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Second~order, isothermal irreversible chemical
reactions of single and two species in a homogeneous
turbulent field are studied., Each ease is divided into
two parts, The first part, stochastically destributed
chemical reaction ( witheut diffusion ), is designed to
develop a workable closure which can be compared with the
exact solution. In the second part, the closure developed
in the first part is generalized to study reactions which
arc coupled with molecular diffusion,

For the very rapid reaction the approximation com-
pares well with the exact solution as far as mean con-
centrat ion and root mean sguare fluctuation of concentra-
tion are concerned, It predicts the skewness less satis=-
factorily,

For the rapid reaction, that is when the chemical

kinetic¢ reaction rate is greater than the nol ecul ar

diffusion rate, molecular diffusion ard initial fluctuatiors

have a strovg influen~e on the completeness of the
reaction, However for the case that the molecular dif-
fusion ratz is creater than the reaction rate, neither
diffusior. nor initia] fluctuations have much influence 0N
the cowplé+b“essiof t%é renc~tion, Trease results agree with

The ohservation that for g crenmical kinetic reaction

et omach sreater 1honm the molecular diffusion rate,




iv
react;ion must depend on the molecular diffusion to bring
the two reactants together hefore the reaction can start,
When the kim.atic reaction rate is much | ess than the -
molecular éiffusion rate, the molecular diffusion always
brincs the two reactants together, and the time scale for
conpleting the reaction 1S determined by the chemical
kinetics.

For rarid secord-order chemical reaction of two
gspecies with the same molecular diffusivity and stoichio-
metrically present in the systen, O'RBrien's theoretical.
enalysis showed that both the mean and the root mean
ggnare fluectvation of a sprecies concentratipn decay as
t’3/4 asymptotically and that the relative intensity of
each species approaches a constant value of M - 1, Our

closure predicts these asymptotic results guite well,
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1. " Introduction

Chemical reaction in aturbulent flow field is notorious-
ly difficult: to handl e analytically even for the first order.
This problem can be described by the mass conservation
equation and the initial conditions. the three factors in-
fluencing the concentration field are turbulent convection,
molecular diffusion,and chemical reaction. The influmence of
each factor was desecribed by Corrsin[1]*and may be recalled:

It is empirically established that turbulent convection
stretclies the iso-concentration surface continuously on the
averag€..: By isopycnic mass conservation, this tends to bring
surfaces ever closer together, .i.e. to increase the scalar

--gradient fluctuation level. From the Fourier analysis view
point this is propagation to higher and higher wave numbers
INn the spectrum of the concentration f luctuation field.
Although the convective term in the mass conservation equation
is-linear, this particular belavior resembles that of a
nonl i near phenomena.

-The effect of molecular diffusion is to smear out these
fluctuation gradients. The diffusion terms in the equation
of conservation of mass cause no transfer through the
spectrum, but they do discriminate against shorter wave-
length because their effect is proportionalito the spatial

derivative rather than the fluctuation level itself.

» Numbere In brackets designate bibliography at the end of
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Little of a general nature-can be said about the effect
of chemical reaction terms on a homogencecous scalar fluctuation
field because of the variety of function forms encountered
for different reactions. Generally, the reaction rate between
two components depend upon the concentrations of both. with
a great excess of one, however, the rate expression can be
approximated as a function of the other component only, ().
A number of chemical reaction rates are well approximated as
a simple power of the local concentration, 7", where n is
called the order of reaction. For second-order reactions, the
nonlinear reaction term must cause not only a loss in spectral
content during flow out through wavenumber space (as does the
first-orde reaction) but also some additional spectral -
transfer [2].

During the past few years, people have studied this
difficult prohlem with a variety of approximations and
different methods of approach.

Toor and his colleagues [31, [4], [5] used the transforma-
tion first proposed by Burke and Schumann [6] to solve mathe-

matically the limiting case of an instantaneous or diffusion-

‘controlled reaction in such a way that the degree of comple-

tion of the reaction could be predicted by the use of data

-obtained from a mixing éxpeériment carried out ‘under ‘idettical -

hydrodynamic conditions. These predictions are in general
agreement w:Lth messurements Ceeel

In 1958, Corrsnn {1] solved one species reactnon of flr%t
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and second-order i an isbtropic turbu].encé for the decay
rates of mean concentration and fluctuation with some simpli-
fying assumptions. The principal hypothesis intr@uced was
that a first-order reaction has no effect on the size
structure of the scalar field. He analyzed some |imit cases
without explicit consideration of the convective effect of
the turbulence.

Lee [ 7] applied Kraichnan's direct interaction hypothesis
[8] to both the convective term and the nonlinear concentra-
tion term of a one species chemical reaction. This analysis
is only appropriate for' sléw reactions. For the closures to
yield consistent resalt with fast reactions, the initial mean

concentration must be at least twice the root mean square

-concentration fluctuations since the direct interaction hypo-

thesis in its.present formis only applicable to concentraction
fields of low initial relative intensity [9].

O'Brien has treated one species, very fast, stochas-
tically distributed reactions of first and second order in
his series of reports {10), [11], [12]. The'convective and
diffusion terns do not appear in these reactions. A closure,
which satisfies initial and asymptotic conditions, for second-
order reaction is proposed successfully. O'Brien [9] then used
this closure approximation and proposed a statistical indepen-
dence solution to the complete one species problem of combined
reaction, turbulent convection, and molecular diffusion.

O'Brien, in amother analysis [13], applied Kraichnan's




L

4L

Lagrangian history direct interaction approximation to iso-
tropic .turbulent mixing of a second--order reaction. The

resulting closed sets of equations were presented and an

abridgement of them was carried out.

To date most theoretical work has been limited to
cases of single species chemical reaction with the notable
exceptions of Toor's analysis mentioned before, Pearson's
[14]) singular perturbation analysis of the diffusion of one
reactant into a semi-infinite medium containing a second
reactant with which It reacts according to a second-order |
equation, and O'Brients [15] recent report of two species,
very rapid, isothermal, irreversible, second-order,chemical
reaction in a homogeneous turbulence. Some numerical models
of two species reactions have recently appeared [16], [17]. }

It is the purpose of this paper to study two species
second-orded reactions. The single species skcond-order
reaction is also presented in the hope of developing a
workable closure which can be easily generalized to the
multispecies case as O'Brien's could not. We will follow
O'Brien's idea of closure approximation which relates third
moment to the first and second moments for the reaction term.
The stochastically distributedireaction for both single and
two species is studied in order to test the closure by
. comparing it with exact solutions which exist in analytical
form.

In this preliminary closure analysis the explicit
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dncorporation of turbulent convectian is not considered
except to point out that in the limit of no molecular
diffusion the turbulence plays no role in determing the
decay of mean and root mean square concentrations of a
homogeneous concentration field in a homogeneous turbulence
[18]. This invariance must be satisfied. by any successful
closure. It is automdtically incorporated into the closures
generated by the method developed here.
**The following conditions are also assumed in order tc

meke the model simpler,

A. The concentration of the reactants and turbulence
are assumed homogeneous and isotropic.

B. The chemical reaction is irreversible.

C. Any dynamic or chemical role that the product or
products may play will be ignored.

d. The reaction rate '"constant' and the molecular

diffusivity are indeed constant in.space-time.




2. Second-Order Chemical Rud ~tionn Of Single QPCOWGS

Consider the isothermal, irreversible reaction of
t he type
A+ A -——= products
In an isotropic, homogeneous turbulence, The system as a
second- order chemical rcaction IS described by the mass

conservati on equation

aT ; .
St H U (2.1)

The fluid is assumed inconmpressitle, ve-u =0.

The problem iS madée stockastic 'by assigning initial
conditions in a statistical manner {11} .

Foll owm ng Corrsin [1] by defining P(t) as the mean
and Y (x,t) as the random fluctuation in concentration,

the following relation holds {1} :

2‘7__‘_ e pyx ¥
T C (7 i"),) (2.2)

3 . D \ T -
k:ﬁ}'\ 20 BX‘PXQ ') } L\S,’\) = - 4(:, T’ ’r’}’ (X ,‘K)
. 3 4

f;QWW(LM"‘¢N)%7Y(LU (2.3)

¥here homogeneity has been used. The existence of

triple fluctuation concentration moments in equaticn

.-l
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(2.3) demonstrates the unclosed nature of the moment

formulation and the necessity of resorting, in general,

to approxi mati on techniques.

2.1 Closure for Stochastically Distributed

For stochastically distributed reactions, that is
those without turbulent convection or molecular diffusion
but randomly distributed, the concentration field
equati ons obeys (2.1) withuau =0and D = O

;3"’ __. LY , ‘
Sp T er N S | (2.4)

Before analysing this situation we point out that
1
for .a very rapid reaction', I *(c)/D>>1 and LCTEAT 1

the concentration field will initiallv obey (2.4) up to a

. . . L . /.
time significantly less than E/D or L/%.

Let t°=C T t, D °=T/Twand drop the superscript®.
Theu (2.4) becomes
A% >

>x 0V (2.5)

and it has the following solution [11]

— W :
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There are some as:}mptotic properties of (2,5) (12]
. which will play a role in checking the closure we will
pr opose. ' *
Tim F= t7 (2.7)
t—o >
. 2.8
Lin %= =« (2.8)
1 2 x> :

The realizabilivy conditions which we impose and
which specify a certain degree of physical reasonableness

to the solution are

0 = Tixy = == (2.10)

0 = T < o= S (24

72 S v (2.12)
= e .

) = — 771

The inequality,(Z.lZ) arises from a restriction [19)
on the skewness of rany probability density which is zero
for values of the random variable that are less than or
equal to zero, |

We propose the closure

——2 —_—3
T3 = ey T P 5
S DT b (e ) b s 6 s (2,13)

[

D W e

A o A8 s
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Then

.m.l — 3
sm— (s n >

T O

V=g T VT ey 2e

~1 =3

so that (2.12) is satisfied if (2.10) and (2.11) are valid
and 6=0.
From (2.5) and the closurc (2.13), the differential

equation for first and second moments of the concentration

+ r\/ﬂ (2.14)

_:.%)* ':3 \‘]}fY

>
_a
%I
i
A

(2.15)

From (2.15) we see that ¥=0 and decreases to zero as
t approaches infinity if 6z0. 7 can not be smaller than
zero,because if it were thanT=0 at some time. From (2.15)
Y*/T* must be finite, this means that 7 approaches zero
before T docs and remains at zero thereafter. Now, when =0

at some time, (2.14) would give 27 /at=0. Therefore T =0
thereafter. Therefore

o()'\-'...‘—'; : C}

Ny T \* sl § |

are satisfied.

Fron the above argument when t is very large the first

=
M@M, o =
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term Oof the left hand side of Eq.(2.14) will be dominant,
so that '
T oet-]
and Bg.(2,15) givesr
2-26-

Tlow (2 8 4+ 1)t

and

?7§Q¢(@ - 1)t"3’29 if @ £1

~<(2 6+ 1)t 74 ire =1

OtBrien* (12]) used two typical initial concentration
distributions Which give ’12 of (2.9) positive values and

6 = 1.5, 9/11 respectively.
For 8 = 15
Flec £-5
PPt
7Z drobs faster thaia ‘i‘t should whe.ﬁ t approachkes irfinity,

The sign of >3 is positive instead of negsative wren t-
annrnaches infinityr,

For @ = 9/11, 7 and 7% drop slower than thev should btut

the =

3

rns are correct,

T

- - - . v s . 4‘
For lag—rormal initial concentration distributiors

* wow By, (Z2.%1) and Bag., (2.72)

v n e
< s ! (,_) g }
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8 = 1,

4

7{1-»(,13"

.7:); e, -t_7

¥

-

¥~ is asymptotic correct, but 7% is incorrect asymptotically,
Therefore the closure ray not predict accurately the

asymptétic behavior of the mean square fluctuation and

skewness, Fortunately, this is of little consequence as

far as the meanr concentration is concerned, Yecause the

limit to which all these quantitie§7? y, 7-and 7° are

tendins is zero,

2,2 Closure for Stonhastically Distributed

Regcetiors with Moleenlar Diffusion

In this rarce (7 rmaction svstem we need a closure for

third moment of =~ rnace voint, 77/ (x,t).

Neglect the turtulence ternm and (1,1) hecomes:
am
\ﬂ - b VQT"“ C'P>' (2.16)
2R E

Define tre following dimensionless groups

=T / T
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Equation (2.16) becomes

BT oy e - | | (2.17)

&k

The realizability conditions (2.10) and (2,11) must

be satislied, Instead of (2.,12), an inequality for 7%,

another one arises [19]

2

“}fj}f _173” -5 T (2.18)

We propose the closure

.~__ -

,_ A e
@( Fy= (e U-, + L =T ) ]77”01) ©(2.19)

R

This ‘reduces to (2.13) when x = O,

Then

so that (2.19) is satisfied, if (2.10) and (2.11) are .. .

valid and”

7Pz = o0 SR L (2,20)

e B

B h o R M S ot

The differcmiial emations for Tirst and gcecond romenic
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/ 7 :’31
o ~\(>'<L3~& 2§ ()T + e DR w = }1d=0 (2.27)

The solution of Eq. (2.27) with an initial condition

p(¥x,0) is

R ey =
@) = Pl it - LA e T (e +’>1 T B -J a1}
L ' S (2.28)

- Sy : ’,l \ ‘)m'-—; T : iy .:" ‘
T =47 A ) s Caath di BRi fareT
%_;,.}) cﬁ} - (2.29)

tm‘; 1) ‘2%‘ T B

Ty = 4w By ARE g (07 W B - §”~U@+f>?+

— "\-’2
9 Y
(26 ‘r\ J’”“" )‘“\ .  (2.73%0)
since Sl;{lxkﬁ < 1, we have

"’7"3.

If 77 = 0, then (2.20) is satisfied,

" From (2.29), we see that 0 =< 7*{)<eis satisfied if
o= ’—;’:(U)<w . ¥>is a decreasing function of t and it

decreases faster than T° . Therefore, from (2.21)

oo o =g | =Tz ‘

G e S et e e e e
SR R G TN
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2.3 f’omn?rlson 0___Lhe._£.losure Solution with an Exact

Solution for Stochastically Distributed Reactions

of Single Species

In view of the relation (2,6), it is possible to
compare the predictions of the closure Wth those obtained
exactly when explicit initial probability distributions
P(1(0}) of the concentration field are prescribed. W have
carried out such a comparison with three typical distribu-.

tion
P{a) = bo 3 Uar*;x)“rI - (2.31)

\(“}) &6 (2. S\) (4 C Y)Y tx, (_4@‘4) (2.52)

P 4) “r‘g\\/} EXP (“ zosg ) (2.3%)

Wlhere o, u are determired by the initial value T'(0) or

¥0), since T (~39 T(0)/T(0) = 1.

=/ (V1 70)

~ A _
M o 3&{\*7"@)3..

With these forms of P( 1°(0)) it iS possible to integrate

(2.6), for example, by using Gaussian-Laguerre cuadrature
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formulas [ 20] , These exact solutions are represented by
fully inked in lines without a star x on Figs, 1-1 to
4-3, Figs, 1-1 to 1-3 are for distribution (2,31), Pigs,

2-1 to 2-3 are for distribution (2.32). Figs.3-1 to 4-7 are
for Adistridbution (2.33) with two different values of  F2(0),
& is determirned by the closure form (2,13) and the initial -
values compuwied from Eq, (2.6). Egs, (2.21) and (2,22),

with initial conditions TF‘(O) = 1 and -7%0), are solved
numerically, for example, by using the Runge-Kutta Method
(21]. 72 is obtained by using closure (2.1%), They-are shown
on Figs;.1-1 to 4-3 with.stars on the lines. Table 1 |ists:.
both exact ard approximate solutions for nmany different
initial conditiors at one particular t, With =1, as in

the cases of distribution (2.31), (2.33), the closure gives
73 always positive which is not a property of the exact solu-
tior, nevertheless forT and 7 this is fair agreement with
the exact solution.

OfBrien [12) used another kind of closure
3 , 32— | =3
/3:/‘{7‘ T’ _/"037:
and showed that there. exist a maxinum positive value of Aoq,

say AW such thrat for any AO<:Anl the closure satisfies

ax’? ax

all the asymptotic conditions and the realizability
conditiens, Ve then adjvsted A1,
asymptotic cordifions are satisfied. The closure approxima-

AO such thrat initial and

tien prediction irdeed arrees very well with the exact

solvtion tut v e adjustment of A1 and Ao is a
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L Ty dx = L

Llso since

5 ~ 3 -l‘
()\Mg J R l\:_ = - ~.\.{\"
_ 5 >
A x> =

Vhere A 1g the microscale, We have

- 2b
A= 2

Substituting (2.3%4) and (2.35)Y into (2.25), we obtain

. .l R
A% oy = L Expl- ) | (2.736)

Equation (2.28) becones

;j;(zm :?ﬁﬂ,——‘ EXP = (F F a3 R Xp - i X-

L‘S“)\‘—\«beﬂ)—z + B _’L.Tdﬂﬂ (2.37)
Eguation (2.29) becomes

;‘}1“ ’7’ QF : ‘D(\“{“
QT;L\\«)—)/.L L)

>1m\)v+bem-~~re s ]Jn\} (2.38)

This would satisfy

———

G -l /)" < <. e s

Zgualtion (2,30) gives




L

Y)NO“*):: \;Y( : EXPL~ "’m”“;]EY\ fg(

%) > ww 1)

(6+1) M—oew)lw\ e— j oﬁﬂ (2.39)

Therefore

V7 (x4) Zo
From {2.21) and (2.38)"we find ﬁﬁ is a decreasing

function of t and

T ee kT
s0 that

Ine@uality conditions (2.10), (2.11) and (2.18) are all .

§ satisfied

i NowAlet

% 1 | A PO

=20 ) T rioer .3..._ S IR ~

Z = 216+ YD Aok (540

iz _ pe
3 = 2UEen T+ ey L 4 p-Lx) (2.42)
Then (2,21.) becomes

_ —

i o =2 7Y () v [
. BT - LM i (-2 2.42)
d} ‘ o Ulvagays 70 ) (
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| Ctjs'_n, _ 7 (o) . dz é T
i dr (pfiwax)“_E> P M)[‘dk; Zﬁ;ﬁg;] (2,43)

Two initial cornditions are given
z(0)
-T{(O) = ]

For the sane initial conditions on single point
quantities 7o)  y4u), and Ti{o), € has the same
values in(2.19) as was determined by exact solutions in
the'previous use of the closure (2.1'3).

Again (2.41), (2.4 2), and (2.43) arc solved numerically
by using Runce-Kutta Method [21] for several values of o,
and tke closure (2,13) gives 7% Tho results are shown
also in Figs, 1-1 to 4-3 and listed in Table 1. When <L is
order of 10 tre greater 4 iS the slower T7 -decays, but
when . >>10, T7 does not; depend too strongly on«, For example,
for a log-normal distridbution, 7§(O) = 2, the maximum
difference between 77 when £ = 10 and - = 100 iS only about
1.5 % up to dimensionless t° = CT(0)t = 2, where the
reaction IS about 67 % comnleted, Also when ¥ >10, the
value 0f -~ ard the type Of the density function seem to
have little effect on T° up to t° = 2.

Ve exre~t that when diffusion vhenomena is added
into the reoantion srstem the fluctuation Will decay more
ranidi;, The closnre indeed predicts this property

R

Y
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3. _Second~order Chemical-Reaction of fwO Svecieg

Consider the isothermal irreversible reaction of the

type

A + n B ——— products

in isotropic, homogeneous turbulence. The system as a

second- order chemical reaction is described by the mass

conservation equations

-guyv KURX:WNXX*~CRK (3.1)
B} B
Tﬂ? ARANCR S = th’ﬁ ~ T, (3.2)

The fluid is assumed incompressible,

Veu=20
As in the single species if onetries to form therequat-

“tions for the moments, the number of unknowns increase

‘faster than the equations formed, Therefore, the approxi-

mation techniques have to be used again to close the systen,

Define the following dimensionless groups:

. T
- Tﬂ"‘ ?;U) )
[
= cnfeTt
x=

\w—mm‘w. s iy s sy
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U = —
Cn iy L
—Da___
= AT
\l“‘-’)
i& > l\ T’@)
= D
5 = T

After droping superscripts, (3.1) and (3.2) becone

3D 3y : .
r v = AT - puT (3.3)
| %}}« (W) T LV - TR (3.4)

3 . Second-Order Stochasticallv Distributed

Chem cal Reaction of two Species

stochastically distributed reactants the kinetic
equations are from (3,3) and (3.4)

—-l - - 5.5
2% ﬁ ‘ (3.5)
PR )

a} - TY (5.6)

If the initial concentrations Tae)s Tloy are

prescri bed deterministically then the solution of (3.5) .
and {3.6) is

ke



e

B 2%

N T Exﬁm’o\w}* SRR ﬂ

T = VY 8 Lo BT K] ) 3k
T =pR ST TR TR

o = ——HeL = Beltio =g RN dy

T A e LR R -~ l]

If . the initial concentrations'EJO),“Q(O) are
prescribed stochastically in terms of a joint probability
density, P [1i(0), T.(0)], exact expressions for concentration
moments can be derived as follow ng :

\-,m __y“'“’{ ' ;_EX{‘V}*@-}H\S n 3&;)(‘5 lS 3})5\}} 53, 1&)&?\“
A a1 b G R I S ) 5“'}5191’9(3 ) (3 9)

As In section 2-1, the realizability conditions we

impose which spe01fv a certain degree of Dhy31ca1 reason-

ableness to the solutlon are

o filil < 0 - (3.11)
0 = 7 = e e (3.12)
.o i"?? <~ ? (3.13)
T - -75‘—.-__- - T O (3.14)
ey e
e e ~ (3.15)
cate T NG AT s

We propose the closures
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e T U S 7/ 7 M
a o = '\Q['ﬁ\_l_ E{-‘é\”f‘ T Al AT Tt }%ﬁb
(3.16)
?}%i )f}ﬁl )b + %}b ?

i = {eLT or= R Tt ‘T—'-r[m;)

a
(3.17)

These closures seduce to closure (2.13) if species a and

b are identical,

75 see if (3,14) and (3.15) are satisfied, we have

T —

/4 %*L’%ﬁ“ Towry - T+ (o) Lk

A
;CI %7 }C\ j . ; ;
.T 4 T’ TL

4.{»5

j?)’

B ”27 Ww‘*m,_, nm-f-(e-s) EL
R 4
R4

+‘(Q[§ “b ‘“ T‘ ]ﬂj+ }}/)Z, *

my m o ow agime waen |

It is difficult to see that (3.14) and (3.15) are satisfied
| n general, *wt they can be proved for the special case that
the joint prohability density function of the initial con-.

centrations Ta(0), T;(0) is log-normal and & = 1. Therefore

S ——

TR T = R

s,
.,,

ANl R S T T

pandiv R W AU -
" Ta Ji ): :rgﬁ?;). U Té )M,\J

|
R T

end in this case if (%.10) to (3.13) arc valid, (3.14) and

i SR T
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(3.15) are satisfied by the closures (3.16) and (3.17).

Forming the first and second nonent

equations from

(5.5) and (3.6) and using the closures (3.16) and (3.17),

ve obtain’

5

\» = - l,fb \f;\ nyé"\"‘y\f)h )

A

L/!

et

75% 7%

T

" YO 7%

— -2 16 K _f;:wf; -+ %55
Q

! 4

.\.

=T 2
Jhaly o
. - .'}
b T

boyap g & PN R e Pwtd
l‘% l& L.‘}:,l _::.a.. Jr -5 k 'T =5
4 \p g - ‘b

56 (RRTTEL).

20 % Y
;{L - — 2 E ( nl i ..\— 7’\ 7 + ')%\_
i : °\ v % e

+ ??%— TV +

+TOWE 1

Tl)qdn'*rhh

(3,18)

(5.19)

+ T B,
+F ) (3.20)

...a--)-;;_“h'-2
q;ﬁhhks.zl)

’)\T '}4

T ]

qifj (3.22)

Solutions of the above coupled equations depends on

the initial data, As a specific example we will examire

initial concentrations which are log-normally distributed,

a possible distribution for non-negative random variables, .-

P (T‘ oY v RN — - ( ‘
T ) e _
. R , =7 7 xo\w)};’(o}ﬂ_wl

S
SROTe DNy Ty Uy

Wtk =) (Ko ~w)
W)

%QxT }”
% I g

(3.25)

2 and w are determined by the initial

B e AR B ot

4
3
i
|
]
i
k1
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conditions, Since T3 (0) =Te(0) =I, we have

— i
0"::[9(\ <\+ VQLQO)))A
— : T
=04 G+ KEDI
A== T G4 )
v=—& ln C+0)

Ve define a correlation coefficient P by

P = T E mp

O IAY
Then
| G Ve et )—117+ |
W= e o {preebe)—D Cexp Uy =132+ 17
So that if Ja(0), %X0), Y.%(0) are.snecified, all te vera-

meters in the density ffucntion P(T,(0), Ti(0)) are provided,

Equation (Z%,9) in conjunction with (3.23) yields exzo®
solutions for. a1l moments. Figs, 5-1 to 8-5 are some of

these exact solutiors,
As we pointed out arove, & = 1 for tre log-rormal

distribution, (3.18) to (3.22) are solved with t2e sane

initial conditiors as the exact solutions by using the
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Runge-Kutta Method [21]. These closure solutions are shown

vy aline wth % an the same figure as the corresponding

exact solution, Table 2 |ists both exact and approximate
solutions at t = 10 for many different initial conditions,

3.2 Second-Order Chemical Reaction of two

Svecies with Molecular D ffusion

In this range of reaction system with spatial correla-
tions, We need closures for the third moments %% 7%(x,t)
and 7117;7; (;‘Sv ).

Neglecting convective terms, (3.3) and (3,4) become

To% =Jd V- tnm SRR (3.24)
iﬁ 2”{{\7);&"_1}‘1 - R (3.25)

f'The rezlizability conditions (3,10) to (3.13) must be
satisfied, We also require that (3,14) and (3.15) be
satisfied, | ‘

‘¥We propose the closures

—r - - A s m, N . ™ Ty
T = [ (Tt Al AT T
whid, = Le (Tt m + i e o1 b
ke T (3.26)
e o e Gk BRI =y
o o8 = e(w + e T ) J%vk 4 e e o
| ‘In?‘/b?&” L -‘.i"’ - _\b j R Tl “a b
V - \
R r— ’ {z.27
=T | )

R‘N'R o~ gy » ¢ b 3
These closures reduce to closures (3.16) and (3,17) when
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= 0 and therefore automatically satisfy (3.14) and (3.15).

By isotropy we Cave

;*;’3‘5;};,’“3 AN (3.28)
and
WE" = LK (3.29)

The f ollowing moment equations are formed from (3.24)
and (3.25) by using closures (3.26), (3.2'7) and the

conditions of isotropy and homogeneity.

a1 —
“‘&hk =-5{W T A )X") (3,30)
:3“‘ — i = 5T A7
5‘“{‘-~\\5\ y %) (5.31)
)’/ (' T‘ S -2 “,’"775;
S = e b0 TN GE e T DR 5 )
v A n 9K
_a.]—{j;/_ ")il'x. 375 ~ =2 )—:5’:;: 31
= 2 25 Ty ot 2= < (3.
’a-jﬁ j’V ?b)b * E BI‘ (71, T'l\)—‘— Tby .k (3 33)
Ao vy A 0% 2R (TR T
37& % TV il i i\"\l 3 N
Y \T 3N -3 Y M 4 it .
b 15’“ RS e %—%—(%‘M@ ¢ 3T 5 (5.34)

We define the Fourier transforms of %)’ 7 X

as in section 2,2, Equations (2.23%), (2.24) and isotropy

yield the results

(PR

A - bt

PO

el o WA btk e AT o s
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hRA) =3 ;‘)n T (6,%) xl--‘—*ﬁ” ax (5.35)
ﬁ.gw,ﬂ = wg{»%"’/“* L &X (3.36)
By (01 = 5 [T o) S dx (3.37)

ATk = 4T R hle ) S gk (5.38)
); %A = g Ky, ¢, X) —%ﬁ—dk (3.39)

Iy = A TR qum) AR (5.40)

Taking the Fourier transform of (3.32) to (3.34), we

have
o%: - = 2N L g |
S 7T RCRT AT, C b AT (3.41)
. %% = - T AT hhder T (3.42)
> & . (% Y |
—— L+ O Uy 2D by SPULL
(EHT .\' = ‘2~ *\"'(\\ a\\ )290\« ze-1- 2—& L,YQ"'TZ\ )(3 43\
CERTENNINS SN A Dy = 28 b ¥ — = |
N | 5y Wb 'ﬁ?fak“ﬂ ) (3.44)
(2 a0e 8 T Ry g L TIE R G
L?)}\‘\XK R _;‘%"ﬁg\fﬁﬁﬂﬁ\w) ‘5 "‘g\-ﬂlaw b ab
b, AT by T
- o 10 P) L Ll ~)
3% ‘\" W) > .(3.45)

These five Rouations, (3,41) to (3.45), with five
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ok
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unknowns could be solved in principal at |east numericall Y,

but it is difficult. As a simple example and in order to
sece the role that X plays. We will consider the case
that A.:.Two reactants are presented stoichiometrically,
g =1

B,.Srecies a and b are similarly distributed.

¢, Diffusivities are the same, £ = 1.

D, Initial concentrations of species a and b are

jointly log-normal ly distributed, 6 = 1,

Then Tl::ii and (3.41) to (3.45) become

5T

i Sya@—a J:\ EXIY ) b= 2 gi&( %ﬁ’“) (5.47)
(-——-—Jrzs\ K~ z-:\-~ ) by, =2 i:" i %ﬁf} (3.48)
M 2l h-f;;i-%v 7;3«—2\ Q= ﬁ‘g‘;‘b"f ;* (3.49)

Combing (3.47), (3.48), and (3.49) we get

3 2 .
3y (Beq & T Py) = 2k (b, ~2 Ci?xh)

Tuerefore

,.'- - l & . ; e - — 2 ‘
%‘{j’“ Sl SR ‘h,},\ — (W Eve Ldl"i) (3.50)

Where ¢(k) is determined from the initial spectrum as
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2 = S (1, 0) T Chooy =D B, (ko) (3.51)
(3.41) becomes |

Eonie R VS s (oot &) dict mg ) e 24D (3, 52)

(5.47) plus (3.48), and the use of (3.50) and (%.52)

gi ves

> | .
-::,T &"(.‘\7\0\0,*—’%1};} =5 2 ";h’\g\l —j 35

!
4 \ ““ é“ - Cm@

3
Ll

E’(\ L‘-lx\éi)d?\]; f‘) “r )h) =4 33-{ ;\P( Ni\L)) i——-l}.u... — ':b:.’-."f:

AJWJO COO W Exp (F24K7) di)
L et

B = | et 1 sxp (-2 1y d e

—-— SRR Y ' | ’ | ! 2
= S:" LR ey +d (ko) > 3,7%(\‘;;.)} EXP (-2 2 3df(3.55)
oy — L | éT‘ 2 3
Q . .

thén _
oot 0y = 4 ?i Exp L2 k~—25 41 diT T fy Cte) e
NI (5.55)
s S dx a0 +¢1.b\#,o>ﬂ

Let

Hu = [ =X o) LR v ol di (3.56)

Substituting (3.55) and (3.5%) into (%.52)
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%j\ = T T B - T e -2 G 0 i)
REREEIES {ff“_:? EXP L2 Patnddd + 203, 57)
Let |
V) = o Jadydd | (3.59)
Vb = [ S0 gy o | (3.602)

- e
U M

. Finally we have the following system of first-order .

ordinary differential equations and the initial conditions :
Pl = e = ; 3
S1T T T T ANBOD S2TRU®) Ty + HB] (5.58)
AW

— = = DG W) | S (5.59)

= Go/ T uw {3-50)

U o) = | SRR | (3.61)

where B(t), G(t), H(t) are defined by Equations (3.53),
(3.54), and (3.56) respectively. B(t) and H(t) are known

function.: ¢f t provided {hat the initial spectra furnctionrs
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P (k50D ¢, (k,0), and 9-6”)(1{,0) are given; or alternatively,
the initial. correlation of reactants 7%7%x,0), 7,7 (x,0),

and ) 7:3/(}{'0) are known,

If the reactants a and » are simlarly distributed, we

may assune, for exanple,

Yadi (x,0) = ) B

NN o) = L0 K)

Tk (o) = (D*F(") &ZU’%— A ")

Where

1\(" V , ‘F(O):-\

Ak
RaY) Z. gl
PO AT

P =

As ad example, using the same correlation function f(x)

as in (2.35)

>

f®) = BXP (- =T) (5.62)

the following relations are obtained.

&1

13(}’1 \\ ) B ’_._‘LT’—. ' T -k
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::;ﬁw LAY { ‘q}

bl E -

Bt e s ) e



SN, At

34

=% %

f " S p ){ (<Y r}b {e} _
(bab{"‘"b> - : S E ("‘ v

C (D :_73':*}3 LY@ *%M“‘*’%(D} ) IEAP (- k)

\" Vb ' 2

}/__..,.___.l

B4y = 2l T Hlo =2 2900 Ty
: 8T (e >qalh)™

Hy = — ey + e
47 L\“r'lw;u"j;\s/“

(5,58) to (5.60) become

=

Bﬁg t e —_— ""',,1 N 3_1{‘3 “’)DKU) -2 /)751 N)\ )# (L/L -2
S ‘g_f ““qu
9* : 2 (it 23 \) =
— —_—Y |
iv Va@rt ey 20 ) ??ﬁ(o’)/‘ FNORNAC % 6
o {l’fl“ ‘\lj—v)f/g 2 (\1,2‘\"-‘&1\)5,& (50 j)
au S uJ é}}“{gfﬁl‘ R 3% =20 ) e o
>4 ST T S (reman® 4 (548
2V _ 1V 2W A pe R v)?’m (5.65)
Y T twE ok Bt 3 (varwnyxz 4

These firstﬁcr&er~systet of ordinary differential
equations are solved with the initial conditions (3.51)

by the Runge-Tuitta Method [21].

Now the fluctuations are -
TR (e
ot b —u> a(""»’:b ,
RTA Y N
S . R - 2,%_ )}5 —:,

— Wiy T NITT w22 L) e ) o) 7, 13},

B VRT3 IR TN —= = e >

RS VIS Wl S “ ""*\/ 7
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ratej reaction must devpand on molecular diffusion to bring

the tWo reactants together before the reaction can start.
Wren the kiretic reaction fate is much | ess than the
moler~ular diffusior, the mwolecular diffusion alvways bhrirres
the two reactar*s torether aﬁd the time scale for commiefin-~
‘e yenartion tu determined by the chemical Kinetics.

For the ranrid reaction with the sane molecuvlar
di ffusivity ard the reactants stoichiometrically present
in t'e. system, O'Brien [22) showed +*hat both the mean ang
the root mean sguare fluctuation Of a srecies concentration
decay as t-3/4 asymptotically and that the rel ative
inter sity of each species apvroaches a constant value,
(7= 1), These resvlts are checked by carryir~ out the
calevlation, up to a time substantially greater than the
time +hat diffusion becomes significant, for the case of
initial concentration fluctuations, 7Z(0) = 7%(0) = 2, ard
w = 0.75, o= 0.0l The dimension time .for aiffusion to

tecore significant is

2
t- QL /D)

or

The calenlations are externded to +£°-2400, thesge are well

into tre asyrptot o recive for which the *heory is
qr T annie, aldlon oy the theorr is only exact for an

agrorrotioally osrall ook,
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4, Dicussion
In the study of two swvecies chemical reactions the

diffusivities of the species are assuvmed equal and the

vl

3

cactarts stoieniometrically present, When the reaction
rate is less than the nolecular diffusion rate, the decay
of tkhe mesn concertration depends only weakly on the
diffusivity, In this case we may assume diffusivities of
each species are equal even they are actually not, so that
the above aralysis may he used to predict the completeness
of reaction,

When the reaction rate iS the same order as or greater
than molecnlar diffusion rate, the later plays an important
role, and it IS difficult to justify assum ng that diffu-
sivities Of each svecies are equal if they are actually
not. This case and the case when the reactants are not
stoichiometrically present can te solved in princivle by
using Egs, (3.41) to (3.45).

Solutions for second-order chemical reaction exist for
the rapid diffusion controlled reaction (33, (41, (5], ru+
there 1S no solutions to the cases that chemical kine*ic
reaction rate and rolecular diffusion rate are the save
order. Our closure *echnigue is the only existing methnd
ragsed on the kiretis equations of solving for this

situation, i, e, = 0(1),
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