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ABSTRACT

Energy inequalities are established for the solu-
tion of an implicit finite-difference equation approxi-
mating the most general linear, first order system of

symmetric hyperbolic partial differential equations.



INTRODUCTION

- N

'his paper presents some salient properties of a particular
impliciﬁ finite difference approximation to the solution of the initial-
value prpblem for linear, first-order systems of symmetric hyperbolic

partial differential equations with an arbitrary number of'inaependent

and dependent variables. The main results of this paper show that the
difference equations are unconditionally stable in the discrete L2

1 - .
‘norm, Wé note that the solution of the difference equations approximates

the exacﬁ solution of the differential-equations in the L2 norm ﬁi%h
& truncation error which is second order in the mesh spacing.

In Section 1 the domain is definéd, the finite difference lattice
is described, ﬁotation is established along lines similar to M. Lees
[8], and a number of minor lemmas dealing with finite differences are
estéblished for use in later major lemmas and theorems. Most‘important,
here the norm of a vector defined on the lattice is defined as the
discrete L2 norm, This norm is used throughout the paper. Stadbility
and convergence must be understood in the sense of this norm. Con-
tinuous analogues of the analysis are given by R. Courant [3].

Section 2 cutlines the general properties required of the exact
solution of the differential equations and the pgoperties required of
the coefficient matrices and éhe inhomogeneous term. Subsection 2.1
deals with the case of constant coefficient matrices and homogeneous
eqﬁationé. Tﬁeorem 1 proves that the finite difference scheme for this
special case satisfies, unconditionaily, the Von Neumann necessary
conditions for stability [9]. 1In the symmetric case sufficieﬁt conditions
for unconditional stability are satisfied [10]. By unconditional stabilit

we mean that there are no restrictions on the mesh ratios, i.,e.,

Courant-Friedrichs-Lewy conditions are not required [1]. This subsection

&




affords a heuristic basis for conjéc%uring the unconditional stability
in the more general case by considering the coefficients to be
"locally constant". Subsection 2.2 begins by establishing the

main lemma, which is essentially the discrete anaiogue of inte-~
ération by‘parts for centered differences. The section continues
with Theorem 2 which establishes one of the central inequalities,

the so-called "energy inequality", which is the heart of any analysis
concerning the solution of the partial differential equations by
finite difference methods. Theorem 3 is another "energy inequality",
but dealing with centered differences of the finite-difference
solution. Theorem 2 immediately establishes the unconditional
stability of the linear operator LA in the discrete L2 norm. It

is to be noted that Theorems 2 and 3 require no restriction on the
size of the domain of solution.

Background readings for this study are also obtained in
Feferences [2], [4], [5], and [T]. These papers should contain
sufficient secondary references to acquaint the reader with the
scope of this work. Especially valuable are references [6] and [8]
after which muck of this paper is modelled. |

We wish to express our appreciation &nd thanks to Professor
H, B, Keller for the encouragement, direction and advice he extended

in the course of the research and preparation of this paper.
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1. PRELIMINARIES
In this paper all finite difference equations, operators

and functions are defined on a lattice, L, with mesh width h,

2
X(z),

in the coordinate direction 2=1, ***, N. L consists of

the points of intersection of the coordinate lines,
) S in 1= o0, £1, 2, +-, and,
t =3k 5; J=0, ++«+, J, where
k is the mesh width in the coordinate direction t.
For functions defined on lattice L we employ the follow-
ing notation. Where there is no chance of misunderstanding

(1) ... L0y

we write x for the vector argument (x s ) Where

no argument of a function is written, the argument (x,t) is
understood.
Lt <A, B> represent the usual scalar product of two

N A(2) B(l)

vectors A and B: . We define:

=1
:EE A = ZE:— EE; e :éi A, and set
£ (0 (2 )
N
H = lgl hl.

We now define the norm of a vector A defined on L at

time line t as:
(1.1) Il a (&) 1% = p = <A, A>
x )

Let A be any scalar or vector function defined on L. Then

one of two properties will be assumed to hold:




I

(a) A (t) is identically zero outside some bounded

region ,.L for any fixed value of t, and the

-

summation, = , extends only over L,
x

(2)

(b) A (t) is periodic in each direction x , and the

summation, EE, extends only over one period in
x

(2)

each direction, x .
This assumption will be referred to by the euphémism,
"satisfying suitable boundary conditions".
We define the shift operator T Ehz:

ihz L (2-1) (2)

y X +h x(z+l) ()

(1L.2) T , ttt, XU, t).

°

a=a 3, .

.
E g

!

A (x, tzxk)
In terms of the shift operator the difference gquotients

of A are:

(1.3) Ax(l) = hlul [Thl A - A)], the forward difference quotient;
(1L.h) A;<£) = hz_l [A —‘T"hl A]l, the backward difference quotients;

X v :

A = k™ [a - 778 a]

1 - .

. = = i t.
(1-5) Aﬁ(l) 5 (a (1) + A_(Q)), the centered difference quotilen
. X X X .

We define the time-averdge, A, as:

(1.6) A = %'[A + 77E ]

LEMMA 1. For any vector function, A defined on L,

Q.7) % [[[ A(t) I[%]E = H'37< A, A >,

(%)

PROOF: For each component A of vector A it follows from

{t1.4k) and (1.6) tha:




(1.8) |a(®) AR = (al®);
£

Summing (1.8) over & we have:

- 1
(1f9) <A AE> = 5 <A, Ao,

Whence, summing (1.9)with H jéL the lemma follows from
x

definition (1.1).
LEMMA 2. For vectors A and B defined on L:

(1.10) H S <, B> s % (1] a2+ 1] 3[]?.
g = .

PROOF: By Schwarz's ineqﬁality:

1 1
= <A, B> < H = [<A, A>2 <B, B>2].
x p'q

Then by the inequality between the geometric and arithmetic means:

1 1 _ 5

B S <242 <B,B>2 < T Z [<a,a> + <B,B>] = = ([[a]|% + [[B]]®),
X b'd _

and hence the lemma is proved.

Next, we state three identities which are immediate con-
sequences of definitions (1.2) (1.3) and @.4). For any two
scalar functions, A and B, defined on L:

h —
(1.11) T2 AE(Z).— AX(Z) ,

hy

(1.12) AB 4y = (AB)iKQ) - A TR,

X

(2)

X

o _ .-h
(1.13) _(AB)E(l) = 77 "% A BE(Q) + BAE(Q).

For any vector or scalar function, A, defined on L and

satisfying suitable boundary conditions:




(1.1%) | S oM = oa.
X

X

For any matrix A and vector B defined on L we have:
5 N : . )
(1.15)  <AB, B (2)> = égi (AB)(J) B(%i)
‘ X J=1 X

: N . . .
= EE. {I}AB)(J) B(J{] (1) - (AB)(g)ThQB(J) ,
j=1 R x x : -

| h
(1) ~ <(AB)X(R), T4 B>

I

<AB B>
. 0x

| By applying (1.12)to each term, (AB)(J) B(%;), in(1.15)above,
x .
Also, for any (M x i) matrix, A, with elements aij’ and

vector B defined on L, we have:

M
_ < (3)
(1,16) (AB)E(Q) = Egi (aij B )E(Z)

1J

M _—
- - (3) -hy L (3)
= ?E% '?.. Bi(z) + (aij)i(ﬂ) T "% B j}

1
=
[ss}

By applying (L.13)to each term, (;ij B(Jv_(z), above.
Yx

2. THE FINITE DIFFERENCE BHQUATION

Let us consider a system of finite difference equations

consistent with the system of partial differential equations:

3U
3t

N (¢) %0
+ = A ——— 4+ BU = 0
=1 sx(z)

(2.01) 1 (u)

o

Here U is an M-dimensional vector function of argument
(x,t). Aﬂz), £=1, -+, N, are each (M x M) symmetric matrices
with eleﬁents that are functions of (x,t), and B is an (M x M)
matrix, also a function of (x,t). Equations (2.01) are subject

to initial conditions U (x,0) = g(x), with g(x) a given function.




(2.10)

T
U satisfies suitable boundary conditions, as described in
Section 1 Lfollowing(l.lil above.
The finite difference equations corresponding to (2.01),
that we wish to consiaér are:

N . .
(2.02) 1, (u) = u_ + = al* Uaggy * Bu =0,
X

% g=1

subject to initial conditions ul(x,0) = g(x). The arguments of
(2) k

(each element of) A and B are (x, t- 5), to center the scheme

properly. We further require that each element of the matrices

A(Q), satisfy a Lipschitz condition with respect to each of its

arguments x(z), i.e., there exist non-negative numbers, Bl, T,

such that for any X5 X, in L:

P N B O LI W P

The matrix norm used here is the natural norm induced
by the inner product. Defined in Section 1, i.e., if A is a

matrix and B are test vectors:

1

B. _ L.U.B. 2
1 |2B] = <B,B>=1 ‘AB, AB>T.

41 = 52

We require also that the matrix B have a bound 80 such

that IIB[[Aﬁ B,

VON NEUMANN STABILITY ANALYSIS
As a motivating analysis for the succeeding sections we
now show that LA(u), as defined in (2.02) with B=0 and A(l)

matrices with constant coefficients is unconditinnally stable.

THEOREM 1: Given the finite difference equations:
SN E R
u.—+ z A u,’(z) = 0
t =1 ) bd
ditions, with A(lﬁ being censtant matrices, such that (2.01)

satisfying suitable bourndary con-

HBRARY
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is hyperbolic, then the equations satisfy the Von Neumann necessary
. L

conditions for stability. If the matrices'A( ) are also symmetric

then (2.10) satisfies a sufficient condition for stability.

PROOF: Let a fundamental solution of (2.10) be:

(2.11) u(x,tn) = v(n)ei<g’X>, <E E> = 1, i = /21 .

We then compute:

-1

(2.12) u;(l) (x,tn) = 1 h,

SIN (Ezhl) v (x,tn).

Substituting (2.11) and (2.12) into (2.10) we arrive, after

cancelling el<g’X>, at:
N
) e, 2w (<7(n) . V(n—l)> .
L .
2=1 .
k
where n, = o, SIN (Ezhl)' And so we have,
N N '
[I +1i = on, A(l)] A n, A(“)] A
=1 =1

Thus, the amplification matrix is:

N N
G(n) = {I *i>_ n, A(l)] - [I -1 = n, A(z)} .
=1

=1

N
Now if we let the eigen-values of §f N, A(Q) be aj and remember
=1

from the hyperbolicity condition that the aj are real, then we

see that the eigen-values, A, of G(n) are:

J
1 - ia
A, = —i .
J 1 + ia
J
We note that lkj| = 1, and hence the Von Neumann necessary
condition for stability is satisfied., If in addition we have
* *

symmetry, i.e., A(l) = A(Z) for each &, then G G = I for all
n and, a fortiori, G is normal. This is a sufficient condition

for Von Neumann stability [10]. This completes the proof.




(2.20)

(2.21)

(2.22)

THE ENERGY INEQUALITIES
l

LEMMA 3. (Main Lemma). For any symmetric matrix A, defined
on L and any vector B defined on L and satisfying suitable

boundary conditions:

f2H :éi <B, A B,(,3> = -E = < By, A_(,) B>
' x x” X

X = )

PROOF: We have,

<B, A B (£)> <A B, B (z)>, since A is symmetric:
X

= <B$ A .B> (2) - <(AB) (2)3 ThR'B>’ by (1.15);
X X

= <B A B> - 8% <(aB) , B>, by (1.11);
X(Q') : }—((2') ’

h
= <B, AB> - T°% <AB , B >
ey £ ()

- Thl A (1) (7" P2p3 , B>, by (1.16).
<

From the symmetry of A it follows that AE is symmetric, and
hence:

B, AR ()7 T B, AR (o) = T <B, AR (p)> - TR, A ()3
X X X X

Now, applying the summation, H :E‘ to (2.21) and using (1.1L4)
x

and the fact that H E? <B, AB> ( = 0, since B satisfies

X XQJ)

suitable boundary conditions; we have:

H < |<B, AB > + <B, AB , \>| = -H Z <« B2 B, A, B>,
= ' (2) : =(2) ={2)
X X X ; X. X

But the term on the left side of (2.22) is 2H & <B, AB

>
]
. 2(2)7,

whence our Lemma is proved.



(2.23)

(2.24)

(2.25)

(2.26)
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THEOREM 2: (Energy Inequality 1)
Let u be a vector defined on L and satisfying suitable

boundary conditions. Then there exists constants CO and Cl’

depending only on T and the bounds SO, e, BN such that, for

sufficiently small k:

T :
[lu(m) 1% < ¢ [llu{o)ll2 +s2E— = || 1, [a()]]]5
‘ o t=k -
PROOF:  We have (see 2.02):
N
. - _ . ( L ) )
L. [u(e)] =-uE + =L “(z) + Bu.

By taking the inner product of each side of this equation with

and summing with kH = , we have:

X
-y N
- o ,’/fA \ /A
kH = <u, LA(‘U_} = kH 5 i{u,u \+ <;:‘ (U, A('Q')
’ - i v s \
X \X L t Z—l

2
But from Lemma 2, with A> u, B » L  (u), we have:

N\ 2

i > {u, LA(ui> < {/!u(t)|| + | ]n, [u(t)1]12] .
X

From Lemma 1, with A->u, we have:

K f>' {u, _ [:Yu 1% - [ lu(r-x)]]? h}

Now for each value of &, 2=1, **°*, N we apply Lemma 3 with,
22 5sy and fina:
N N
e ~ ~ = . /a-hgl L
kH g:‘-: = <u, A 2) A(2)> —-Ig- < S &T Lu, A_(_
x =1 x =1 x

Applying Lemma 2 to the right hand side of (2.26) with,

A>7 "By and B&A‘%;) u:

b4

>

u‘(%/, QP Bu

7

7t




=il-

\N-' ¢ 2 . ~ N ’ -~
= = wa®hu ) ¢ e ez 1w a))?
=] x =EL X

(2.27) kH =
X

Again, applying Lemma 2 with A»>u, B+»Bu we have:

=

=

(2.28) xE = {u, Buy< £ [[|u(e)]]® + [|Bule)]]].

X
We have the estimates, which follow either by hypothesis or as

an immediate consequence of the Lipschitz continuity of the

matrices A(z).
Hastay & 11 < Halty T < sy a1, ena
1B wll < I8l [lall < 84llull.

Whence, applying (2.2L4), (2.25), (2.27) and (2.28) to equation

(2.23), we obtain:
(2.29) [lu(s)[]% = |Jute-x) |2 < xc_ [|a(e)]|? + x| |1, lu(s)]]]5,
with C_ =2 + g+ 5 (N + “ffisl :

From Schwarz's inequality we have:
[la() 112 < 3 (lue) 112 + [ lute=x)[15).

Applying this to (2.29):

N
2k C_ %
(2.210) ||u(m)|]? < \{Jr e u(T-x) ] ]2+ -2-_—%5-0— ]|L.Au(T)HQ,
°/

2 C
0

end putting C, = 5 > (2.210) implies in a familiar manner that:
' = Yo

' T
Ham [P < oy Ulao)1® s g5 = 1n, [u(e)1[]%1, where

C1 = EXP [C2 (T-k)] and k < - This proves Theorem 2.
0
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Thejrem 2 immediately implies that the implicit operator LA

is %nconditionally stable in the mean square norm.
2.3 THEOREM 3: (Energy Inequality 2)
"Let u be a vector.defined on L and satisfying suitable

boundary conditions. Then there exists constants ClL and C

5
depending only on T, N and the bounds 80, e SN such that,
for sufficiently small k:

N ' 5 SN 2
o N e
= llu, (M%< cg /=0 fua,y (0)]
2.:1 X(R) 5 Ay =l X(Z)

]

PROOF: We have,

N
# / (Q') " \ . o
[LAG(ta];(j) Y T G )T (Bud- 4y

1

Applying (1.12) and (1.13) to the second and third terms on the

right,

£y ) —RON
(2.30) 1, Ruled [ 5y = me gy + 20 (A0 (g) (0

=1
‘ \
1 2) ~hj

* 5(’“ Ok Am/+ 5 ; " uh(;){
| J

// %5 u + B h5 ;)
+ Bu + = [B jJou + i\ u ;.

- -(3). (3)
2 (3) \ x 203 L(d //

~

Now we take the inner product of (2.30) with U g) and sum with
' X

kH ;3 and using Lemmas 1 and 2 on the result,. we have:
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. : N
2 2 k 2
(2.30) e gy 17 < T gy e 117 0 5 Cemesr = 5,7
N
2 2 2 k
(Hu;(j)(t)][ + Hu;(j)(t—k)H R %

Ul @17+ F (0120 + g 15011

+x | |ln, (u(6)) 1., 115,
KE )X(J)”

i ‘
We now sum with respect to j from 1 to N, obtaining from 2.31,

with

- N
= 1 2 2,
Cy =5 (20 + 3 + %) + = B, ¢
9=1.
(2.32) = | |w )12 < (1 + —2 = ||u (t-k)|]2 +
. T s ~ S L, Al s -
3=1 £ (3) | -k Cy )53 z(3)

5 ;
i:afi—' [%;i {II[LA u(t) ];(j)lliP + N 802|lu(t)l|é]

The conclusion follows in a familiar manner with

C
C. = EXP 4

5 1-C, k (T-k)|, requiring k < == .

Cy

This proves Theorem 3.
An immediate consequence of Theorem 3 is, that, if the
initial conditions on u are Lipschitz continuous with constant D,

and the function C (x,t), defined on L is also Lipschitz con-

tinuous with constant D2, then for the equation:

LA(u) + C = 0, uﬂ(j)(T) 1s bounded in norm with:
b'd -
2 2 i
D, “(T-k) k B T A /
2 L2 0 — = |||
—

N
= ||u.,. (T)||2 < Nc_ /D, “+ - + -
Py 23 5/°1 7 1-C), k 1-C) k 52

bt
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