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Abstract 

A solution for the flow in the half plane bounded by a solid plane is obtained. 

A circular part of this plane rotates steadily while the rest of the plane is stationary. 

It is assumed that this rotation is the sole source of disturbance in the fluid. The 

mathematical problem and the method of solutionaretherefore basically different 

from Karmant s and Cochrane's treatments of an apparently similar case. Compari- 

son of these works with the solution obtained brings up the rarely discussed question 

of determinacy of differential systems governing viscous incompressible flows. 



Introduction 

This is an analysis of the incompressible viscous flow in the half space 

bounded by the solid plane 2' 0 , where (9') 8: 2') are 

cylindrical co-ordinates, The central part of this plane 0 er'<q 3n=a 

rotates with a constant angular velocity . The rest of the plane q4 r' =;, 

is assumed to be stationary. This analysis shows that due to the viscosity 

momentum diffuses throu& the otherwise stagnant medium. This 

quantity is therefore small at infinity but large at the vicinity of the source of 

motion. Due to the centrifugal acceleration, the fluid near the disk is pushed 

radially. In the same time, because of continuity, fluid is drawn towards the 

disk along the axis of symmetry. A typical spiral particle-path is sketched in 

Figure 1. 

It is stressed that this qualitative explanation of the mechanism under 

discussion, and the corresponding sequence of steps in the analysis are based 

on the assumption that the rotation is  the sole source of disturbance. As will 

be shown this is not true for the flow considered by KarmanL1' and Cochrane 121, 

Hence, despite certain similarities between the geometries of the boundaries 

and the resulting flow patterns (see Figure 1) the case considered here is 

basically different. In the Karman-Cochrane solution the sum of the tangential 

stresses on any central part of the disk (which they assume to be infinitely wide) 
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result in a moment f l  which is proportional to . Thus, thou& 

represents a generalized force and fi is a measure of the resulting motion 

these ~ W O  vectorial mantities do not change signs simultaneously4 This feature 

Of the -2L relationship reflects the fact that the moment is not the 



generalized force which disturbs the fluid. Conversely, in the solution proposed 

M is indeed an odd function of Ll so that the two change signs simultaneously. 

The features of the E.l -a relationship cannot form the basis for the proof 

that the rotation of the disk is not the only cause of the Karman-Cochrane flow. We 

therefore propose to examine that solution more carefully. As pointed out f41 it 

belongs to the class of solutions b' 2 y  5 y  in which the radial and circumferential 

components of velocity are  proportional to T' while the 1' component is inde- 

pendent of this variable. Since the T' dependence is assumed to be known, no con- 

ditions a r e  prescribed at += const. = @ . At z'= 00 Karman and Cochrane im- 

pose two conditions while at z' = 0, all three velocity components .are .prescribed. .. 

This underdeterminate formulation gives the impression that the boundary con- 

ditions which hold at z' = 0, o r  rather the fluid-motion that these represent, is of 

particular importance. It probably led to the common belief that the Karman- 

13 I Cochrane flow is "due to a rotating disk" and no other cause. However, it is 

possible to t~ea t  the Karman-Cochrane solution as  one which is governed. by a 

well-posed problem in which the three velocity components are prescribed every- 

where on the bounding surface. In such formulation the purely rotational motion is 

prescribed at z = 0 a s  before. However, the velocity fields that were gbga&e_d 

in Refs. 1 and 2 for  zl= ao and T'= co , appear in the properly posed 

formulation as the boundary conditions which should be @~o_se_d at these parts of 

the bounding surface. Therefore, overlooking the question of uniqueness, one 

concludes that the Karman-Cochrane flow results no more from the rotation of 

the disk than from the axial inflow and radial outflow which are found to prevail 

1 at z=ao and @'= co , respectively, 



~ollowing CollinsL7' and others'41 we expand dependent variables in 

powers of Reynolds number Re. The coefficients in these series satisfy 

I differential equations of either the second o r  the fourth order. Correspond- 

ing number of boundary conditions a r e  obtained from the reqirements that 

the fluid should not move with respect to the solid surfaces and that its 

velocity at infinity should be finite. The last requirement is  a consequence 

I of the factsthat the medium is dissipative and that finite amount of power is 

supplied in order to maintain the only disturbance. The Green's functions 

for the fourth and second order differential system are obtained. In terms 

1 of these any finite number of coefficients can be evaluated, Attention is 

focused on the physical features of the solution in which only the first two 

are retained and which is,therefore,valid ollly when Reynolds number is 

small. 



Analytical Development 

In terms of the non dimensional independent variables defined by 

the governing equations are 

where 

a 1 3  + w- a? T ar- 

Here u is the kinematic viscosity Y is the ~ a g r a n ~ e k  stream function so 

that the velocity components in the direction of , 0 , X )  are 

( f b z , , - T 2 .  The dependent variables V and y 
are nondirnensionalized so that the boundary conditions are 

U= 7- y= a ~ l a r r  = o X -0) O - q - d i ,  

v = y/ = a++ = 210, I L Y . C @ J  



The following expansions a r e  assumed to hold 5 

C4273 Equations (1) and (2) thus yield 

t in which coefficients with a negative index are  taken to vanish identically. The 

function V satisfies the conditions imposed on while the coefficients V !  
0 

for i > o  vanish everywhere on z = 0 and are  finite at infinity. We let func- 

tions + for any index satisfy the conditions imposed on Y . 
The coefficient Vo is gove.rned by 

The governing equation suggests a solution of the type J, YT) -e *f * or 



*P = 6 yy+) where 4 and a re  Bessel Function of the first order, 

In view of the finiteness of the velocity field a t  infinity the argument of the ex- 

ponents has to be negative. Inclusion of the axis of symmetry in the domain 

under discussion makes & ' f z  inadmissable, so that Vo is assumed 

to have the form 

The function 3 y) is obtained by combining Henkells inversion formula 

with the boundary conditions at  z = 0, When use is made of the recurrence 

relationships of Bessel Functions the solution can be expressed thus: 

In order to solve for  v,; i > 0 , use is made of the auxiliary 

functions W+t defined thus: 

These functions satisfy the following conditions and equation 

go 



qli (r Z) is the left hand side of equation (1 .). Here v2 
7 

where 
! 21 

is the Laplace operator in cylindrical co-ordinates which is related to ~2 thus: 

t The resulting potential problem (7) has a solution of the form 
8 

where G is the appropriate Greenf s function. It is (4 65) ' times the 

potential due to two uniform ring shaped l'chargesll o r  "masses" located 

at T =  T , % = z  
- 

and at  t = - z  

This function is given by 

where K is the Complete Elliptic Integral of the first kind 

It is noted that Vo could have been evaluated by solving first for % 

which is harmonic throughout, has assigned values at z = 0 and vanishes 

at By differentiating the following is obtained 



I  hi^ form is more  complicated than that of equation (6'), but its more 

recognizable o rder  propert ies a r e  useful. 

2 4 ~ u s t  a s  D of equation (IZi) is related to V' so is D which appears 

in equation (22i+l) related to the biharmonic operator v . Therefore, again 

use is made of auxilliary function &, which is defined in this case by 

Evidently G+, is governed by 

where p2i+l stands f o r  the left hand side of equation (2 ) In the solution 
2i+l 

of the type 

TL+, = J I- + + ,i (r, z, i, 2 , ~  ii d2 
" Q  r 



9 
we let the Green's  function'^ have the form 

In this expression the square loots a re  the distances between (T, 0, z ) and 

thepoints ( ?, 8 , 2) an? ( , 8, -2 )  . Since with R as  the radial 

spherical co-ordinate the following holds 

I these two terms are the biharmonic potential due to point vmassesv o r  

" charges"situated at  ( ?. , 8 , 5 ) and ( ? , 6, - ) Therefore, the 
- 

integral with respect to 8 is biharmonic everywhere except along + = G, 

= , where it has the appropriate type of singularity. Because 

of the mirror  image at p= .J. z = - 2 this integral vanishes on z = 0 

and is finite at  infinity. The function @ is a singularity-free biharmonic 

function which, like the integral with respect to 8 , vanishes at z = 0 and is 

fin' 2t infinity. It is added to the expression for  H so as to make its derivative 

,the plane z = 0 vanish. This requirement yields the relationship 

- *h 
[ T ~ + ~ Y F G O S B  +. ia  + r a l  d i  + ( a @ / a ~ ) ~ ~ ,  

-@' 

I 
I 



I 

I ' which suggests the following solution for  @ 
t 

Hence H is given by 

Results and Discussion 

In order  to show that at least'under some circumstances, the flow 

obtained has the predicted pattern we examine the solution in which only the 

first  term in each of the two expansions (4) a r e  retained. Though the trunka- 

I 2 tion of the terms of O(Re ) limits the applicability of the solution to cases in 

which Re is small, previous works suggests that such results a re  neverthe- 

r 

I 
less  meaningfulC4' 7' 81. With V= % equations (6') and (10) imply that 

i the circumferent id velocity is small f a r  from the disk. More precisely, it 

I follows from the latter that ir is very nearly equal to L Z ~ R - ~  where L is a 

1 constant, and is therefore of o ( R - ~ )  for  large R Therefore k, which is 

equal to ( - 2 1'12 Z) , decreases like R - ~ ~  Consequently provided P 



and < are  large but finite not too big an e r r o r  is committed in setting 

- 
r = and r =( as the upper limits of the integral in equation (121). Thus: 

since expansion in powers of (l/z) and (l/r) yields 
d 

the following approximate relationship holds 

The constant Q ,  which is given by 

for large z 

for large r 

can be shown to be positive, The flow f a r  from the disk can therefore be 

approximated by 



for large and small (z/.r) , respectively, These results imply that far 

from the disk near the horizontal plane fluid particle paths spiral outward, F a r  

out near  the axis the flow is directed towards the disk (see Figure 1. ), At the 

vicinity of the disk the swirl is predominant over the motion in the meridian 

planes, 

It is noted that the tangential stress at the disk like the 

(dimensional) circumferential velocity is proportional to times a series 

of even powers of Re. Therefore M is an odd function of fi and the P -A 

relationship satisfies the desired sign :ciiterioa 

As  mentioned, the Karman-Cochrane solution is commonly believed to 

represent the flow that can be produced by rotating a disk which is contact with 

otherwise stagnant liquid. However, in any laboratory experiment that one can 

visualize, the disk is not infinite as  assumed in the analysis, It is therefore 

necessary to assume that in so f a r  as the viciniw of the origin , R C4 I is 

concerned the situation prevailing at the rim, I , is of secondary 

importance. However, if 'edge effects1 (as GoldsteinL3' calls them) are negliejble 

then fo r  small R the solution obtained here should be identical with that of 

Karman and Cochrane. Evidently this is not the case. In view of equation (6') 

the following holds 

1 = o  0 

Forsmallmthecoefficientsof $'"" ) 1' r 0 , do not vanish while in the 

Kamnan-Cochrane solution 0' is proportional to r (for any Re). The in- 

admissability of the assumption about 'edge effect; is in line with our basic premise 



I 
1 

I 
that situations prevailing at different parts of the bounding surface should be 

I treated on equal footings. This attitude is evidently not, by any means, 

I universal in the contemporary literature on viscous incompressible flows. 
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