1)



Definition 2: Speedup, the ratio of the computing speed at the equivalent node to that at the root node in th

tree, that is, the inverse of*?.

Speedup = 1/~ = wy/wg’ (2)

2.2 Model and Notations for a Multilevel Tree

A heterogeneous multilevel tree is not employed because of the complexity of the index system; therefore,

this paper a simpler physical model of layer homogeneous structure is evaluated (see Fig. 2). In this physical mo

The entire load size n“?, , is already Quadratic Computing Model:
stored at the root node, n0d6<k,0> A Homogeneous Fat Tree Using Staggered Start
Here wo=w (Layer k)\ The fractional load assigned to each subtree
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Fig. 2. A multilevel homogeneous tree using store and forward switching, simultaneous distribution and stagger
start. The worst-case running cost of an algorithmate; o~ is assumed to b@(”?,o) wheren; o is the fractional

load for node; o~ to process.



the rootnodey o> is the only node with no parent (the topmost layer) and a node with no children is called a lea
(the bottommost layer). A subtree, on the other hand, rooteddd. ;- is a tree induced by its descendants of
node<jo> (Where0 < j < k, andj is an integer). For off-loading communications the root and parent processors
are equipped with front-end processors. The degreeodé_ o~ is defined asn; in other wordsnode; o~ has

m children .

After a parent receives all fractional loads for the subtree rooted at itself, immediately it starts distributin
fractional loads to its descendants simultaneously or sequentially, according to the policy used. The use of
through switching for linear models is considered in [3], [23].

In a multilevel tree the bottom most level is denoted levend the top most level, levél. The notation for a
layer homogeneous multilevel fat treedenoted as follows.
n5% : The number of records of the fractional load delivered to the equivalent nade;’, ., collapsed from a

subtree rooted at nodepde ;o> (Wherej =1,2,...,k).

nji = aj,mjj’o : The number of records of a fractional load processedale; ;. (wWherei = 0,1,2,...,m,
j=1,2,... k).

ajo : The load fraction assigned to the root processor injthelevel subtree (wherg =1,2,... k).

a;; : The load fraction assigned to thith link-processor pair in thgth level subtree (wheré=0,1,2,...,m,
j=1,2,... k).

w : The inverse computing speed at each leaf processor at the bottommost layer.
w; : The inverse computing speed at each parent processor ijtitHayer (wherej =1,2,... k).
w]ch_lji : The inverse computing speed at an equivaiéminode representing thg { 1)th level subtree, consisting

of level j — 1 descending to level. The equivalent node collapsed from a subtree rootedét;_; ;-

is denotedhode®?

N ¢ eq . ,
214~ For simplicity, we assume that”, = w3, ; (wherei =1,2,...,m) in a layer

homogeneous multilevel tree.

Definition 3: p;_1;, the multiplier of the inverse capacity of thith link at level j (see Fig. 2).
The value of the multiplierp,;_; ; is defined here as the inverse of the total number of children processor

descendants at and below levglfor the ith subtree. The variablp;_;; allows fat tree modeling. A fat tree



allocates more communication capacity to nodes near the root to improve the speed of load distribution and

prevent bottlenecks. In a homogeneous multilevel fat tree, we asgume=p;_1; (i = 1,2,...,m). Hence,

=1\ 1
pj—1 = <Z ml> 0<pj-1<1 (3)
1=0

This choice ofp;_; allows an equivalent data rate dfz to each node in the tree from the root.

zj = pjz : The inverse communication speed at each link injthelst level subtree.

Definition 4: yjq, the ratio of the inverse computing speed at the equivalent mﬂez‘lm, at levelj to that

of the root nodenode; o> .

eq __

; w;q/wj 4)
Definition 5: Speedup, the inverse ofyjq.

Speedup = 1/ = w;/wj? (5)

3 THE PROPERTIES OFCOMPUTATIONAL TIME FUNCTION

In this section a computational time function is defined in terms of the running cost of an algorithm, the inverse
CPU speed, and the computing intensity constant. A distinction is made between data partitioned by hardware
multiple processors) and partitioned by software (by a process on a single machine), each of which has somew
different characteristics.

The computational time function at a node (or a single machine) is defined here as the time that it takes to proc
its own fractional load. On the other hand, the run time of an algorithm is sometimes defined as the number of st
[25] in the literature. This is an appropriate description for running time because the performance of an algorith
should be based on a standard which is independent of the computing powers of a variety of machines.

The optimal performance of a tree network is machine-dependent and we assume that all the fractional lo
are processed (to some extent) concurrently. Therefore we define the computation time function as a produc
the running cost of an algorithm (unitep), the inverse of node computing speed (uitonds/per step) and
the computation intensity defined earlier (unit dimensionless). In this paper, we use the running cost instead of

running time for algorithms so as to avoid confusion. The computational equatieniat;~ (a node indexed to
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1) can be expressed as

FP() = F{7 () x BT, (6)

(2 2

The notation is described as follows.

1) F?(-) is the computational time atode;~ (unit second).

2) Fl.“lgm(-) is the running cost of an algorithm processing a fractional load @#nijt).

3) FinCPUsp() is the inverse of CPU speed abde;- (unit seconds/per step) - in other words, it is the
CPU execution time for each step (or for each instruction). Therefore, it can be denoted with a convention

notation asw; .

As a result, the computational equation (6) becomes

FP() = Folgm (YwiTep (7)

(2 3

For simplicity, /9" (-) can be reduced to a function of the number of records (where a “record” is an indivisible
piece of data). The size of a load is represented by the number of records (or atomic pieces).

On the other hand, we denote the communication time fundtith(-) as
F{™(-) = Load;(-)ziTep (8)

Here we assume that the communication time is linearly proportional to the load.sizé,

3.1 Hardware Partition

The core method for parallel computing is partitioning a load into fractions and delivering these fractional loac
to all nodes so that the assigned data can be processed concurrently. This decreases the finish time of a proc
load, or improves the speedup of data processing. We call this partition a hardware partition for multiple machine
which is in contrast to a software partition on a single machine.

An “equivalent” node, an established concept [6], [24], has identical operating characteristics to the subnetwc
it replaces. The final computational time of a subtree rootethdit~ (or an equivalent nodejode?’,. ), is equal
to the sum of the computational time at the root node and the time for the root to collect and post-process the res

from its children. The hardware partition cost is denofeff'(-). The cost of post-processing including collecting
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and processing data abde(~ IS denotedC{;d(-). Accordingly, at the root node the equivalent computational

function can be expressed as
Fg"®(-) = Fg"(-) + Dg() + Cg() 9)

where F;7"“/(-) is the equivalent computation function of a subtree rooteebdt .o~ (or the computation function
at the equivalent nodeode’,. ). However, at childiode;~ the equivalent computational function can be expressed

as
F7() = B () + K2 () (10)

Here Ff(-) is the communication time function for the root to transmit an assigned fractional load to it child

node;~. Hence, from Equations (7), (8), (9), and (10) one obtains

Fglgm.eq(.)w(e)chp _ [Fglgm(.) + D(f)zd.algﬂ’L(‘) + ng.algm(‘)]wOTcp (11)

FJm-ea( eI T, = Load;(-) 2T + FM9™ (wiTs, (12)

Here thealgm superscript indicates dependence on a particular algorithm. The second equation is for simultanec
load distribution, with staggered start.

Provided that the number of records of an entire load i6vheren is sufficiently large) and provided that
a subtree rooted atodey hasm children nodes, which is indicated a®de.;~ (wherei = 1,2,3,...,m), the

hardware divide-and-conquer property can be described as follows.

Divide: The number of divide steps is constant and relateahto 1 because there are + 1 nodes in a subtree
as assumed. Theh[!*“"9"(n) is in the ©(1) set.

Conquer: There arem + 1 subproblems in a processing task and each node is assigned a subproblem. Besid:
the size of fraction load atode.;~ is represented as; (i =0, 1,2, ...,m).

Combine:The combine procedure depends on the particular algorithm used. For instance, the combine proced
of a sorting problem depends on the extent to which the records are already somewhat sorted. We asst

that the output result from each node is already sorted. According to this situ@ﬁé’ﬁ{gm(n) = 0(n)
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Now equation (11) and (12) are transformed into
Fy ™ (n)w§ Ty = [F5'7™ (n0) + O(1) + O(n)]woTe (13)
Fglgm'eq(n)quTcp = Load;(n;)zTep + Fl-algm(ni)wiTcp (14)
Provided that the algorithms used among all nodes including the equivalent node are the same, we may
Fglom-ea(y — polom .y = palgm(.) and letLoad;(n;) = n; = a;n. Finally equation (13) and (14) become
FU™ (n)wg' Ty = [F9™ (ng) + ©(1) + O(n)|wo Ty (15)

F“lgm(n)wqucp =n;zilep + F“lgm(ni)wiTcp (16)

3.2 Software Partition

The running cost of an algorithm corresponding to a software divide-and conquer approagte at., which

receivesn; records, can be expressed as

T(n;) = aT(n;i/b) + D(n;) + C(n;) (17)
Let
F@9™(n;) = T(n;) (18)
Then one obtains
FI™ () = T(n;) = aT'(n; /b) + D(n;) + C(n;) (19)

The software divide-and conquer properties are illustrated as follow.

Divide: The process of divide steps takes only constant time. Because the data processing problem is divic
into b computational subproblems, this leabi$n;) in the set of©(1).

Conquer: Generallya subproblems with the size; /b are solved recursively.

Combine: If the combine procedure atode;~ hasn; records, the combining cost is denoted(@:;). For

instance, if the algorithm is a sorting process, it takgs;) steps.
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Note here we use rather thanb to be more general. As an example, the sorting problem has the running cosi

formula as follows.
F9™(n;) = T(ng) = aT'(n; /b) + O(1) + O(n;) (20)

T(n) can be of the order of growthlogn, n?, n3, 27, or n!, and so on.

3.3 Applications

Two categories of applications are illustrated as follows.

1) Linear Applications:Provided that the running cost is linear to the number of recdfds) is in the set
©(n). Because of the linearity property, the output of each record is independent of those of other recor
after data processing. Therefore the post-processing Cdg)‘éi‘lgm(-) is equal to zero. For simplicity, let
Falam(n;) = O(n;) = n;. Because the size of the fraction of the loadis equal too;n, equation (15) and

(16) become
n x wy'T,, = [agn + O(1)]weTyy (21)
n X quTcp = a;nziTey + anw;Te, (22)
If the number of records is sufficiently large, equation (22) reduces to
wiTy, = agwoT, (23)
0 P P
quTcp = a; 2Ty + awi Ty, (24)

2) Nonlinear ApplicationsAs an example, provided that(n) = ©(n?), then F49™ (n,;) = ©(n?).

)

For simplicity, let F*9™(n;) be n?, equation (15) and (16) become

(n)*wg"Tep = [(aon)® + O(1) + O (n)]wo Ty (25)

(n)2w ey = (ain)ziTep + (in)?wiTyy (26)
If the number of records is sufficiently large such thagn)? > ©(n), then equation (25) is reduced to

(n)QquTcp ~ (aon)2w0Tcp (27)
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Consequently, after hardware partition the equivalent computational timedat.o~. becomes a quadratic

equation in the load sizeyyn. Thus conditions (26) and (27), will be employed in the following two sections.

4 THE SPEEDUPPERFORMANCE OF ASINGLE LEVEL TREEUSING SIMULTANEOUS DISTRIBUTION

In this section we consider a heterogeneous single level tree in which processors use simultaneous load distribu
and the staggered start protocol to process their assigned fractional loads. Using the staggered start protoc
processor must receive its load completely before it begins to process the load. The root node can distribute I
to its children while processing some fraction of the load. In this sense the root may be considered to have a fr

end sub-processor for communications off-loading.

4.1 Speedup Derivation for A Single Level Tree with Running Bf€’)

The structure of a single level tree network with-1 processors angh links is illustrated in Fig. 1. All children
processors are connected to the root processor via direct communication links. The root processor, assumed to b
only processor at which the divisible load arrives, partitions a total processing load optimalty iatb fractions,
keeps its own fractiom, and distributes the other fractions,, as, . . . , a,y,, to the children processors respectively
and concurrently. Given that the entire load containsecords (or n atomic pieces), at the rootnode.o~ the
fractional load is denoted, (whereny = agn) and at childnode.;~ the fractional load is:; (wheren; = a;n,
i=1,2,...,m).

As an example in this section we assume that the worst-case running cost of an algoriéhm?)js(i =
0,1,2,...,m) and the computation time function at a node becomes a quadratic equation in the loag;.size,
However, the communication time function on a link is still assumed linear in load size via the link.

In order to minimize the processing finish time, all of the utilized processors in the network must finish computin
at the same time [1]. Intuitively, otherwise load could be transferred from busy processors to idle processors
improve the solution (see the Appendix for a proof). The process of load distribution can be represented by Ga
chart-like timing diagrams as illustrated in Fig. 3. It is assumed that at the root node the entire load is availak

for distribution at timet = 0.
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Heterogeneous Single Level Tree (Nonlinear Type)
- Staggered Start
- Root Node with Data Storage

Single Level
Ro((;t NOd()e) Communication
arent
((Xon)zoncp ‘ Computation
i ' Tf
(OC[ ”)ZI Tcm
(Child 1) Communication
]
(o In)2 wj TCP ‘ Computation
Ty
(04,2, T o1y
(Childm ) Communication
((xmn)ZWmTcp Computation
Ty

Fig. 3. Timing diagram of single level tree with simultaneous distribution, staggered start.

To calculating the speedup of a tree network, four types of equations are employed in this section, which &

recursive, normalization, speedup, and constraint equations.

1) Recursive equations:

As mentioned, it is known that for an optimal solution in terms of makespan for linear problems all processol
should stop at the same time [1]. Thus according to the timing diagram Fig. 3, the fundamental recursi

equations of the system can be formulated as follows.
(04071)211)0TC = (a;n)ziTem + (am)QwiTcp 1=1,2,...,m (28)
In addition, the normalization equation for a single level tree is
ag+oartast+ o tam=1 (29)

This yieldsm + 1 equations withm + 1 unknowns. Manipulating the recursive equations and normalization

eqguation can yield the solution for the fractions of load distribution. Now from (28),

2 ziTcm wOTcp 2
: - =0 30
@t nw;Tep ! wiTep @0 (30)
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Let

G=—P="0  =12..m (31)

and let
G = Zizem _ Ji where ai:ZZ o 1=1,2,...,m (32)
nwiTcp n wiTcp
The recursive equation (30) is transformed to
2 2 _
a; + s — &iag =0 (33)

Applying the quadratic formula to (33), one obtains

—Gi £ 4/¢? +4&ad
: (34)

2x1

Q; =

Since the value ofy; is the load fraction atode;~, it does not make any physical sensevjf< 0. Hence,

«; > 0 and the solution ofy; becomes

-G+ §i2 + 4&013
V i=1,2,.

5 cm (35)

Q; =

Normalization equation:

Employing equation (35), the normalization equation (29) becomes

mo—¢ + \/§Z~2 + 4&‘0&3
ag+ Y =1 (36)

Using the quadratic formula for solving Eq. (36) and then assuming that the solutianisfCy (a specific

value), One finally obtains the solution of load fractions as

—G 4 y/s? +4&C3
- (37)

2

oy =

Speedup equation:
Now if a single level tree rooted atode, is collapsed into an equivalent nodeyde?, and the total load
size isn, the computational time can be expressedra8w’T,, (wg! is the inverse computing speed of

the equivalent nodepode(?). According to the Gantt chart-like timing diagrams, Fig. 3, the computational
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time of the equivalent node (or the tree network) is equal to the computational time at the root in the tre

network. That is, the finish timé&’; becomes
Ty = (n)*wiTep = (ap x n)*woTep = (Co x 1) woTey (38)
Moreover,
woTep = a%oncp = ngoTcp (39)
According to Definition 1 in Section 2 (i.e“? = w;?/wo), the value ofy“? can be obtained from (39) as
7 =C5 = ag (40)

In this section speedup is the ratio of job solution time at one processor to job solution time at a tree netwo

with m + 1 processors (see Definition 2 in Section 2.) As a result,

1 1 1\?2
‘peedup e = c2 ( a0 > (41)

Note that speedup is a measure of the achievable parallel processing advantage.
4) Constraints:
a) The constraint of;:
In a simultaneous distribution protocol, it is assumed that the communication spéad:on. is faster
than the computing speed abvde;~ by at least (order of magnituda) times. Herenode;~ is the

node receiving all the fractional load viénk;~. One obtains

1
Ui<<1—0 1=1,2,...,m (42)

This will guarantee that the physical characteristics of tree networks comply to our analysis model. |
the communication time at some node is too slow relative to its corresponding computation time, nc
all nodes are needed for an optimal solution [1].

b) The property ok;:
If 0; < 0.1 andn is large enoughg; becomes infinitesimal.

¢) Range of;:

For isometric (balanced) rather than drastically unbalanced computing power for parallel computing
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the computing speed of each node in a tree network is specified as less than or equal to the comput
speed of the child’s parent by a factor af, and greater than or equal to that of parent by a factor of
1/m. That is,

1 1 1 1
- —<=—<m-— i=1,2,...,m (43)
m Wy W; wo

Hence, the condition of a balanced computing tree network is given as follows.

1
—<g=Lcm  i=12....m (44)
m (1

IN

4.2 Some Specific Cases

Some specific cases are discussed as follows.

1) Link Capacity and Children Computing Speed are Homogeneous:
Considering a homogeneous network where all children processors have the same inverse computing sg
and all links have the same inverse transmission speedthenw andz; = z for i = 1,2,...,m (Note
that the root inverse computing speed,, can be different fromw;). According to (31),

Wo Tcp Wo

L=—F=—=¢  i=1,2,....m (45)
wlyy w
Now from (32) we obtains
2Tem g .
G = =¢=— o= 2Tem/wly, and i=1,2,....,m (46)
nwTy, n

Accordingly, the constraints are specified as follows.
a) o condition: o <« 0.1 for the simultaneous distribution model.
b) ¢ condition: If o < 0.1 andn is large enoughs becomes infinitesimal.

c) & condition:
<{=—<m (47)

Equation (35) becomes

_ 2 4 2
P ;* S 1.2, .m (48)
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Hence the normalization equation (36) becomes

m
—s + /2 +48ag
Oéo—i-z; 5 =1
1=

— 2 2
‘ §+\/§2+4§a0:1 (49)

o+ m

Furthermore, manipulate equation (49)
200 — ms +my /2 +4€ak = 2 (50)
(m*¢ — Dag + (2 +me)ag — (ms +1) =0 (51)

Applying the quadratic formula to (51), one obtains

g = —(2+ms) £ /(2 +ms)? + 4(m2E — 1)(ms + 1)

2-(m2¢—1)
=24 me) £ /m22 + 4m2E(me + 1)
N 2(m2¢ — 1) (52)

Sinceqy is the fraction of load for computation at the root node, it does not make any physical sense if th

value of oy is less than zero. According to tifecondition from (47),
1
—<{<m (53)
m

then

m? >méE>1 (54)

Because the number of children nodes is assumed to be greateX ithansingle level tree or in subtrees of

a multilevel tree, one obtains
m? >m2>m > 1 (55)

Because the plus sign in (52) is taken instead of symbaind the value oty is greater than zero (where

2(m2¢ — 1) > 0 and — (2 + mg) + /m2s2 + 4m2£(mg + 1) > 0), the solution ofay becomes

—(2+ mg) + /m2% + 4m2€(ms + 1)

0= 2(m2€ — 1) (56)
where  4m3éc +4m2?¢ —4—4ms >0 and 2(m2¢—1) > 0.
As a result, Eq. (40) becomes
2
eq _ 2 [ —(2+me) +/m2 + 4m?E(mg + 1)
v ap ( 2(m2£ . 1) (57)
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and Eq. (41) becomes

2
1 2m & 1)
Speedup = ~ea = (_(2 + mg) + \/m2§2 + 4m2f(m§ + 1)) (58)

Fast Communication Case:
Let ¢ <« 0.1, ¢ becomes infinitesimal (fast communication).
Equation (46) is repeated here as follows.

2Tem o
= = _ 59
N nwley, n (59)

Provided that communication speed is faster than computing spesdmuch smaller tha.1, o < 0.1.
Now from Eq. (59)mc¢ is equal tomo/n; that ism¢ = mo/n. If one assumen < n, thenms < 1.
Accordingly, ms+1 is approachind (ms+1 — 1) and2+mg is approachin@ (2+mg¢ — 2). The speedup

formula (58) can be approximated as

2
2(m2¢ — 1)
Speedup = (_2 P v ey 4m2§> (60)

Becausem?¢ > 1 and (ms)? < 1, 4m2¢ + m2¢? approachesim?¢ (4m2¢ + m2¢% — 4m?2¢€). Moreover,

Eq. (60) becomes

[ 20we-1) \T (2m -1\ 2
Speedup—(_2+\/m> _<2(m\/g—1)) —(m\/g—l—l) (61)

Homogeneous Computing Cage=f 1):
If the computing capability of the root node is the same as that of the children nodes in a homogeneo

single level tree, i.ewy = w; = w, then¢ = 1. Under such condition, the speedup formula becomes
Speedup = (m +1)? (62)

This simple case makes intuitive sense if communication is much faster than computation. Note that speec
here is of a greater rate than that of a tree network consisting of the same number of processors but witl

linear computing function in the size of the fractional load.



21

5 SIMULTANEOUS DISTRIBUTION IN A LAYER HOMOGENEOUSMULTILEVEL FAT TREE ANALYSIS

A fat tree architecture is now considered where upper links (closer to the root) have more capacity than low
links in such a way that each node has equivalent bandwidthto the root. Properly designed fat trees preclude
any tree level from becoming a capacity bottleneck. Such an architecture will allow a maximization of performanc
Consider a homogeneous multilevel fat tree network where all parent processors oh hewel the same inverse
computing speedy;, and links of levelj also have the same transmission spegd; (see Fig. 2). The inverse of
bandwidth capacityz;_;, is designated ag;_;z. The value ofp;_; is defined by Definition 3 in Section 2.

In this work, store and forward switching (in contrast to cut through switching) is studied. In store and forwart
switching, load must be completely received by a node before being distributed to its descendants. The proc
of load distribution for a multilevel fat tree network using store and forward switching from upper level to lower
level can be represented by a Gantt chart-like timing diagram (see Fig. 4). We will derive the speedup of the ent
multilevel tree by moving upwards through the tree, collapsing successive subtrees into equivalent processors L
the entire single level tree is collapsed into an equivalent node. We find that each “box” (level) in Fig. 4 illustrate
the scheduling levels of a multilevel tree where the root node has data storage (all load is available at the single le
tree root at timet = 0). The nested, shaded boxes indicate single level trees which are collapsed into equivale

nodes.

5.1 Speedup Derivation for a Multilevel Tree: LeyeSubtree
Again, four type of equations are identified for calculating speedup.
1) Recursive equations:
As in Fig. 2, let levelk be the topmost root single level subtree. Here levélis used to represent any
single level subtree at any arbitrary levelLet «;; be the load fraction for théth children collapsed (or

equivalent) node of thégth level subtree. Provided that

(aj,mjff)fw;ngcp > (OéjJ’I’L;qO)Zj,chm 1=1,2,....m (63)

in this subtree (see Fig. 5), then communication time is faster than computation time. According to Fig. !

the fundamental recursive equations of ke level subtree network are
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Layer Homogeneous Multilevel Tree Represented with Equivalent Blocks
- Store and Forward Switching
- Simultaneous Distribution

- Staggered Start
(lz;)ot k) Communication
yer
(ot pn®dy, 0)2 w chp Computation
<Level k> ; eq Tf
fl:\/f‘?'m) 1 (O(‘k,in k,O)Zk—ITcm
Communication
(Layer k-1)
(ak-],oneqk_],o)zwk-chp Computation
I Tf

(Node i
i=1,2,.,m)

<Level k-1> (qk-l,ineqk—],O)Zk-ZTcm
A

Shaded box can be collapsed into
an equivalent node, node®d _

<Level 3>

(Node i vl (a3, ineqj’, 0) Zy Uz

i=1,2,...m)
(Layer 2) Communication
ayer
((x2,0neq2,0)2W2Tcp Computation
I T Shaded box can be
<Level 2> | .neq f collapsed into an
(N(I:JZZL: v ((XZ, 22, O)Z] Tem equivalent node,
i=12,..,m) n()dggq
<1,0>
(Layer 1) Cornmuni'cation
(al,Oneq],O)ZWITcp Computation
‘ T
Level 1 ‘ r
'<N‘;5§e' g { (0,n%0)20T
i=12,..,m) M 5
Communication
(Layer 0) 5 > >
((xl,in q],O) WOTcp = (ner,O) WTcp Computation
]},

Fig. 4. Timing diagram of a layer homogeneous multilevel tree using store and forward switching, simultaneot
distribution, and staggered start. The root node is with data storage. Subtrees from bottom most level to the

most level are collapsed into equivalent nodes.

(a%oniqo)ijTcp = (aj7in§:]())2qu_1Tcp + (aj,mE%)zj,chm j=1,2,....k and i=1,2,...,m (64)

The normalization equation for thgh single level subtree is
Qjo + g1+ aja+ e+ aim =1 (65)

This yieldsm + 1 equations withm + 1 unknowns. Rearranging equation (64), one has:

5 zj—1Tem wiley, o

J»% eq , €q 75t eq 7,0
n Tep wj,chp

=0 (66)
5,0Wj—1
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Homogeneous Multilevel Tree - Level j
- Store and Forward Switching

- Simultaneous Distribution

- Staggered Start

- Root Node with Data Storage

Root Node .
Communication
(Parent 0) 5 .
(O(,j’ Oneqj’ 0) Wchp Computation
(aj,]neqj,O)Zj-]Tcm Tf
Communication
(Child 1) p ]
(%‘, Ineqj, 0) wed;_ ITcp Computation
Ty
((xj, mneqj, O)Zj-]Tcm
(Childm ) " Communication
(Ocj’mnWj, 0) wed;_ T, p Computation
Ty

Fig. 5. Timing diagram ofjth level subtree with simultaneous distribution, staggered start, and root node with

data storage.

Let
Z‘_lT Z'_1T
eq ] cm eq eq €eq ¥ cm
Gl = ——eg =0;04/n 0 where 0.7 = —gr—— (67)
! 150w  Tep ! ! ! w;~ Tep
and let
"y
eq _ _Wj
ga = (68)
w;Zy
According to (4),7;? = wj?/w;, we may denote
zj17T, zj—1Tem 0j—-1 z2j—1Tem
eq _ Fj=ltem _ _9j _ 7
Oj1= e = e g = e where o0j_1 = o T (69)
Wi—gdep  Vj—1Wi-1dep V1 Wji—1dep
and
eq wj W éj—l wj
5j,1 = ~eq T _eq = _eq where gj—l = (70)
w;_ Vj—1Wi-1 Yi-1 Wj—1

The recursive equation (66) is transformed to

2 eq eq 2 _
o+l — &7 050 =0 (71)



2)

3)

24

Sincea;; > 0 (the same reason as before), we obtain the final solutian; pfas

+¢ 24t aZ,
Qg4 = z:1,2,...,m (72)

The fraction of distribution loady;,, can be solved by employing the normalization equation (65).
Normalization equation:

According to (72), equation (65) becomes

m
@0 + E :Oéj,z' =1

m —C 1+\/ ] 1 +4§ 1Oéj0
Oé]0+ =1

Consequently,

(M€, — Dafg + (mej?, +2)ajo — (mef?, +1) =0

Sincea; > 0 (the same reason as before), one obtains

—(mgf?, +2) +\/ )2+ 4m2€°L (me§T, + 1)
e 2(m?¢T, ~ 1)

(73)

Speedup equation:

If a subtree rooted atodej o~ is collapsed into an equivalent nodexde?’ the equivalent computational

<3,0>1

is Load"d.

eq
time atnode <j,0> <4,0>

Zi0> is equal to that abode< 0. If the fractional load assigned teode?!

(or n3%), then the fractional load afode< ;o> is ajoLoad”, . (or a;onjf) and the fractional load of the

equivalent nodepode?. .. is «;, ,Load<] 0> (Or aj, Zn 4). One obtains the equation

<J,i>

(1-nj o) quTCp = (ajyon%yijcp (74)
Consequently, we obtain
%' = wj = aj
J
Speedup = i@q i=12,...k (75)

7
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For amultilevel fat tree with homogeneous layettse computation capability of the leaves, the nodes at the
bottommost layer, can be denotedwas = w, and wgq is considered asyy at the bottommost layer. Thus,

75¢ can be obtained.
by | (76)

4) Constraints:
a) The constraint o&7":
In a simultaneous distribution protocol it is assumed that the communication spéedkon. is faster
than the computing speet){w$?, atnode?; at least (order of magnitude) times. This will guarantee
that the physical characteristics of tree networks comply to our analysis model. Nobeo&aé‘fj> is

the equivalent node receiving all the fractional load &gk ;- .

1
eq C
o; <<10 1=1,2,...,m (77)

b) The property of;“:
If 057 < 0.1 andn is large enoughs; becomes infinitesimal.

c) The range ot :
In a tree network implemented here for parallel computing it is assumed that the computing speed
each child is less than or equal to the computing speed of the child’s parent by a factpaodl greater
than or equal to that of parent by a factor Iogfm. This constraint makes the computing capability of

every node in a tree network more isometric rather than radically unbalanced. Consequently,

<m-— i=1,2,...,m (78)

<m 1=1,2,...,m (79)

5.2 Some Specific Cases

If gjﬂl approaches zerqlarge tree where communication is much faster than computation), the model approache

an ideal case. Each node can receive the load instantly and compute the data immediately. Under such an assumj



26

the function (73) can be approximated as

—2+ Am*¢l, 1 1 (80)
Qj0 = eq = =

1) The Nodes in the Same Layer Have the Same Computing Speed:
Let 5;31 = 1, that is, the computing speed at the parentie; o~ , iS equal to those at its equivalent children

nodes,nodeiqu. Thus,yjq becomes

1 .
fy;q = 0‘?,0 = CESIE where j=1,2,...k (81)

and~;? = 1. Consequently, one obtains speedup for a single level tree network as follows.
Speedup = (m + 1)* (82)

Now from equation (4) and equation (70),

e wy W,y
Vo m gy = (83)

Wj—1 Wij—1

Let wyp = w, thenw; = 7;%wy = 1 - w = w. Therefore, one obtains the inverse computing speed for each

layer node as follows.

. — A% . —
B (R IE

1 Jj—1 j—1
= |:(7’n_|_1)2:| X wyp = |:(7’n_l’_1>2:| X w where ] = 2,3, ceny k (84)
2) All Nodes Have the Same Computing Speed:

Let {;_1 = 1, that is, the inverse computing speed of all nodes is the same and designa{tedhasﬁq

becomes
eq 2 1
VT = T 2 (85)
_m 1
(\/7;(11 + >
Becausey, = 1, the recurrence equation, (85), is induced as follows.
1
eq _ 86
M (m + 1)2 ( )
. 1 1
’72q = = (87)

2 (m?+m+1)2
ml +1
V i n?
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1 1
= ' ; = . =1,2,...,k 88
i (mJ +mi=t .. 4 m+1)2 (Zf:oml)Q J YLy (88)

Consequently, the speedup of the homogeneous multilevel tree network is

Speedup = LR (Z m!)? (89)

We conclude that the speedup is the square of the total number of nodes, which makes intuitive sense. Note

this speedup expression is greater than linear in the number of nodes (processors).

6 SPEEDUP OF ASINGLE LEVEL TREE WITH SEQUENTIAL DISTRIBUTION AND WITH STAGGERED START

Sequential load distribution is employed in this section in a heterogeneous single level tree using staggered si
It is used as the model in most of the divisible load scheduling literature. Even though a closed form solution ft

optimal load allocation and speedup is not possible, an iterative solution is developed.

6.1 Speedup Derivation for A Single Level Tree with Running Hrpe’)

The structure of a single level tree network with root,+ 1 processors and links is illustrated in Fig. 1.

In this section we assume that the worst-case running cost of an algort®im}9 (i = 0,1,2,...,m), then the
computation time function at a node becomes a poyéunction in load sizen;. Still, the communication time
function on a link is a linear function in its assigned load size.

In order to minimize the processing finish time, all of the utilized processors in the network must finish computin
at the same time [1]. The process of load distribution can be represented by Gantt chart-like timing diagrams,
illustrated in Fig. 6. It is assumed that all of the load is available at the root node at tirie

Four types of equations are again needed to determine the speedup. They are recursive, hormalization, constre
and speedup equations.

1) Recursive equations and normalization equation:

According to the timing diagram Fig. 6, the fundamental recursive equations of the system can be formulat

as follows:

(am)xwiTcp = (aHm)XwiHTcp + (ai+1n)zi+1Tcm 7= 0, 1, 2, e, M — 1 (90)
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Heterogeneous Single Level Tree (Nonlinear Type with Power %)
- Sequential Distribution and Staggered Start

Root Node L
(node ¢s,) Communication
((xon)XWOTcp Computation
| Iy
' (0(’1 I’Z)Z 1 Tcm
(node_ ) Communication
(on)*w; T, Computation
| Ty
| (0m)z, Ty,
v (om)z Ty
(node ;) ’7 Communication
! ((xln)xwiTCp Computation
| T,
L @z Tem !
(node_;, 1) 3 Communication
i | (QLy )XWy g Tcp Computation
S Ty
i i i ((x'mn)ZmTcm
Y
(node ) I S N S S Communication
(ocmn)meTcp Computation
Ty

Fig. 6. Timing diagram of a heterogeneous single level tree using sequential distribution and staggered start.

The normalization equation is

awt+artar+-Fay=1 (91)

This yieldsm + 1 equations withm + 1 unknowns. Manipulating the recursive equations and normalization

eqguation can yield the solution for the fractions of load distribution. Now from (90),

w1 Tep Zit1lem .
a;n)X = (agn)X—— + (qjp1n) ———— 1=0,1,2,...,m—1 92
( ) ( i+ ) wiTcp ( + ) UJiTcp ( )
Let
G = Zidem _ o (93)

nX~lw Ty,  nx—1
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where

L= 1 =1,2,... 94
UZ wchp /L M ) 7m ( )
and let
gi-l-l = Ditl cp = Lt 1= 17 27 -y (95)
wiTcp ws
Then (90) becomes
(i) = &ir1(ip1)X + &ig16it10it1 1=0,1,2,...,m—1 (96)

2) Constraints:
a) The constraint of;:
In a simultaneous distribution protocol, it is assumed that the communication spéadcon. is faster
than the computing speed abde;~ at least (order of magnitudd) times. This will guarantee that
the physical characteristics of tree networks comply to our analysis model. Notedthat;-. is the

node receiving all the fractional load vienk;~.

1
i — =1,2,... 7
Uz<<10 1 ) 4y ,m (9)

b) The constraint of;:
If 0; < 0.1 andn is large enoughg; becomes infinitesimal.

c) Range of;:
In a tree network considered here for parallel computing it is assumed that the computing speed of ea
child is less than or equal to the computing speed of the child’s parent by a facter ahd greater
than or equal to that of parent by a factor Iofm. This constraint makes the computing capability of

every node in a tree network more isometric rather than radically unbalanced. Consequently,

<m-— 1=1,2,....m (98)

<zi=—<m 1=1,2,....m (99)



3)

30

The matrix equation consists of recursive equations and normalization equation are represented as follow

_ 045( _ -O &L 0 0 ... 0 0_ _ 046( _ _O SIS 0 0 0 11 o) _
af 0 0 & 0 ... 0 0 af 0 0 &e 0 0 0 o
ay 0 0 0 & ... 0 0 ay 0 0 0  &363 0 0 Qo
ay | =10 0 0 0 0 0 ay | 710 0 0 0 0 0 as
ai‘nfl 0O 0 0 0 ... 0 &, ozf%fl 0 O 0 0 0 &nsm| |Qm—1
I 1 | _0 0O 0 o ... 0 0_ _ai‘n_ _1 1 1 1 1 1 | [ o
These unknownsyg, a1, as, . . ., a;,, can be solved by standard iterative techniques. That is, one substitutes

an initial guess of thex (and oX) vector into the right hand side of the matrix equation, to create the (left

hand side) new estimate of the< vector which is then substituted into the right side, an on and on, until

convergence occurs.

Alternative recursive equations and normalization equation:

According to the timing diagram Fig. 6, the fundamental recursive equations of the system can be formulat

as follows:

i
(aon)XwoTep = (an)*w; Ty, + Z(ahn)thcm i=1,2,...

h=1

The normalization equation is

agtartaz+- oy =1

This yieldsm + 1 equations withm + 1 unknowns.

Equation Eq. (100) becomes

K3
(vi)Xw; + Zah%wh = () Xwy i=1,2,...,m
h=1

where

(100)

(101)

(102)

(103)
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The matrix equation consists of recursive equations and normalization equation are represented as follow

1 0 1 1 1 1 . 1 1 g
aw afw 0 0 0 0 0
owo 1 W1 S1wi1 e %1
ow oaXw 0 0 0 0
o Wo QW2 ST X)) Q2
ajwy | = asws T 10 quwi sws sws ... 0 0 a3
0 qwi Qws qwz ... 0 0
agwo QX Wm—1 : : : : - : : Q1
agwo MW, 0 qwi Qw2 Gws ... Gu_1Wm-1 SmWn Qm
These unknownsyg, a1, as, . . ., ayy,, Can, again, be solved iteratively.

Speedup equation:

Now, if a single level tree rooted atodey is collapsed into an equivalent nodeyde;?, and the total load

size isn, the computational time can be expressed@sw; T, (w;’ is the inverse computing speed of
the equivalent nodeyode;?). According to the Gantt chart-like timing diagrams, Fig. 6, the computational
time of the equivalent node (or the tree network) is equal to the computational time at the root in the tre

network. Consequently, the finish tin1§ becomes
Tr = (n)*wy'Tep = (a0 x n)Xwo Ty (104)
Hence,
quTcp = a%‘onCp (105)
According to Definition 1 in Section 2 (i.e“? = wy?/we) and Eq. (105), the value of*? becomes
7V = af (106)
Thus,

1 1\X
Speedup = — = <> (207)
el Qg
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7 CONCLUSION AND LESSONSLEARNED

A number of findings have resulted from this study:

e It is possible to solve for optimal load allocations and speedup for models with nonlinear power law computz
tional complexity, either in closed form or iteratively. A proof has been provided of the condition for optimal load
distribution of nonlinear loads.

e Nonlinear problems have a need for post-processing, because of the dependency of the input data w
processed by a nonlinear algorithm.

e We corroborate the results of Drozdowksi and Wolniewicz [4] that super-linear speedup can result for nonline
divisible load processing.

e It should be pointed out that higher order nonlinear equations can suffer from numerical error (due to finit
computer word size) problems and so some care is warranted.

We have sought to show how to demonstrate the possibility of optimal scheduling for a number of representati
scheduling policies on tree interconnection networks under power law nonlinearties in the space available. Of cou
for specific applications other scheduling policies, nonlinear functional forms and topologies may be of intere:
Because of the super-linear speedup, parallel processing of loads with nonlinear computational complexity is

promising technique to maximize computational efficiency on multiple processor systems.

APPENDIX

The following theorem is proved in this appendix [1].

Thrm: Given that load distribution in a single level tree follows the optimal sequencing condition, then if all
the nodes of the nonlinear computing model receiving nonzero load fractions stop computing at the sar
time, the processing time (makespan) is minimum for the specific scheduling strategies indicated.

The optimal sequencing condition means that the sequence of load distribution used by the root node should foll

the order in which the link speeds decrease. That is, the relationship of the inverse link speisds,

<2< <z << 2y, 1=1,2,...,m (108)
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In this Appendix two types of distribution in single level trees are taken into account, sequential distributiol
(see Fig. 6) and simultaneous distribution (See Fig. 3). For sequential distribution the optimal sequencing conditi

is required to prevent some nodes from being assigned zero fractions, but it can be relaxed for simultanec

distribution.
In a single level tree, we assume that thereqare- 1 nodes fodeos,node<1s, ..., node<ys), andm links
(l1, ..., l;n). Before the proof, some definitions are first illustrated as follows [1]:

1) Load distribution:cc is an orderedn + 1 tuple.
a = (ag,a1,02,...,0n) (209)
whereq; is the load fraction assigned twde;~. Further, the normalization equation is
Zaizl where 0<aa; <1 1=0,1,...,m (110)

The set of all feasible load distributions is denoted/by
2) Finish time:The finish time ofnode;~ is denoted byrl;(«), for a given load distributiorx € L.

3) Processing timefFor a givena € L, this is defined as
T(a) = max {Tp(a), T1 (), ..., T(cx)} (112)

In other words,T'(«) is the time at which the entire load is processed.

4) Minimum processing timeThis is defined as

T = Lneug T(x) (112)

5) Optimal load distributionThis is defined as the load distributi@d* € L such that the processing time is a

minimum, that is,

o’ = argmin T(a) (113)

Subsequently, we will prove both the sequential distribution and simultaneous distribution cases by the cont

diction method.

I. Sequential Distribution: (See Fig. 6)
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Proof: Let a = (g, a1, 9, ..., ) € L be the initial load distribution such that all the nodes stop

computing at the same time. Provided that the processing time is not a minimum, there must exist :

o* = (af,af,03,...,0},) € L such thata™ satisfiies
a® =arg min T(a) (114)
acL

As a consequence,
Ti(a™) < Tj(a) where  7=0,1,2,...,m (115)

Our approach in this proof is to show tha} < «; for all 7 but this contradicts a normalization condition.
We note that the case whef§(a*) < T;(a) can be handled with minor modifications. Because the

finish time of the roothode(~ is (agn)XwyTey, €quation (115)7y(a*) < Tp(a), becomes
(ogn)XwoTey < (agn)XwoTe, (116)

From (100) the finish time of child nodewode;, is (a;n)Xw;T,, + Zﬁl:l(ahn)thcm. According to

equation (115)7;(a*) < T;(«) (wherei = 1,2,...,m), one obtains
(ajn)Xw;Tey, + Zi:(a;;n)thcm < (ain)Xw;Tep + Zi:(ahn)thcm 1=1,2,...,m 117)
h=1 h=1
Let x be an integer ang > 1. Equation (116) becomes
((ap)* = (a0))n*woT,, < 0 (118)
Hence,
(0 — a0) {(@§)X " + (@) a0 + - + (@) (@02 + (o)X} niwgT, <0 (119)
Becausen}, a;,n, wy, andT,, are all positive, then
{1+ (ag) ag + - + () (@0)* + (ap)* 1} nXwoTey > 0 (120)
Consequently,
(ag —ag) <0 (121)

ol < ag (122)
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At child node<,>, one obtains finish timé&,,(a*) < T,,(«), then

m m
(g, n)Xwp Tep + Z(a’ﬁn)thcm < (amn) wpTep + Z(ahn)thcm

h=1 h=1
()X = (am))nXwm Ty < > (ap — )2y Tom (123)
h=1
According to (108)
Z (ap, — ag )nzpTem < Z ap — ap)nzmTem (124)
h=1 h=1

According to the normalization equations,

Z ap =1 and Zah =1 (125)
h=0 h=0
That is,
Za}"lzl—aé and Zahzl—ao (126)
h=1 h=1

Therefore, from equation (123), (124), and (126)
()X = (am))nXwnTep < (1 — ag)nzmTem — (1 — ag)nzmTem (127)

m

According to (121)

(1 — ap)nzmTem — (1 — ag)nzmTem = (o — co)nzmTem < 0 (128)

Hence,
()X = (am))n*w, Tep < 0 (129)
o, < iy (130)

Similarly, T5,,—1(a*) < Tp,—1(a*) at child node<y,—1>. This leads to

m—1 m—1
(1) w1 Tep + Z (apn)znTem < (Qm—1n)XWpm—1Tep + Z (apn)znTem
h=1 h=1
m—1
((ap—1)X = (m—1) )X w11y < Z (ap, — ag )nzpTem, (131)

h=1



According to (108),

m—1 m—1
Z (ap, — ag )nzpTem < Z (ap, — ag )nzm—1Tem
h=1 h=1

According to the normalization equations,

m m
Z a; =1 and Zah =1
h=0 h=0
That is,
m—1 m—1
a; =1—of—ay, and Zahzl—ag—am
h=1 h=1

Therefore, from (131), (132), and (134),

(1) = (m—1) ) wm—1Tep < (1 — ap — am)nzm—1Tem — (1 — og — g, )n2m—1Tem

Furthermore,
(1—ap—am)nzm-1Tem — (1 —af — o) )nzm—1Tem
={(ag + ay,) — (0 + am) } nzm—1Tem < 0
Therefore, according to (122) and (130)

((a:n—l)x - (amfl)x)nxwmfchp <0

a1 < Q1
As a result, atwode;~, T;(a*) < T;(ar) (Wherei =1,2,...,m),

7 7
(ajn)Xw;Tey, + Z(ain)thcm < (an)*w; Ty + Z(ahn)thcm
h=1 h=1
i
(@)X = () )XwiTey <> (an — ap)nzpTem  i=1,2,...,m
h=1
According to (108)

i i
Z(ah —ap)nzpTem < Z(ah —ap)nzilem 1=1,2,...,m
h=1 h=1

Provided that we have already obtained the following inequalities.

* . * . * . . *
(&%) < Q3 o, < Qs (6 et | < Am—1; tery ai+1 < Q41
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(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)
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According to the normalization equations,

Z ap =1 and Zah =1 (142)
h=0 h=0
That is,
Yoaj=l—aj—aj —ah_ ——afy (143)
h=1
Zah:]—_aO_am_am—l_"'_aH—l (144)

h=1

Therefore, from equation (139), (140), (143), and (144)
(@)X = () )X wiTy,
<(I—ap—am—amo1— - —aip1)nzTem — (L — a5 —ay, — - — i )nzilem (145)
According to (141)
(1-—a0—am—ame1 — - —ajp1)nzpTem — (1 —ag — oy, — -+ — i )nzpTem
={(af+ap, + -+ ) — (a0 + am+ am—1 + -+ 1) f nzpTem <0 (146)
Hence, from (145)
(@)X = () )n*w;Te, < 0 (147)
Therefore,

a < oy for 1=1,2,...,m (148)

Consequently, from (122) and (148),

M

o < Z a; (149)

=0 =0

This leads to a contradiction since bathanda™ € L and their component should add up to oneJ
II. Simultaneous Distribution: (See Fig. 3)
We assume that the nonlinear load computing in the single level tree of Fig. 3 is of goswety > 1.

The proof for the simultaneous distribution is illustrated as follows.
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Proof: Let a = (g, a1, 9, ..., ) € L be the initial load distribution such that all the nodes stop

computing at the same time. Provided that the processing time is not a minimum, there must exist :

o* = (af,af,03,...,0},) € L such thata™ satisfiies
a® =arg min T(a) (150)
acL

As a consequence,
Tj(a™) < Tj(a) where j=0,1,2,....,m (151)
Because the finish time at the roapde -, is (agn)XwyT,,, equation (151)7y(a*) < To(), leads to
(agn)XwoTey < (con)XwoTep (152)

According to (28) with powery, the finish time of the child nodejode;~, becomes a;n)Xw; T, +

(ain)ziTem. According to equation (151);(a*) < T;(a) (Wherei = 1,2,...,m), one obtains
(ajn)Xw;Tep + (0 n)ziTem < (in)Xw;Tep + (in)ziTem 1=1,2,...,m (153)
Without loss of generality, let be an integer ang > 1. Equation (152) becomes
((ag)* = (a0)*)n*wo Ty, < 0 (154)
(g — a0) { (@)™ + (g 2ag + - + (ap) ' (a0) 7% + (@)} nXwoTey, <0 (155)

Becausex:

7

a;,m, wy, andT,, are all positive, this leads to
{(@) " + (@) 20 + -+ + (a5) (@)X % + (a0)¥ ™} nXwo Ty, > 0 (156)
Consequently, one obtains
(ap —ap) <0
ap < ag (157)
At child node<;~, one obtains finish tim&;(a*) < T;(a); therefore,
(ain)XwiTey + (;n)ziTem < (cin) wiTe, + (cin)ziTem 1=1,2,...,m (158)

(@)X = (i) )Xwi Ty + (of — i)nziTem < 0 (159)

]
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Moreover,
(of — i) { (@) + ()P + -+ + () (i) + () nXwiTey + nziTom} <0 (160)
Becausey], a;,n, w;, 2, Ty, and Ty, are all positive,
{[(a;k)xfl + (@) 2oy + -+ () () T2+ (ai)xfl] nXwiTep 4+ nziTem} >0 (161)
Consequently,
(af —a;) <0

o < oy where i=1,2,...,m (162)

One obtains

NE
A

(V]
‘E

(163)
j=0 j=0

This leads to a contradiction since bathanda™* € L and their components should sum to one. O
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