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Scheduling Nonlinear Computational Loads

Jui Tsun Hung and Thomas G. Robertazzi

Abstract

A scheduling model is studied where the computing time function of each node is a nonlinear function

of the size of its assigned load. Speedup and closed form solutions for optimal load allocation are

obtained for simultaneous load distribution. An iterative solution technique is presented for sequential load

distribution. Super-linear speedup is possible when the computing time function is a nonlinear function

of the amount of fractional load assigned.

Index Terms

Divisible load scheduling, Store and forward switching, Multilevel tree network, Nonlinear Compu-

tational Loads, Speedup.

1 INTRODUCTION

It is well known that many algorithms have a computational complexity that is a nonlinear function of problem

size. Such nonlinear loads and algorithms are considered here in the context of parallel processing. In this paper

we use divisible load scheduling techniques in order to make analytical progress and because divisible loads are

of interest in their own right. A divisible load is an input load that can be arbitrarily partitioned among processors

and links in order to gain the benefits of parallel processing. No precedence relationships are assumed for the input

data.
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We note, and discuss below, that algorithms of nonlinear complexity that assume the divisibility of the input data

are different from algorithms of linear complexity in terms of a need for post-processing. That is, generally the

results of nonlinear sub-problems solved on individual processors need to be integrated (post-processed) to create

the overall solution. As a simple example, a large list that is to be sorted can be partitioned amongN processors.

The sorted sub-lists then need to be merged (post-processed) to create the final sorted list. We make the empirical

observation that to some extent the need to do post-processing arises as a result of the dependent nature of the data

in nonlinear problems. Unlike the situation for divisible loads of linear computational complexity, where the data

elements are relatively independent of each other, the elements of the solution for nonlinear problems depends on

the relationship between input data elements.

Tree networks are considered in this paper. A single level tree (star) is a fundamental interconnection topology.

Multilevel tree networks can be used as a spanning distribution tree embedded in other interconnection topologies

as well as being an interconnection topology of interest in itself. It is assumed that the optimal sequence of load

distribution is applied in a single level tree or in subtrees of a multilevel tree [1] in order to achieve the minimum

processing time. That is, the sequence of load distribution by the root or parent node should follow the order in

which the children link speeds decrease.

Three representative situations involving tree networks are considered here. First, speedup and closed form

solutions for optimal load allocation are found for a single level tree using simultaneous load distribution (i.e. the root

can transmit load to its children concurrently). For simplicity, the computing function has a quadratic computational

complexity in the amount of assigned load. Second, the optimal speedup of a multilevel layer homogeneous tree is

found under simultaneous load distribution, store and forward switching, and quadratic computational complexity

of the load. Finally, an iterative solution is developed for a single level tree using sequential load distribution.

It should be noted that sequential and simultaneous load distribution provide a wide variety of modeling

possibilities. Sequential load distribution has been well studied for loads of linear complexity and is realistic when

a root can communicate with only one child at a time. The improved performance and scalability of simultaneous

distribution [2], [3] over sequential distribution motivate future server architectures where one server can distribute

load on multiple outgoing links simultaneously. This fits in well with the needs of grids such as the ATLAS physics



4

experiments at CERN (Center European for Nuclear Research) where expensive international links need to be kept

at high utilizations.

Most of the work on divisible load theory has used linear models. An exception is work by Drozdowski and

Wolniewicz [4] who demonstrated super-linear speedup when processing time is a piecewise linear (and thus

nonlinear) function of assigned load in the modeling of the memory hierarchy of a computer. Drozdwoski and

Wolniewicz’s results were obtained through the use of mathematical programming. In this paper analytic results

are presented.

Divisible Load Theory Review

Divisible loads are data parallel loads that are perfectly partitionable amongst links and processors. Such loads

arise in the parallel and data intensive processing of massive amounts of data in grid computing, signal processing,

image processing and experimental data processing. Since 1988 [1], [5], [6], [2], [7], [8], [9], [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19], [20], [21], [3], [4], [22], [23] work by a number of researchers has developed

algebraic means of determining the optimal fractions of total load to assign to processors and links in a given

interconnection topology under a given scheduling policy. Here optimality is defined in terms of speedup and

execution times. The theory to date largely involves loads of linear computational complexity. That is, computation

and communication times are proportional to the size of the load fraction assigned to a processor or link, respectively.

Divisible load modeling should be of interest as it models, both computation and network communication in

a completely integrated manner. Moreover, it is tractable with its linearity assumption. Optimal divisible load

scheduling has been developed for various interconnection topologies [14], such as linear daisy chains [6], buses

[8], trees [7], [15], hypercubes [9], and two and three dimensional meshes [16], [17]. A number of scheduling

policies have been investigated including multi-installments [18] and multi-round scheduling [11], simultaneous

distribution [2], [13], simultaneous start [12], detailed parameterizations and solution time optimization [21], and

combinatorial schedule optimization [19]. Divisible loads may be divisible in fact or as an approximation as in the

case of a large number of relatively small independent tasks [10]. Introductions to divisible load scheduling theory

appear in [1], [5], [20].

The next section describes models and notations. Following that, the properties of computational time function are
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described in section 3. The scheduling performance using store and forward switching, simultaneous distribution,

and staggered start protocols is derived in section 4, for a heterogeneous single level tree, and in section 5, for a

layer homogeneous multilevel tree. In these two sections the computing time function is considered a function of

power2 of the size of assigned fractional load. In section 6 the performance of a single level tree using sequential

distribution is explored where the computing time function is of powerχ of the size of the assigned fractional load.

Finally, the conclusion and lessons learned are stated in section 7.

2 MODELS AND NOTATION

In this paper only staggered start scheduling is considered. Staggered start means that load can not be processed

at a node until the node has completely received its fractional load. On the other hand, if a node begins to process its

fractional load as soon as the load is received, the protocol is called simultaneous start [12] (this is not discussed for

reasons of space). In the following sections a single level tree using simultaneous distribution (section 4) and using

sequential distribution (section 6) is modeled. Simultaneous distribution, where load is transmitted concurrently

over multiple links, was first proposed by Piriyakumar and Murthy [13]. In sequential distribution a parent node

can transmit fractional load to only one of its children at a time.

A heterogeneous tree is a tree with distinct computing speeds at different nodes. A layer homogeneous tree has

equal computing speeds of nodes and equal communication speeds of links at the same layer in the tree.

2.1 Model and Notations for a Single Level Tree

A heterogeneous single level tree using staggered start is illustrated in Fig. 1 where each node contains a miniature

timing diagram. A heterogeneous single level tree rooted atnode<0> can be collapsed into an equivalent node,

nodeeq
<0>, whose equivalent inverse computing speed is denotedωeq

0 . That is, a single level tree can be collapsed

into an equivalent processor with an equivalent computing speed equal to the speed of the original single level

tree. This is an important concept for a multilevel tree where one recursively collapses single level subtrees into

equivalent nodes so as to obtain an equivalent processor for the entire multilevel tree network and obtain the speedup

formulae for the tree. The concept of processor equivalence was introduced by Robertazzi in 1993 [1] [24].

The notation and symbols are as follows:
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The entire load size n is already
stored at the root node, node<0>

z2

...

node<m-1>

(α2n)2w2Tcp (αm-1n)2wm-1Tcp (αmn)2wmTcp(α1n)2w1Tcp

(α0n)2w0Tcp

z1 zm-1 zmzi

node<m>node<1>

node<0>

node<2>

Quadratic Computing Model:
A Heterogeneous Single Level Tree 

Using Staggered Start

αi

The number of fractional load to node<i> 
is denoted as ni , and ni=αin.

(α1n)z1Tcm (αmn)zmTcm(αm-1n)zm-1Tcm(α2n)z2Tcm

Fig. 1. A single level tree using the staggered start model. The worst-case running cost of an algorithm atnode<i>

is assumed to beΘ(n2
i )

n : The number of records (or called objects or atomic pieces) of the entire load in a tree network. It is also called

the size of the entire load.

ni = αin : The number of records of a fractional load atnode<i> (wherei = 0, 1, 2, . . . , m).

α0 : The load fraction assigned to the root processor.

αi : The load fraction assigned to theith link-processor pair (wherei = 0, 1, 2, . . . , m).

wi : The inverse computing speed at theith processor (wherei = 0, 1, 2, . . . ,m).

weq
0 : The equivalent inverse computing speed of the equivalent node,nodeeq

<0>, collapsed from a single level tree

rooted atnode<0>.

zi : The inverse communication speed on theith link (wherei = 0, 1, 2, . . . , m).

Tcp : Computing intensity constant.

Tcm : Communication intensity constant.

Tf : The finish time. Time at which each processor accomplishes computation.

Definition 1: γeq, the ratio of the inverse computing speed at an equivalent node,nodeeq
<0>, to that at the root

node,node<0>. The equivalent node is the result of collapsing a single level tree rooted atnode<0>.

γeq = weq
0 /w0 (1)
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Definition 2: Speedup, the ratio of the computing speed at the equivalent node to that at the root node in the

tree, that is, the inverse ofγeq.

Speedup = 1/γeq = ω0/ωeq
0 (2)

2.2 Model and Notations for a Multilevel Tree

A heterogeneous multilevel tree is not employed because of the complexity of the index system; therefore, in

this paper a simpler physical model of layer homogeneous structure is evaluated (see Fig. 2). In this physical model

(Layer k)

[Level k] k,2
α

αk,i
k,m

α

k,1
α

...

...

...

(n1,1)
2w0Tcp

node<1,1>

node<1,m>

(n1,m)2w0Tcp

node<1,2>

(n1,2)
2w0Tcp

1,1
α 1,2

α 1,m
α

[Level 2]

[Level 1]

(Layer 2)

(Layer 1)

(Layer 0)

The entire load size neq
k,0 is already

stored at the root node, node<k,0>

(α1,0neq
1,0)2w1Tcp

1,1
α 1,2

α 1,m
α

1,1
α 1,2

α 1,m
α

Quadratic Computing Model:
A Homogeneous Fat Tree Using Staggered Start

(αk,0neq
k,0)2wkTcp

(α2,0neq
2,0)2w2Tcp

node<k,0>

node<2,0>

node<1,0>
node<1,0> node<1,0>

node<2,1> node<2,2>
node<2,m>

node<3,1>

...
(zk-1,i)

zk-1=pk-1z
zk-1 zk-1 zk-1

z2=p2z

z1=p1z
z1z1

z1

z0=p0z=z

z z
zzz z zzzz zz

z

Here w0=w The fractional load assigned to each subtree
rooted at node<j,0> is denoted as neq

j,0.
The subtree can be collapsed into 
an equivalent node, nodeeq

j,0. 

(α1,0neq
1,0)2w1Tcp (α1,0neq

1,0)2w1Tcp

...

(n1,1)
2w0Tcp

node<1,1>

node<1,m>

(n1,m)2w0Tcp

node<1,2>

(n1,2)
2w0Tcp

...

(n1,1)
2w0Tcp

node<1,1>

node<1,m>

(n1,m)2w0Tcp

node<1,2>

(n1,2)
2w0Tcp

{ leaves,
   children nodes }

{ root node }

{ parent node }

{ parent nodes }

(α2,mneq
2,0)z1Tcm(α2,1neq

2,0)z1Tcm (α2,2neq
2,0)z1Tcm

(α3,1neq
3,0)z2Tcm

Fig. 2. A multilevel homogeneous tree using store and forward switching, simultaneous distribution and staggered

start. The worst-case running cost of an algorithm atnode<j,0> is assumed to beΘ(n2
j,0) wherenj,0 is the fractional

load for node<j,0> to process.
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the rootnode<k,0> is the only node with no parent (the topmost layer) and a node with no children is called a leaf

(the bottommost layer). A subtree, on the other hand, rooted atnode<j,0> is a tree induced by its descendants of

node<j,0> (where0 < j < k, andj is an integer). For off-loading communications the root and parent processors

are equipped with front-end processors. The degree ofnode<j,0> is defined asm; in other words,node<j,0> has

m children .

After a parent receives all fractional loads for the subtree rooted at itself, immediately it starts distributing

fractional loads to its descendants simultaneously or sequentially, according to the policy used. The use of cut

through switching for linear models is considered in [3], [23].

In a multilevel tree the bottom most level is denoted level1 and the top most level, levelk. The notation for a

layer homogeneous multilevel fat treeis denoted as follows.

neq
j,0 : The number of records of the fractional load delivered to the equivalent node,nodeeq

<j,0>, collapsed from a

subtree rooted at node,node<j,0> (wherej = 1, 2, . . . , k).

nj,i = αj,in
eq
j,0 : The number of records of a fractional load processed atnode<j,i> (where i = 0, 1, 2, . . . ,m,

j = 1, 2, . . . , k).

αj,0 : The load fraction assigned to the root processor in thejth level subtree (wherej = 1, 2, . . . , k).

αj,i : The load fraction assigned to theith link-processor pair in thejth level subtree (wherei = 0, 1, 2, . . . ,m,

j = 1, 2, . . . , k).

w : The inverse computing speed at each leaf processor at the bottommost layer.

wj : The inverse computing speed at each parent processor in thejth layer (wherej = 1, 2, . . . , k).

weq
j−1,i : The inverse computing speed at an equivalentith node representing the (j − 1)th level subtree, consisting

of level j−1 descending to level1. The equivalent node collapsed from a subtree rooted atnode<j−1,i>

is denotednodeeq
<j−1,i>. For simplicity, we assume thatωeq

j−1 = ωeq
j−1,i (wherei = 1, 2, . . . , m) in a layer

homogeneous multilevel tree.

Definition 3: pj−1,i , the multiplier of the inverse capacity of theith link at levelj (see Fig. 2).

The value of the multiplierpj−1,i is defined here as the inverse of the total number of children processor

descendants at and below levelj for the ith subtree. The variablepj−1,i allows fat tree modeling. A fat tree



9

allocates more communication capacity to nodes near the root to improve the speed of load distribution and to

prevent bottlenecks. In a homogeneous multilevel fat tree, we assumepj−1 = pj−1,i (i = 1, 2, . . . , m). Hence,

pj−1 =

(
j−1∑

l=0

ml

)−1

0 < pj−1 ≤ 1 (3)

This choice ofpj−1 allows an equivalent data rate of1/z to each node in the tree from the root.

zj = pjz : The inverse communication speed at each link in thej + 1st level subtree.

Definition 4: γeq
j , the ratio of the inverse computing speed at the equivalent node,nodeeq

<j,0>, at levelj to that

of the root node,node<j,0>.

γeq
j = weq

j /wj (4)

Definition 5: Speedup, the inverse ofγeq
j .

Speedup = 1/γeq
j = wj/weq

j (5)

3 THE PROPERTIES OFCOMPUTATIONAL TIME FUNCTION

In this section a computational time function is defined in terms of the running cost of an algorithm, the inverse of

CPU speed, and the computing intensity constant. A distinction is made between data partitioned by hardware (on

multiple processors) and partitioned by software (by a process on a single machine), each of which has somewhat

different characteristics.

The computational time function at a node (or a single machine) is defined here as the time that it takes to process

its own fractional load. On the other hand, the run time of an algorithm is sometimes defined as the number of steps

[25] in the literature. This is an appropriate description for running time because the performance of an algorithm

should be based on a standard which is independent of the computing powers of a variety of machines.

The optimal performance of a tree network is machine-dependent and we assume that all the fractional loads

are processed (to some extent) concurrently. Therefore we define the computation time function as a product of

the running cost of an algorithm (unitstep), the inverse of node computing speed (unitseconds/per step) and

the computation intensity defined earlier (unit dimensionless). In this paper, we use the running cost instead of the

running time for algorithms so as to avoid confusion. The computational equation atnode<i> (a node indexed to
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i) can be expressed as

F cp
i (·) = F algm

i (·)× F inv·CPU ·sp
i (·)Tcp (6)

The notation is described as follows.

1) F cp
i (·) is the computational time atnode<i> (unit second).

2) F algm
i (·) is the running cost of an algorithm processing a fractional load (unitstep).

3) F inv·CPU ·sp
i (·) is the inverse of CPU speed atnode<i> (unit seconds/per step) - in other words, it is the

CPU execution time for each step (or for each instruction). Therefore, it can be denoted with a conventional

notation aswi .

As a result, the computational equation (6) becomes

F cp
i (·) = F algm

i (·)wiTcp (7)

For simplicity,F algm(·) can be reduced to a function of the number of records (where a “record” is an indivisible

piece of data). The size of a load is represented by the number of records (or atomic pieces).

On the other hand, we denote the communication time functionF cm
i (·) as

F cm
i (·) = Loadi(·)ziTcp (8)

Here we assume that the communication time is linearly proportional to the load size,Loadi.

3.1 Hardware Partition

The core method for parallel computing is partitioning a load into fractions and delivering these fractional loads

to all nodes so that the assigned data can be processed concurrently. This decreases the finish time of a processed

load, or improves the speedup of data processing. We call this partition a hardware partition for multiple machines,

which is in contrast to a software partition on a single machine.

An “equivalent” node, an established concept [6], [24], has identical operating characteristics to the subnetwork

it replaces. The final computational time of a subtree rooted atnode<0> (or an equivalent node,nodeeq
<0>), is equal

to the sum of the computational time at the root node and the time for the root to collect and post-process the results

from its children. The hardware partition cost is denotedDhd
0 (·). The cost of post-processing including collecting
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and processing data atnode<0> is denotedChd
0 (·). Accordingly, at the root node the equivalent computational

function can be expressed as

F cp·eq
0 (·) = F cp

0 (·) + Dhd
0 (·) + Chd

0 (·) (9)

whereF cp·eq
0 (·) is the equivalent computation function of a subtree rooted atnode<0> (or the computation function

at the equivalent node,nodeeq
<0>). However, at childnode<i> the equivalent computational function can be expressed

as

F cp·eq
0 (·) = F cm

i (·) + F cp
i (·) (10)

Here F cm
i (·) is the communication time function for the root to transmit an assigned fractional load to it child

node<i>. Hence, from Equations (7), (8), (9), and (10) one obtains

F algm.eq
0 (·)weq

0 Tcp = [F algm
0 (·) + Dhd.algm

0 (·) + Chd.algm
0 (·)]w0Tcp (11)

F algm.eq
0 (·)weq

0 Tcp = Loadi(·)ziTcp + F algm
i (·)wiTcp (12)

Here thealgm superscript indicates dependence on a particular algorithm. The second equation is for simultaneous

load distribution, with staggered start.

Provided that the number of records of an entire load isn (where n is sufficiently large) and provided that

a subtree rooted atnode0 has m children nodes, which is indicated asnode<i> (where i = 1, 2, 3, ..., m), the

hardware divide-and-conquer property can be described as follows.

Divide: The number of divide steps is constant and related tom+1 because there arem+1 nodes in a subtree

as assumed. ThenDhd.algm
0 (n) is in theΘ(1) set.

Conquer: There arem + 1 subproblems in a processing task and each node is assigned a subproblem. Besides,

the size of fraction load atnode<i> is represented asni (i = 0, 1, 2, ..., m).

Combine:The combine procedure depends on the particular algorithm used. For instance, the combine procedure

of a sorting problem depends on the extent to which the records are already somewhat sorted. We assume

that the output result from each node is already sorted. According to this situation,Chd.algm
0 (n) = Θ(n)
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Now equation (11) and (12) are transformed into

F algm.eq
0 (n)weq

0 Tcp = [F algm
0 (n0) + Θ(1) + Θ(n)]w0Tcp (13)

F algm.eq
0 (n)weq

0 Tcp = Loadi(ni)ziTcp + F algm
i (ni)wiTcp (14)

Provided that the algorithms used among all nodes including the equivalent node are the same, we may let

F algm.eq
0 (·) = F algm

0 (·) = F algm(·) and letLoadi(ni) = ni = αin. Finally equation (13) and (14) become

F algm(n)weq
0 Tcp = [F algm(n0) + Θ(1) + Θ(n)]w0Tcp (15)

F algm(n)weq
0 Tcp = niziTcp + F algm(ni)wiTcp (16)

3.2 Software Partition

The running cost of an algorithm corresponding to a software divide-and conquer approach atnode<i>, which

receivesni records, can be expressed as

T (ni) = aT (ni/b) + D(ni) + C(ni) (17)

Let

F algm(ni) = T (ni) (18)

Then one obtains

F algm(ni) = T (ni) = aT (ni/b) + D(ni) + C(ni) (19)

The software divide-and conquer properties are illustrated as follow.

Divide: The process of divide steps takes only constant time. Because the data processing problem is divided

into b computational subproblems, this leadsD(ni) in the set ofΘ(1).

Conquer: Generallya subproblems with the sizeni/b are solved recursively.

Combine: If the combine procedure atnode<i> hasni records, the combining cost is denoted asC(ni). For

instance, if the algorithm is a sorting process, it takesΘ(ni) steps.
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Note here we usea rather thanb to be more general. As an example, the sorting problem has the running cost

formula as follows.

F algm(ni) = T (ni) = aT (ni/b) + Θ(1) + Θ(ni) (20)

T (n) can be of the order of growthn log n, n2, n3, 2n, or n!, and so on.

3.3 Applications

Two categories of applications are illustrated as follows.

1) Linear Applications:Provided that the running cost is linear to the number of records,T (n) is in the set

Θ(n). Because of the linearity property, the output of each record is independent of those of other records

after data processing. Therefore the post-processing costChd.algm
0 (·) is equal to zero. For simplicity, let

F algm(ni) = Θ(ni) = ni. Because the size of the fraction of the loadni is equal toαin, equation (15) and

(16) become

n× weq
0 Tcp = [α0n + Θ(1)]w0Tcp (21)

n× weq
0 Tcp = αinziTcp + αinwiTcp (22)

If the number of records is sufficiently large, equation (22) reduces to

weq
0 Tcp = α0w0Tcp (23)

weq
0 Tcp = αiziTcp + αiwiTcp (24)

2) Nonlinear Applications:As an example, provided thatT (n) = Θ(n2), thenF algm(ni) = Θ(n2
i ).

For simplicity, letF algm(ni) be n2
i , equation (15) and (16) become

(n)2weq
0 Tcp = [(α0n)2 + Θ(1) + Θ(n)]w0Tcp (25)

(n)2weq
0 Tcp = (αin)ziTcp + (αin)2wiTcp (26)

If the number of records is sufficiently large such that(α0n)2 À Θ(n), then equation (25) is reduced to

(n)2weq
0 Tcp ' (α0n)2w0Tcp (27)
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Consequently, after hardware partition the equivalent computational time atnode<0> becomes a quadratic

equation in the load size,α0n. Thus conditions (26) and (27), will be employed in the following two sections.

4 THE SPEEDUPPERFORMANCE OF ASINGLE LEVEL TREE USING SIMULTANEOUS DISTRIBUTION

In this section we consider a heterogeneous single level tree in which processors use simultaneous load distribution

and the staggered start protocol to process their assigned fractional loads. Using the staggered start protocol a

processor must receive its load completely before it begins to process the load. The root node can distribute load

to its children while processing some fraction of the load. In this sense the root may be considered to have a front

end sub-processor for communications off-loading.

4.1 Speedup Derivation for A Single Level Tree with Running TimeΘ(n2
i )

The structure of a single level tree network withm+1 processors andm links is illustrated in Fig. 1. All children

processors are connected to the root processor via direct communication links. The root processor, assumed to be the

only processor at which the divisible load arrives, partitions a total processing load optimally intom + 1 fractions,

keeps its own fractionα0, and distributes the other fractions,α1, α2, . . . , αm, to the children processors respectively

and concurrently. Given that the entire load containsn records (or n atomic pieces), at the rootnode<0> the

fractional load is denotedn0 (wheren0 = α0n) and at childnode<i> the fractional load isni (whereni = αin,

i = 1, 2, . . . , m).

As an example in this section we assume that the worst-case running cost of an algorithm isΘ(n2
i ) (i =

0, 1, 2, . . . , m) and the computation time function at a node becomes a quadratic equation in the load size,ni.

However, the communication time function on a link is still assumed linear in load size via the link.

In order to minimize the processing finish time, all of the utilized processors in the network must finish computing

at the same time [1]. Intuitively, otherwise load could be transferred from busy processors to idle processors to

improve the solution (see the Appendix for a proof). The process of load distribution can be represented by Gantt

chart-like timing diagrams as illustrated in Fig. 3. It is assumed that at the root node the entire load is available

for distribution at timet = 0.
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Communication

Computation

(Child m  )

Communication

Computation

Root Node

Tf

(Parent 0)

Communication

Computation

.

.

.

.

(Child 1)

Single Level 

Heterogeneous Single Level Tree (Nonlinear Type)
- Staggered Start
- Root Node with Data Storage

(α0n)2w0Tcp

(αmn)2wmTcp

(α1n)2w1Tcp

Tf

Tf

(α1n)z1Tcm

(αmn)zmTcm

Fig. 3. Timing diagram of single level tree with simultaneous distribution, staggered start.

To calculating the speedup of a tree network, four types of equations are employed in this section, which are

recursive, normalization, speedup, and constraint equations.

1) Recursive equations:

As mentioned, it is known that for an optimal solution in terms of makespan for linear problems all processors

should stop at the same time [1]. Thus according to the timing diagram Fig. 3, the fundamental recursive

equations of the system can be formulated as follows.

(α0n)2w0Tcp = (αin)ziTcm + (αin)2wiTcp i = 1, 2, . . . , m (28)

In addition, the normalization equation for a single level tree is

α0 + α1 + α2 + · · ·+ αm = 1 (29)

This yieldsm + 1 equations withm + 1 unknowns. Manipulating the recursive equations and normalization

equation can yield the solution for the fractions of load distribution. Now from (28),

α2
i +

ziTcm

nwiTcp
αi − w0Tcp

wiTcp
α2

0 = 0 (30)
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Let

ξi =
w0Tcp

wiTcp
=

w0

wi
i = 1, 2, . . . , m (31)

and let

ςi =
ziTcm

nwiTcp
=

σi

n
where σi =

ziTcm

wiTcp
i = 1, 2, . . . , m (32)

The recursive equation (30) is transformed to

α2
i + ςiαi − ξiα

2
0 = 0 (33)

Applying the quadratic formula to (33), one obtains

αi =
−ςi ±

√
ς2
i + 4ξiα2

0

2× 1
(34)

Since the value ofαi is the load fraction atnode<i>, it does not make any physical sense ifαi < 0. Hence,

αi ≥ 0 and the solution ofαi becomes

αi =
−ςi +

√
ς2
i + 4ξiα2

0

2
i = 1, 2, . . . , m (35)

2) Normalization equation:

Employing equation (35), the normalization equation (29) becomes

α0 +
m∑

i=1

−ςi +
√

ς2
i + 4ξiα2

0

2
= 1 (36)

Using the quadratic formula for solving Eq. (36) and then assuming that the solution ofα0 is C0 (a specific

value), One finally obtains the solution of load fractions as

αi =
−ςi +

√
ς2
i + 4ξiC2

0

2
(37)

3) Speedup equation:

Now if a single level tree rooted atnode0 is collapsed into an equivalent node,nodeeq
0 , and the total load

size isn, the computational time can be expressed as(n)2weq
0 Tcp (weq

0 is the inverse computing speed of

the equivalent node,nodeeq
0 ). According to the Gantt chart-like timing diagrams, Fig. 3, the computational
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time of the equivalent node (or the tree network) is equal to the computational time at the root in the tree

network. That is, the finish timeTf becomes

Tf = (n)2weq
0 Tcp = (α0 × n)2w0Tcp = (C0 × n)2w0Tcp (38)

Moreover,

weq
0 Tcp = α2

0w0Tcp = C2
0w0Tcp (39)

According to Definition 1 in Section 2 (i.e.γeq = weq
0 /w0) , the value ofγeq can be obtained from (39) as

γeq = C2
0 = α2

0 (40)

In this section speedup is the ratio of job solution time at one processor to job solution time at a tree network

with m + 1 processors (see Definition 2 in Section 2.) As a result,

Speedup =
1

γeq
=

1
C2

0

=
(

1
α0

)2

(41)

Note that speedup is a measure of the achievable parallel processing advantage.

4) Constraints:

a) The constraint ofσi:

In a simultaneous distribution protocol, it is assumed that the communication speed onlink<i> is faster

than the computing speed atnode<i> by at least (order of magnitude)10 times. Herenode<i> is the

node receiving all the fractional load vialink<i>. One obtains

σi ¿ 1
10

i = 1, 2, . . . , m (42)

This will guarantee that the physical characteristics of tree networks comply to our analysis model. If

the communication time at some node is too slow relative to its corresponding computation time, not

all nodes are needed for an optimal solution [1].

b) The property ofςi:

If σi ¿ 0.1 andn is large enough,ςi becomes infinitesimal.

c) Range ofξi:

For isometric (balanced) rather than drastically unbalanced computing power for parallel computing,
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the computing speed of each node in a tree network is specified as less than or equal to the computing

speed of the child’s parent by a factor ofm, and greater than or equal to that of parent by a factor of

1/m. That is,

1
m
· 1
w0

≤ 1
wi

≤ m · 1
w0

i = 1, 2, . . . , m (43)

Hence, the condition of a balanced computing tree network is given as follows.

1
m
≤ ξi =

w0

wi
≤ m i = 1, 2, . . . , m (44)

4.2 Some Specific Cases

Some specific cases are discussed as follows.

1) Link Capacity and Children Computing Speed are Homogeneous:

Considering a homogeneous network where all children processors have the same inverse computing speed

and all links have the same inverse transmission speed, thenwi = w and zi = z for i = 1, 2, . . . , m (Note

that the root inverse computing speed,w0, can be different fromwi). According to (31),

ξi =
w0Tcp

wTcp
=

w0

w
= ξ i = 1, 2, . . . , m (45)

Now from (32) we obtains

ςi =
zTcm

nwTcp
= ς =

σ

n
σ = zTcm/wTcp and i = 1, 2, . . . , m (46)

Accordingly, the constraints are specified as follows.

a) σ condition:σ ¿ 0.1 for the simultaneous distribution model.

b) ς condition: If σ ¿ 0.1 andn is large enough,ς becomes infinitesimal.

c) ξ condition:

1
m
≤ ξ =

w0

w
≤ m (47)

Equation (35) becomes

αi =
−ς +

√
ς2 + 4ξα2

0

2
i = 1, 2, . . . , m (48)
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Hence the normalization equation (36) becomes

α0 +
m∑

i=1

−ς +
√

ς2 + 4ξα2
0

2
= 1

α0 + m · −ς +
√

ς2 + 4ξα2
0

2
= 1 (49)

Furthermore, manipulate equation (49)

2α0 −mς + m
√

ς2 + 4ξα2
0 = 2 (50)

(m2ξ − 1)α2
0 + (2 + mς)α0 − (mς + 1) = 0 (51)

Applying the quadratic formula to (51), one obtains

α0 =
−(2 + mς)±

√
(2 + mς)2 + 4(m2ξ − 1)(mς + 1)

2 · (m2ξ − 1)

=
−(2 + mς)±

√
m2ς2 + 4m2ξ(mς + 1)

2(m2ξ − 1)
(52)

Sinceα0 is the fraction of load for computation at the root node, it does not make any physical sense if the

value ofα0 is less than zero. According to theξ condition from (47),

1
m
≤ ξ ≤ m (53)

then

m2 ≥ mξ ≥ 1 (54)

Because the number of children nodes is assumed to be greater than2 in a single level tree or in subtrees of

a multilevel tree, one obtains

m3 ≥ m2ξ ≥ m > 1 (55)

Because the plus sign in (52) is taken instead of symbol± and the value ofα0 is greater than zero (where

2(m2ξ − 1) > 0 and−(2 + mς) +
√

m2ς2 + 4m2ξ(mς + 1) > 0), the solution ofα0 becomes

α0 =
−(2 + mς) +

√
m2ς2 + 4m2ξ(mς + 1)

2(m2ξ − 1)
(56)

where 4m3ξς + 4m2ξ − 4− 4mς > 0 and 2(m2ξ − 1) > 0.

As a result, Eq. (40) becomes

γeq = α2
0 =

(
−(2 + mς) +

√
m2ς2 + 4m2ξ(mς + 1)

2(m2ξ − 1)

)2

(57)
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and Eq. (41) becomes

Speedup =
1

γeq
=

(
2(m2ξ − 1)

−(2 + mς) +
√

m2ς2 + 4m2ξ(mς + 1)

)2

(58)

2) Fast Communication Case:

Let σ ¿ 0.1, ς becomes infinitesimal (fast communication).

Equation (46) is repeated here as follows.

ς =
zTcm

nwTcp
=

σ

n
(59)

Provided that communication speed is faster than computing speed,σ is much smaller than0.1, σ ¿ 0.1.

Now from Eq. (59)mς is equal tomσ/n; that is mς = mσ/n. If one assumem ¿ n, then mς ¿ 1.

Accordingly,mς +1 is approaching1 (mς +1 → 1) and2+mς is approaching2 (2+mς → 2). The speedup

formula (58) can be approximated as

Speedup =

(
2(m2ξ − 1)

−2 +
√

m2ς2 + 4m2ξ

)2

(60)

Becausem2ξ > 1 and (mς)2 ¿ 1, 4m2ξ + m2ς2 approaches4m2ξ (4m2ξ + m2ς2 → 4m2ξ). Moreover,

Eq. (60) becomes

Speedup =

(
2(m2ξ − 1)

−2 +
√

4m2ξ

)2

=
(

2(m2ξ − 1)
2(m

√
ξ − 1)

)2

=
(
m

√
ξ + 1

)2
(61)

3) Homogeneous Computing Case (ξ = 1):

If the computing capability of the root node is the same as that of the children nodes in a homogeneous

single level tree, i.e.w0 = wi = w, thenξ = 1. Under such condition, the speedup formula becomes

Speedup = (m + 1)2 (62)

This simple case makes intuitive sense if communication is much faster than computation. Note that speedup

here is of a greater rate than that of a tree network consisting of the same number of processors but with a

linear computing function in the size of the fractional load.
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5 SIMULTANEOUS DISTRIBUTION IN A LAYER HOMOGENEOUSMULTILEVEL FAT TREE ANALYSIS

A fat tree architecture is now considered where upper links (closer to the root) have more capacity than lower

links in such a way that each node has equivalent bandwidth1/z to the root. Properly designed fat trees preclude

any tree level from becoming a capacity bottleneck. Such an architecture will allow a maximization of performance.

Consider a homogeneous multilevel fat tree network where all parent processors on levelj have the same inverse

computing speed,wj , and links of levelj also have the same transmission speed,zj−1 (see Fig. 2). The inverse of

bandwidth capacity,zj−1, is designated aspj−1z. The value ofpj−1 is defined by Definition 3 in Section 2.

In this work, store and forward switching (in contrast to cut through switching) is studied. In store and forward

switching, load must be completely received by a node before being distributed to its descendants. The process

of load distribution for a multilevel fat tree network using store and forward switching from upper level to lower

level can be represented by a Gantt chart-like timing diagram (see Fig. 4). We will derive the speedup of the entire

multilevel tree by moving upwards through the tree, collapsing successive subtrees into equivalent processors until

the entire single level tree is collapsed into an equivalent node. We find that each “box” (level) in Fig. 4 illustrates

the scheduling levels of a multilevel tree where the root node has data storage (all load is available at the single level

tree root at timet = 0). The nested, shaded boxes indicate single level trees which are collapsed into equivalent

nodes.

5.1 Speedup Derivation for a Multilevel Tree: Levelj Subtree

Again, four type of equations are identified for calculating speedup.

1) Recursive equations:

As in Fig. 2, let levelk be the topmost root single level subtree. Here level “j” is used to represent any

single level subtree at any arbitrary levelj. Let αj,i be the load fraction for theith children collapsed (or

equivalent) node of thejth level subtree. Provided that

(αj,in
eq
j,0)

2weq
j−1Tcp > (αj,in

eq
j,0)zj−1Tcm i = 1, 2, . . . , m (63)

in this subtree (see Fig. 5), then communication time is faster than computation time. According to Fig. 5,

the fundamental recursive equations of thejth level subtree network are
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(α1,in
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1,0)2w0Tcp = (neq
0,0)2wTcp

(αk,in
eq

k,0)zk-1Tcm

(αk-1,in
eq

k-1,0)zk-2Tcm

(α3,ineq
3,0)z2Tcm

(α2,in
eq

2,0)z1Tcm

(α1,in
eq

1,0)z0Tcm

Tf

Tf
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Tf
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an equivalent node, nodeeq

<2,0>
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collapsed into an 
equivalent node, 
nodeeq

<1,0>

Fig. 4. Timing diagram of a layer homogeneous multilevel tree using store and forward switching, simultaneous

distribution, and staggered start. The root node is with data storage. Subtrees from bottom most level to the top

most level are collapsed into equivalent nodes.

(αj,0n
eq
j,0)

2wjTcp = (αj,in
eq
j,0)

2weq
j−1Tcp + (αj,in

eq
j,0)zj−1Tcm j = 1, 2, . . . , k and i = 1, 2, . . . , m (64)

The normalization equation for thejth single level subtree is

αj,0 + αj,1 + αj,2 + · · ·+ αj,m = 1 (65)

This yieldsm + 1 equations withm + 1 unknowns. Rearranging equation (64), one has:

α2
j,i +

zj−1Tcm

neq
j,0w

eq
j−1Tcp

αj,i − wjTcp

weq
j−1Tcp

α2
j,0 = 0 (66)
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Fig. 5. Timing diagram ofjth level subtree with simultaneous distribution, staggered start, and root node with

data storage.

Let

ςeq
j−1 =

zj−1Tcm

neq
j,0w

eq
j−1Tcp

= σeq
j−1/neq

j,0 where σeq
j−1 =

zj−1Tcm

weq
j−1Tcp

(67)

and let

ξeq
j−1 =

wj

weq
j−1

(68)

According to (4),γeq
j = weq

j /wj , we may denote

σeq
j−1 =

zj−1Tcm

weq
j−1Tcp

=
zj−1Tcm

γeq
j−1wj−1Tcp

=
σj−1

γeq
j−1

where σj−1 =
zj−1Tcm

wj−1Tcp
(69)

and

ξeq
j−1 =

wj

weq
j−1

=
wj

γeq
j−1wj−1

=
ξj−1

γeq
j−1

where ξj−1 =
wj

wj−1
(70)

The recursive equation (66) is transformed to

α2
j,i + ςeq

j−1αj,i − ξeq
j−1α

2
j,0 = 0 (71)
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Sinceαj,i > 0 (the same reason as before), we obtain the final solution ofαj,i as

αj,i =
−ςeq

j−1 +
√

(ςeq
j−1)2 + 4ξeq

j−1α
2
j,0

2
i = 1, 2, . . . ,m (72)

The fraction of distribution load,αj,0, can be solved by employing the normalization equation (65).

2) Normalization equation:

According to (72), equation (65) becomes

αj,0 +
m∑

i=1

αj,i = 1

αj,0 +
m∑

i=1

−ςeq
j−1 +

√
(ςeq

j−1)2 + 4ξeq
j−1α

2
j,0

2
= 1

Consequently,

(m2ξeq
j−1 − 1)α2

j,0 + (mςeq
j−1 + 2)αj,0 − (mςeq

j−1 + 1) = 0

Sinceαj,0 > 0 (the same reason as before), one obtains

αj,0 =
−(mςeq

j−1 + 2) +
√

(mςeq
j−1)2 + 4m2ξeq

j−1(mςeq
j−1 + 1)

2(m2ξeq
j−1 − 1)

(73)

3) Speedup equation:

If a subtree rooted atnode<j,0> is collapsed into an equivalent node,nodeeq
<j,0>, the equivalent computational

time at nodeeq
<j,0> is equal to that atnode<j,0>. If the fractional load assigned tonodeeq

<j,0> is Loadeq
<j,0>

(or neq
j,0), then the fractional load ofnode<j,0> is αj,0Loadeq

<j,0> (or αj,0n
eq
j,0) and the fractional load of the

equivalent node,nodeeq
<j,i> is αj,iLoadeq

<j,0> (or αj,in
eq
j,0). One obtains the equation

(1 · neq
j,0)

2weq
j Tcp = (αj,0n

eq
j,0)

2wjTcp (74)

Consequently, we obtain

γeq
j =

weq
j

wj
= α2

j,0

Speedup =
1

γeq
j

j = 1, 2, . . . , k (75)
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For amultilevel fat tree with homogeneous layers, the computation capability of the leaves, the nodes at the

bottommost layer, can be denoted asw0 = w, andweq
0 is considered asw0 at the bottommost layer. Thus,

γeq
0 can be obtained.

γeq
0 =

weq
0

w0
=

w

w
= 1 (76)

4) Constraints:

a) The constraint ofσeq
j :

In a simultaneous distribution protocol it is assumed that the communication speed onlink<j> is faster

than the computing speed,1/weq
j , atnodeeq

<j> at least (order of magnitude)10 times. This will guarantee

that the physical characteristics of tree networks comply to our analysis model. Note thatnodeeq
<j> is

the equivalent node receiving all the fractional load vialink<j>.

σeq
j ¿ 1

10
i = 1, 2, . . . , m (77)

b) The property ofςeq
j :

If σeq
j ¿ 0.1 andn is large enough,ςj becomes infinitesimal.

c) The range ofξeq
j−1:

In a tree network implemented here for parallel computing it is assumed that the computing speed of

each child is less than or equal to the computing speed of the child’s parent by a factor ofm, and greater

than or equal to that of parent by a factor of1/m. This constraint makes the computing capability of

every node in a tree network more isometric rather than radically unbalanced. Consequently,

1
m
· 1
wj

≤ 1
weq

j−1

≤ m · 1
wj

i = 1, 2, . . . , m (78)

Hence, the condition of a balanced computing tree network is given as follows.

1
m
≤ ξeq

j−1 =
wj

weq
j−1

≤ m i = 1, 2, . . . , m (79)

5.2 Some Specific Cases

If ςeq
j−1 approaches zero, (large tree where communication is much faster than computation), the model approaches

an ideal case. Each node can receive the load instantly and compute the data immediately. Under such an assumption,
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the function (73) can be approximated as

αj,0 =
−2 +

√
4m2ξeq

j−1

2(m2ξeq
j−1 − 1)

=
1

m
√

ξeq
j−1 + 1

=
1

m
√

ξj−1

γeq
j−1

+ 1
(80)

1) The Nodes in the Same Layer Have the Same Computing Speed:

Let ξeq
j−1 = 1, that is, the computing speed at the parent,node<j,0>, is equal to those at its equivalent children

nodes,nodeeq
<j,i>. Thus,γeq

j becomes

γeq
j = α2

j,0 =
1

(m + 1)2
where j = 1, 2, ..., k (81)

andγeq
0 = 1. Consequently, one obtains speedup for a single level tree network as follows.

Speedup = (m + 1)2 (82)

Now from equation (4) and equation (70),

γeq
j−1 = ξj−1 =

wj

wj−1
=

weq
j−1

wj−1
(83)

Let w0 = w, thenw1 = γeq
0 w0 = 1 · w = w. Therefore, one obtains the inverse computing speed for each

layer node as follows.

wj = γeq
j−1 × wj−1 =

1
(m + 1)2

× wj−1

=
[

1
(m + 1)2

]j−1

× w1 =
[

1
(m + 1)2

]j−1

× w where j = 2, 3, ..., k (84)

2) All Nodes Have the Same Computing Speed:

Let ξj−1 = 1, that is, the inverse computing speed of all nodes is the same and designated asw, thenγeq
j

becomes

γeq
j = α2

j,0 =
1(

m√
γeq

j−1

+ 1
)2 (85)

Becauseγ0 = 1, the recurrence equation, (85), is induced as follows.

γeq
1 =

1
(m + 1)2

(86)

γeq
2 =

1(
mq

1
(m+1)2

+ 1

)2 =
1

(m2 + m + 1)2
(87)
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...

γeq
j =

1
(mj + mj−1 + · · ·+ m + 1)2

=
1

(
∑j

l=0 ml)2
j = 1, 2, . . . , k (88)

Consequently, the speedup of the homogeneous multilevel tree network is

Speedup =
1
γk

= (
k∑

l=0

ml)2 (89)

We conclude that the speedup is the square of the total number of nodes, which makes intuitive sense. Note that

this speedup expression is greater than linear in the number of nodes (processors).

6 SPEEDUP OF ASINGLE LEVEL TREE WITH SEQUENTIAL DISTRIBUTION AND WITH STAGGEREDSTART

Sequential load distribution is employed in this section in a heterogeneous single level tree using staggered start.

It is used as the model in most of the divisible load scheduling literature. Even though a closed form solution for

optimal load allocation and speedup is not possible, an iterative solution is developed.

6.1 Speedup Derivation for A Single Level Tree with Running TimeΘ(nχ
i )

The structure of a single level tree network with root,m + 1 processors andm links is illustrated in Fig. 1.

In this section we assume that the worst-case running cost of an algorthm isΘ(nχ
i ) (i = 0, 1, 2, . . . , m), then the

computation time function at a node becomes a powerχ function in load sizeni. Still, the communication time

function on a link is a linear function in its assigned load size.

In order to minimize the processing finish time, all of the utilized processors in the network must finish computing

at the same time [1]. The process of load distribution can be represented by Gantt chart-like timing diagrams, as

illustrated in Fig. 6. It is assumed that all of the load is available at the root node at timet = 0.

Four types of equations are again needed to determine the speedup. They are recursive, normalization, constraints,

and speedup equations.

1) Recursive equations and normalization equation:

According to the timing diagram Fig. 6, the fundamental recursive equations of the system can be formulated

as follows:

(αin)χwiTcp = (αi+1n)χwi+1Tcp + (αi+1n)zi+1Tcm i = 0, 1, 2, . . . ,m− 1 (90)
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Fig. 6. Timing diagram of a heterogeneous single level tree using sequential distribution and staggered start.

The normalization equation is

α0 + α1 + α2 + · · ·+ αm = 1 (91)

This yieldsm + 1 equations withm + 1 unknowns. Manipulating the recursive equations and normalization

equation can yield the solution for the fractions of load distribution. Now from (90),

(αin)χ = (αi+1n)χ wi+1Tcp

wiTcp
+ (αi+1n)

zi+1Tcm

wiTcp
i = 0, 1, 2, . . . , m− 1 (92)

Let

ςi =
ziTcm

nχ−1wiTcp
=

σi

nχ−1
(93)
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where

σi =
ziTcm

wiTcp
i = 1, 2, . . . ,m (94)

and let

ξi+1 =
wi+1Tcp

wiTcp
=

wi+1

wi
i = 1, 2, . . . , m (95)

Then (90) becomes

(αi)χ = ξi+1(αi+1)χ + ξi+1ςi+1αi+1 i = 0, 1, 2, . . . ,m− 1 (96)

2) Constraints:

a) The constraint ofσi:

In a simultaneous distribution protocol, it is assumed that the communication speed onlink<i> is faster

than the computing speed atnode<i> at least (order of magnitude)10 times. This will guarantee that

the physical characteristics of tree networks comply to our analysis model. Note thatnode<i> is the

node receiving all the fractional load vialink<i>.

σi ¿ 1
10

i = 1, 2, . . . , m (97)

b) The constraint ofςi:

If σi ¿ 0.1 andn is large enough,ςi becomes infinitesimal.

c) Range ofξi:

In a tree network considered here for parallel computing it is assumed that the computing speed of each

child is less than or equal to the computing speed of the child’s parent by a factor ofm, and greater

than or equal to that of parent by a factor of1/m. This constraint makes the computing capability of

every node in a tree network more isometric rather than radically unbalanced. Consequently,

1
m
· 1
w0

≤ 1
wi

≤ m · 1
w0

i = 1, 2, . . . , m (98)

The condition of a balanced computing tree network is given as follows.

1
m
≤ xi =

w0

wi
≤ m i = 1, 2, . . . , m (99)
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The matrix equation consists of recursive equations and normalization equation are represented as follows.



αχ
0

αχ
1

αχ
2

αχ
3

...

αχ
m−1

1




=




0 ξ1 0 0 . . . 0 0

0 0 ξ2 0 . . . 0 0

0 0 0 ξ3 . . . 0 0

0 0 0 0 . . . 0 0

...
...

...
...

...
...

...

0 0 0 0 . . . 0 ξm

0 0 0 0 . . . 0 0







αχ
0

αχ
1

αχ
2

αχ
3

...

αχ
m−1

αχ
m




+




0 ξ1ς1 0 0 . . . 0 0

0 0 ξ2ς2 0 . . . 0 0

0 0 0 ξ3ς3 . . . 0 0

0 0 0 0 . . . 0 0

...
...

...
...

...
...

...

0 0 0 0 . . . 0 ξmςm

1 1 1 1 . . . 1 1







α0

α1

α2

α3

...

αm−1

αm




These unknowns,α0, α1, α2, . . . , αm, can be solved by standard iterative techniques. That is, one substitutes

an initial guess of theα (andαχ) vector into the right hand side of the matrix equation, to create the (left

hand side) new estimate of theαχ vector which is then substituted into the right side, an on and on, until

convergence occurs.

3) Alternative recursive equations and normalization equation:

According to the timing diagram Fig. 6, the fundamental recursive equations of the system can be formulated

as follows:

(α0n)χw0Tcp = (αin)χwiTcp +
i∑

h=1

(αhn)zhTcm i = 1, 2, . . . ,m (100)

The normalization equation is

α0 + α1 + α2 + · · ·+ αm = 1 (101)

This yieldsm + 1 equations withm + 1 unknowns.

Equation Eq. (100) becomes

(αi)χwi +
i∑

h=1

αhςhwh = (α0)χw0 i = 1, 2, . . . ,m (102)

where

ςh =
zhTcm

nχ−1whTcp
=

σh

nχ−1
(103)
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The matrix equation consists of recursive equations and normalization equation are represented as follows.



1

αχ
0w0

αχ
0w0

αχ
0w0

...

αχ
0w0

αχ
0w0




=




0

αχ
1w1

αχ
2w2

αχ
3w3

...

αχ
m−1wm−1

αχ
mwm




+




1 1 1 1 . . . 1 1

0 ς1w1 0 0 . . . 0 0

0 ς1w1 ς2w2 0 . . . 0 0

0 ς1w1 ς2w2 ς3w3 . . . 0 0

0 ς1w1 ς2w2 ς3w3 . . . 0 0

...
...

...
...

...
...

...

0 ς1w1 ς2w2 ς3w3 . . . ςm−1wm−1 ςmwm







α0

α1

α2

α3

...

αm−1

αm




These unknowns,α0, α1, α2, . . . , αm, can, again, be solved iteratively.

4) Speedup equation:

Now, if a single level tree rooted atnode0 is collapsed into an equivalent node,nodeeq
0 , and the total load

size isn, the computational time can be expressed as(n)χweq
0 Tcp (weq

0 is the inverse computing speed of

the equivalent node,nodeeq
0 ). According to the Gantt chart-like timing diagrams, Fig. 6, the computational

time of the equivalent node (or the tree network) is equal to the computational time at the root in the tree

network. Consequently, the finish timeTf becomes

Tf = (n)χweq
0 Tcp = (α0 × n)χw0Tcp (104)

Hence,

weq
0 Tcp = αχ

0w0Tcp (105)

According to Definition 1 in Section 2 (i.e.γeq = weq
0 /w0) and Eq. (105), the value ofγeq becomes

γeq = αχ
0 (106)

Thus,

Speedup =
1

γeq
=

(
1
α0

)χ

(107)
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7 CONCLUSION AND LESSONSLEARNED

A number of findings have resulted from this study:

• It is possible to solve for optimal load allocations and speedup for models with nonlinear power law computa-

tional complexity, either in closed form or iteratively. A proof has been provided of the condition for optimal load

distribution of nonlinear loads.

• Nonlinear problems have a need for post-processing, because of the dependency of the input data when

processed by a nonlinear algorithm.

• We corroborate the results of Drozdowksi and Wolniewicz [4] that super-linear speedup can result for nonlinear

divisible load processing.

• It should be pointed out that higher order nonlinear equations can suffer from numerical error (due to finite

computer word size) problems and so some care is warranted.

We have sought to show how to demonstrate the possibility of optimal scheduling for a number of representative

scheduling policies on tree interconnection networks under power law nonlinearties in the space available. Of course

for specific applications other scheduling policies, nonlinear functional forms and topologies may be of interest.

Because of the super-linear speedup, parallel processing of loads with nonlinear computational complexity is a

promising technique to maximize computational efficiency on multiple processor systems.

APPENDIX

The following theorem is proved in this appendix [1].

Thrm: Given that load distribution in a single level tree follows the optimal sequencing condition, then if all

the nodes of the nonlinear computing model receiving nonzero load fractions stop computing at the same

time, the processing time (makespan) is minimum for the specific scheduling strategies indicated.

The optimal sequencing condition means that the sequence of load distribution used by the root node should follow

the order in which the link speeds decrease. That is, the relationship of the inverse link speeds,zi, is

z1 < z2 < · · · < zi < · · · < zm i = 1, 2, . . . , m (108)
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In this Appendix two types of distribution in single level trees are taken into account, sequential distribution

(see Fig. 6) and simultaneous distribution (See Fig. 3). For sequential distribution the optimal sequencing condition

is required to prevent some nodes from being assigned zero fractions, but it can be relaxed for simultaneous

distribution.

In a single level tree, we assume that there arem + 1 nodes (node<0>, node<1>, . . . , node<m>), andm links

(l1, . . . , lm). Before the proof, some definitions are first illustrated as follows [1]:

1) Load distribution:α is an orderedm + 1 tuple.

α = (α0, α1, α2, . . . , αm) (109)

whereαi is the load fraction assigned tonode<i>. Further, the normalization equation is

m∑

i=0

αi = 1 where 0 ≤ αi ≤ 1 i = 0, 1, . . . , m (110)

The set of all feasible load distributions is denoted byL.

2) Finish time:The finish time ofnode<i> is denoted byTi(α), for a given load distributionα ∈ L.

3) Processing time:For a givenα ∈ L, this is defined as

T (α) = max {T0(α), T1(α), . . . , Tm(α)} (111)

In other words,T (α) is the time at which the entire load is processed.

4) Minimum processing time:This is defined as

T ∗ = min
α∈L

T (α) (112)

5) Optimal load distribution:This is defined as the load distributionα∗ ∈ L such that the processing time is a

minimum, that is,

α∗ = arg min
α∈L

T (α) (113)

Subsequently, we will prove both the sequential distribution and simultaneous distribution cases by the contra-

diction method.

I. Sequential Distribution: (See Fig. 6)
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Proof: Let α = (α0, α1, α2, . . . , αm) ∈ L be the initial load distribution such that all the nodes stop

computing at the same time. Provided that the processing time is not a minimum, there must exist an

α∗ = (α∗0, α
∗
1, α

∗
2, . . . , α

∗
m) ∈ L such thatα∗ satisfiies

α∗ = arg min
α∈L

T (α) (114)

As a consequence,

Tj(α∗) < Tj(α) where j = 0, 1, 2, . . . , m (115)

Our approach in this proof is to show thatα∗i < αi for all i but this contradicts a normalization condition.

We note that the case whereTj(α∗) ≤ Tj(α) can be handled with minor modifications. Because the

finish time of the rootnode<0> is (α0n)χw0Tcp, equation (115),T0(α∗) < T0(α), becomes

(α∗0n)χw0Tcp < (α0n)χw0Tcp (116)

From (100) the finish time of child node,node<i>, is (αin)χwiTcp +
∑i

h=1(αhn)zhTcm. According to

equation (115),Ti(α∗) < Ti(α) (wherei = 1, 2, . . . , m), one obtains

(α∗i n)χwiTcp +
i∑

h=1

(α∗hn)zhTcm < (αin)χwiTcp +
i∑

h=1

(αhn)zhTcm i = 1, 2, . . . , m (117)

Let χ be an integer andχ ≥ 1. Equation (116) becomes

((α∗0)
χ − (α0)χ)nχw0Tcp < 0 (118)

Hence,

(α∗0 − α0)
{
(α∗0)

χ−1 + (α∗0)
χ−2α0 + · · ·+ (α∗0)

1(α0)χ−2 + (α0)χ−1
}

nχw0Tcp < 0 (119)

Becauseα∗i , αi, n, w0, andTcp are all positive, then

{
(α∗0)

χ−1 + (α∗0)
χ−2α0 + · · ·+ (α∗0)

1(α0)χ−2 + (α0)χ−1
}

nχw0Tcp > 0 (120)

Consequently,

(α∗0 − α0) < 0 (121)

α∗0 < α0 (122)
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At child node<m>, one obtains finish timeTm(α∗) < Tm(α), then

(α∗mn)χwmTcp +
m∑

h=1

(α∗hn)zhTcm < (αmn)χwmTcp +
m∑

h=1

(αhn)zhTcm

((α∗m)χ − (αm)χ)nχwmTcp <

m∑

h=1

(αh − α∗h)nzhTcm (123)

According to (108)

m∑

h=1

(αh − α∗h)nzhTcm <
m∑

h=1

(αh − α∗h)nzmTcm (124)

According to the normalization equations,

m∑

h=0

α∗h = 1 and

m∑

h=0

αh = 1 (125)

That is,

m∑

h=1

α∗h = 1− α∗0 and
m∑

h=1

αh = 1− α0 (126)

Therefore, from equation (123), (124), and (126)

((α∗m)χ − (αm)χ)nχwmTcp < (1− α0)nzmTcm − (1− α∗0)nzmTcm (127)

According to (121)

(1− α0)nzmTcm − (1− α∗0)nzmTcm = (α∗0 − α0)nzmTcm < 0 (128)

Hence,

((α∗m)χ − (αm)χ)nχwmTcp < 0 (129)

α∗m < αm (130)

Similarly, Tm−1(α∗) < Tm−1(α∗) at child node<m−1>. This leads to

(α∗m−1n)χwm−1Tcp +
m−1∑

h=1

(α∗hn)zhTcm < (αm−1n)χwm−1Tcp +
m−1∑

h=1

(αhn)zhTcm

((α∗m−1)
χ − (αm−1)χ)nχwm−1Tcp <

m−1∑

h=1

(αh − α∗h)nzhTcm (131)
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According to (108),

m−1∑

h=1

(αh − α∗h)nzhTcm <

m−1∑

h=1

(αh − α∗h)nzm−1Tcm (132)

According to the normalization equations,

m∑

h=0

α∗h = 1 and
m∑

h=0

αh = 1 (133)

That is,

m−1∑

h=1

α∗h = 1− α∗0 − α∗m and
m−1∑

h=1

αh = 1− α0 − αm (134)

Therefore, from (131), (132), and (134),

((α∗m−1)
χ − (αm−1)χ)nχwm−1Tcp < (1− α0 − αm)nzm−1Tcm − (1− α∗0 − α∗m)nzm−1Tcm (135)

Furthermore,

(1− α0 − αm)nzm−1Tcm − (1− α∗0 − α∗m)nzm−1Tcm

= {(α∗0 + α∗m)− (α0 + αm)}nzm−1Tcm < 0 (136)

Therefore, according to (122) and (130)

((α∗m−1)
χ − (αm−1)χ)nχwm−1Tcp < 0 (137)

α∗m−1 < αm−1 (138)

As a result, atnode<i>, Ti(α∗) < Ti(α) (wherei = 1, 2, . . . ,m),

(α∗i n)χwiTcp +
i∑

h=1

(α∗hn)zhTcm < (αin)χwiTcp +
i∑

h=1

(αhn)zhTcm

((α∗i )
χ − (αi)χ)nχwiTcp <

i∑

h=1

(αh − α∗h)nzhTcm i = 1, 2, . . . , m (139)

According to (108)

i∑

h=1

(αh − α∗h)nzhTcm <
i∑

h=1

(αh − α∗h)nziTcm i = 1, 2, . . . , m (140)

Provided that we have already obtained the following inequalities.

α∗0 < α0; α∗m < αm; α∗m−1 < αm−1; · · · ; α∗i+1 < αi+1 (141)
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According to the normalization equations,

m∑

h=0

α∗h = 1 and
m∑

h=0

αh = 1 (142)

That is,

i∑

h=1

α∗h = 1− α∗0 − α∗m − α∗m−1 − · · · − α∗i+1 (143)

i∑

h=1

αh = 1− α0 − αm − αm−1 − · · · − αi+1 (144)

Therefore, from equation (139), (140), (143), and (144)

((α∗i )
χ − (αi)χ)nχwiTcp

< (1− α0 − αm − αm−1 − · · · − αi+1)nziTcm − (1− α∗0 − α∗m − · · · − α∗i+1)nziTcm (145)

According to (141)

(1− α0 − αm − αm−1 − · · · − αi+1)nzhTcm − (1− α∗0 − α∗m − · · · − α∗i+1)nzhTcm

=
{
(α∗0 + α∗m + · · ·+ α∗i+1)− (α0 + αm + αm−1 + · · ·+ αi+1)

}
nzhTcm < 0 (146)

Hence, from (145)

((α∗i )
χ − (αi)χ)nχwiTcp < 0 (147)

Therefore,

α∗i < αi for i = 1, 2, . . . ,m (148)

Consequently, from (122) and (148),

m∑

j=0

α∗j <

m∑

j=0

αj (149)

This leads to a contradiction since bothα andα∗ ∈ L and their component should add up to one.

II. Simultaneous Distribution: (See Fig. 3)

We assume that the nonlinear load computing in the single level tree of Fig. 3 is of powerχ andχ ≥ 1.

The proof for the simultaneous distribution is illustrated as follows.



38

Proof: Let α = (α0, α1, α2, . . . , αm) ∈ L be the initial load distribution such that all the nodes stop

computing at the same time. Provided that the processing time is not a minimum, there must exist an

α∗ = (α∗0, α
∗
1, α

∗
2, . . . , α

∗
m) ∈ L such thatα∗ satisfiies

α∗ = arg min
α∈L

T (α) (150)

As a consequence,

Tj(α∗) < Tj(α) where j = 0, 1, 2, . . . , m (151)

Because the finish time at the root,node<0>, is (α0n)χw0Tcp, equation (151),T0(α∗) < T0(α), leads to

(α∗0n)χw0Tcp < (α0n)χw0Tcp (152)

According to (28) with power,χ, the finish time of the child node,node<i>, becomes(αin)χwiTcp +

(αin)ziTcm. According to equation (151),Ti(α∗) < Ti(α) (wherei = 1, 2, . . . , m), one obtains

(α∗i n)χwiTcp + (α∗i n)ziTcm < (αin)χwiTcp + (αin)ziTcm i = 1, 2, . . . , m (153)

Without loss of generality, letχ be an integer andχ ≥ 1. Equation (152) becomes

((α∗0)
χ − (α0)χ)nχw0Tcp < 0 (154)

(α∗0 − α0)
{
(α∗0)

χ−1 + (α∗0)
χ−2α0 + · · ·+ (α∗0)

1(α0)χ−2 + (α0)χ−1
}

nχw0Tcp < 0 (155)

Becauseα∗i , αi, n, w0, andTcp are all positive, this leads to

{
(α∗0)

χ−1 + (α∗0)
χ−2α0 + · · ·+ (α∗0)

1(α0)χ−2 + (α0)χ−1
}

nχw0Tcp > 0 (156)

Consequently, one obtains

(α∗0 − α0) < 0

α∗0 < α0 (157)

At child node<i>, one obtains finish timeTi(α∗) < Ti(α); therefore,

(α∗i n)χwiTcp + (α∗i n)ziTcm < (αin)χwiTcp + (αin)ziTcm i = 1, 2, . . . , m (158)

((α∗i )
χ − (αi)χ)nχwiTcp + (α∗i − αi)nziTcm < 0 (159)
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Moreover,

(α∗i − αi)
{[

(α∗i )
χ−1 + (α∗i )

χ−2αi + · · ·+ (α∗i )
1(αi)χ−2 + (αi)χ−1

]
nχwiTcp + nziTcm

}
< 0 (160)

Becauseα∗i , αi, n, wi, zi, Tcp, andTcm are all positive,

{[
(α∗i )

χ−1 + (α∗i )
χ−2αi + · · ·+ (α∗i )

1(αi)χ−2 + (αi)χ−1
]
nχwiTcp + nziTcm

}
> 0 (161)

Consequently,

(α∗i − αi) < 0

α∗i < αi where i = 1, 2, . . . , m (162)

One obtains

m∑

j=0

α∗j <
m∑

j=0

αj (163)

This leads to a contradiction since bothα andα∗ ∈ L and their components should sum to one.
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