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ABSTRACT

A method is developed wheyreby the accuracy of Ligtenberg's refléc-
tive moiré method for plates can be improved. The method utilizes the linear
and rotaticnal mismatches to increase the fringe densities along directions
parallel and perpendicular to the grating lines, respectively. As a result
greater precision can be obtained in the plotting of curves of partial
slopes which are used for determination of curvatures and twists of the

flexed plate.
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Introduction

The reflective moiré method developed by Ligtenberg Ll]* has been
vwidely utilized for the study of bending of plate [2] . The tecﬁnique is
also suitable for two dimensional stress analysis [3]. Ligtenberg originally
used a cylindrical screen (grating) for his apparatus. Reider and Ritter
[4] modified the technigue so that a plane grating could be used. later it
was further modified by Chiang and Treiberi:sj to allow continuously variable
sensitivity. Essentially the technique consists of projecting a grating on-
to a mirrored plate surface which when loaded distorts the grating image
due to the change of plate curvature. If the grating image before and after
loading are superimposed on a piece of film (usually through double :exposure
technique) a moiré pattern is formed as the result of the interference of
the two images. These fringes can be directly interpreted as the contour
lines of the slopes of the flexed plate. If the plate before deformation
occupies the the x-y pla;e and we denote w as the deflection in the direc-

ow

tion of =z, curves representing %2' and 3y can be plotted from the fringes

along the sections of interest. Moments and twist can then be obtained by

2, 82w/ay2, and 32w/3x3y.

differentiating the curves to obtain 32w/8x
Owing to the inherent inaccuracy associated with graphical or num-
erical differentiation it is evident that the curves representing 3w/9x and
aw/3y should be drawn as accurately as possible. However there are cases
for which the response of the plate may be such that only a fe& fringes are
obtained in the field.As a result accurate plotting is impossible due to

the limited points defining the curve. One way to increase the number of

fringes in the field is to increase the line density of the grating used.

ofs
v

Numbers in brackets denote references at the end of the paper



However increasing sensitivity usually accompanies the reduction of pattern
contrast. Unless aided by special optical techniques such as spatial fil-
tering [6,7], patterns obtained with high density gratings are sometimes

not suitable for analysis due to poor contrast. Another problem that comes
from high density grating is the creation of a new set of moiré fringes in
some region when the fringes are too c¢rowded, and these fringes cannot be
interpreted as the contour lines of the slopes. An exémple is given in

Fig. 1 where (a) and (b) show two moiré patterns of a circular plate under
uniform pressure®. The load was the same for both patterns. Only the line
density of the grating was changed from 9.54 lpi in (a) to 17.7 lpi in (b).
It is seen that not only the contrast is poor in pattern (b), but the fringes
were so crowded that a new set of fpinges were starting to form at the central
portion of the plate. These new fringes tend to interfere with the original
set and are not easily interpretable in terms of slopes or curvatures of

the plate.

In this papey methods of introducing linear and rotational mismatches
into the reflective moiré method are presented whereby fringe densities along
both x and y directions can be increased without resorting to high den-
sity grating or the increase of loading. As a result, curves can be more
accurately plotted because of the increase of data points. The technique is

analogous t o the mismatch method for plane moiré developed by Chiang [8] .

*The meaning of Fig. 1-(c) will be evident in the later part of the text.



Different Types of Mismatches

In the following analysis the optical arrangement as introduced by
Chiang and Treiber*[s] will be used throughout because of its versatility
in introducing variocus types of mismatches. The optical set up is schemati-
cally shown in Fig. 2 where a small grating of certain line density is in-
serted into an ordinary slide projector which projects the magnified grating
image on to the ground glass. The grating image is then viewed by a camera
via a partial mirror and the reflective model plate.surface.

In the plane moiré method for which two gratings ave used (one as
master grating and one as model grating) mismatches can be easily defined
as the difference in pitch* (linear mismatch) or in orientation (rotational
mismatch) between the two gratings before the load is applied [?]. In the
reflective moiré method however only one grating is used. The superposition
is made between the two images reflected back from the mirrored plate surface
before and after the loé&ing. In order to define mismatches it is necessary
to introduce the following two terms first, namely, grating-before-loading (GBL)
and grating-after-loading (GAL). The former is defined as the grating (i.e.
its density and orientation) on the ground glass (see Fig. 2) to be viewed
by the camera via undeformed plate, and latter is defined as the grating
to be viewed via deformed plate. With this nomenclature we can then define
the linear mismatch as the difference in pitch between GBL and GAL and the
rotational mismatch as the difference in orientation between them. Linear
and rotational mismatch can be introduced into the reflective moiréﬁsystem
either separately or simultaneously depending upon the need of the problen.

¥hile various amounts of the former can be imposed upon the system by

* pitch is defined as the spacing between two gratiné lines



changing distance between the ground glass and the projector (see Fig. 2),
the latter can be brought in by either tilting the "grating slide” inside the
projector or by tilting the projector itself to a proper inclination. If the
GBL and GAL are photographed on one piece of film using double exposure tech-
nique without any loading being actually applied to the plate the resulting
moiré patterns are due to mismatches only. They are patterns of uniformly
spaced straight fringes. The orientation of and spacing between these
fringes are functions of the type and amount of mismatches introduced. If

we use the following notation:

p = pitch of GBL,

p' = pitch of GAL,

® = acute angle between lines of GBL and GAL,

¢ = angle of inclination of fringes measured in the same way as 0,
8§ = fringe spacing,

it can be shown that they are related by the following equations [}d}:

6 = D pr (l)
/p2sin20 + (p cos0-p')2

-1  p sino’

¢ = tan
p cos® - p

(2)

Examples of mismatch fringe patterns are shown in Fig. 3 in which (a)
(b) and (c) are the moir€ patterns de to linear, rotational, and the com-
bination of linear and rotational mismatches, respectively. The magnitude
of the mismatches are indicated in the figure by the line densities and
orientations. It is useful to note that linear mismatch fringes are paral-
lel to the grating lines, rotational mismatch fringes are perpendicular to
the line bisecting the angle ©, and the combinational mismatch fringes

are oriented somewhere in between the two extremes.



The Use of Linear Mismatch

The purpose of introducing mismatches is to increase the fringe den-
=ity where it is needed. In the reflective moiré method fringes represent
contour lines of slopes in the direction normal to the grating lines. Thus a
flexed plate with constant curvature along a direction will be represented
by a pattern of uniformly spaced fringes if the grating is oriented with
the lines perpendicular tc the direction. The fringes are of course also
perpendicular to the direction. Therefore, a linear mismatch moiré pattern
such as shown in Fig. 3(a) can be interpreted as representing a fictitious
constant curvature field in the direction normal to the grating lines., In
order to use linear mismatch effectively it should then be introduced ad-
ditively rather than subtractively into the needed region. In other words
the fictitious curvature should have the same sign as that of the flexed
plate at the places of interest. Otherwise the mismatch will not serve its
purpose, This point is demonstrated in the following examples. In Fig.
4-(a) a moire pattern is shown for a clamped circular plate under uniform
pressure with both GBL and GAL set at 9.54 lpi. In Fig. 4-(b) the moirée
pattern was obtained with GAL changed to 11.46 1lpi while GBL was kept the
same. It is seen that along the horizontal diameter the fringe density at
the central portion was increased by the use of linear mismatch whereas the
fringe densities at both ends were reduced. It was of course expected be-
cause the circular plate was bent in such a way that the curvature at the
central portion had sign different from that of the end portions. The
shape of the plate is schematically shown in Fig. 2. If we denote convex
curvature as positive, using the camera as center, then the linear mismatch
of the type shown in Fig. 4-{(b) can be defined as positive. Since it (the

fictitious curvature represented by the mismatch) had the same sign as that



of the flexed plate at the central region, it increased the number of fringes
there. In order to increase the fringe density at the end portions it is
evident that a (linear) mismatch of opposite sign must be used. An example
is given in Fig. 5 where (a) depicts a moiré pattern of the same plate under
the same load as in Fig. 4 but with grating lines changed to 11,46 lpi for
both GBL and GAL. In Fig. 5(b) a (linear) mismatch of GBL=9,54 1pi and
GAL=11.46 lpi was introduced. The mismatch is of the same magnitude but op-
posite sign as that of the pattern in Fig. 4(b). It is seen, by comparing
Fig. 5(b) with Fig. 5(a), that the fringe densifies at the end portions

were increased whereas that at the central portion decreased. The linear
mismatch of the type as in Fig. 5(b) is then called negative according to
the convention set earlier. The moire pattern corresponding to the (linear)
mismatches introduced in Fig. #(b) as 5(b) is shown in Fig. 3(a). It

should be noted that the appearance of the fringes does not tell the sign they
contain,although the magnitude is represented by the fringe density of the
pattern. Since the two ﬁismatches only differ in sign they should have
identical moiré patterns.

The slope curves along the horizontal diameter for Figs., 4 and 5 are
shown in Fig. 6 and 7, respectively. Three curves each were drawn repre-
senting the original load patterﬁi the mismatch, and the load plus mismatch
pattern, respectively. It is noted that the slope curve can be drawn with
much greater accuracy at the central region in Fig. 6 than the original
load pattern. The same is true at the end portiomns in Fig. 7. To retrieve
the actual slope , it is only necessary to take the difference‘between the

two curves (the load plus mismatch curve and the mismatch)curve which of

In actual analy31s the slope curve of the orlglnal load pattern need not
be drawn, in general.



course is a straight line). In actual analysis it is usually the curvature
that is needed. It is then more convenient to take the difference of the
slopes of the slope curves. One alternative is to cbtain the entire slope
curve for the original load pattern from the two other curves, so that usual
procedureSof analysis can be applied. This in general would reguire more
than one mismatched patterns, of which each contributes a portion for which
the (linear mismatch) is additive.

If we denote the fringe orders of load pattern, mismatch pattern,

and load plus mismatch pattern as N N > and N

2 it is evident that

24m?
the following equation holds:

N =N - N (3)

If we further denote Ll and L2 as the line densities of GBL and GAL res~-

pectively, then Nm is positive if L2>Ll (i.e. positive linear mismatch),
and negative if L2<Ll (negative linear mismatch). Eq. (3) can be used
for calculating the actual partial slopes at a point or can be used to re-

trieve the entire slope curves for the actual loading.
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The Use of Rotational Mismatch

It is recalled that in solving plate problems curvatures as well as
twist are neeged. While the former involves the direct derivative of partial
slopes (i.e.gggg g;%», the latter derives from cross derivative of partial
slopes (%§§§)' It may be noted in the analysis of using linear mismatches,
fringe densities were increased in the direction normal to the grating lines.
It is of course expected in view of the nature of linear mismatch fringes
as shown in Fig. 3(a), which run parallel to the grating lines. As a result
linear mismatch offers no help to the accurate plotting of partial slope
curve in the direction parallel to the grating lines.

The rotational mismatch fringes as shown in Fig. 3(b), however, are
running almost perpendicular to the grating lines. Their use in the moiré
pattern will then increase the fringe densities along the lines. Indeed
as shown in Fig. 8, the fringe density along sections perpendicular to tﬁe
grating lines were considérably increased by the introduction of a rotational
mismatch of © = 10.15° . The moiré pattern in Fig. 8(b) is the vectorial
sum of the patterns in Fig. 8(a) and Fig. 3(b). The rotational mismatch
was introduced by tilting the whole slide projector for the (photographic)
exposure of GAL, and the magnitude of the rotational mismatch was obtained
by measuring the orientation difference of the grating lines on the ground
glass (see Fig. 2). It should be noted that while there is no difference in
rotéting either GBL or GAL to oﬁtain the rotational mismatch, it is the GBL
that should be used for analysis, i.e. its principal Qirection is the direc-
tion along which the partial slopes are represented by the moire fringes.

An exampleis given in Fig. 9 showing the impro§ement that rotational

mismatch renders for the accurate obtaining of twist.  The slope curves

along a vertical section 0.6" to the left of the diameter was drawn for the
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load (moire) pattern, mismatch (moiré) pattern, and load plus mismatch (moir&)
pattern. The slope curve for the load pattern (which has three points to
define, if using dark fringes) could not possibly be drawn with any accuracy
without the help of mismatch and load plus mismatch patterns (each of which
has more than ten points to define the slope curve). In order for rotational
mismatch technique to be effective, the imposed rotation should have the
same sign as that of the actual rotation of the grating due to loading. Other-
wise the fringe density will decrease rather than increase as evidenced by
the nearly zero fringe density at the corners in the second and fourth quad-
rants of the moiré pattern in Fig. 8(b). As in the case of linear mismatch
technique rotational mismatches of opposite signs should be introduced, if
necessary, to help local regions in need of higher fringe density. The
final slope curves are obtained by taking the algebraic difference of the
slope curves of the load plus mismatch pattern and the mismatch pattern.
The rotational mismatch is defined as positive if it has the same sign as
_that of the local rotation of the grating, and negative if opposite. In an
analogous way, a pattern of rotational mismatch as shown in Fig. 3(b) may be
considered as a uniform fictitious twist field. Its use for the accurate
obtaining of twists of a flexed plate is the same as that of a pattern of
linear misratch for the accurate obtaining of curvatures of a flexed plate.
There are other uses of rotational mismatches. When too fine a grating
is used so that the moiré fringes tend t? lose their definition or when other
types of fringes start to form in some portions of the pattern, the use of ro-
tational mismatch .often results in a better picture. As shown in Fig. 1l(c)
where the moiré pattern was obtained by adding a rotational mismatch of 10.15°
into the pattern of Fig. 1(b). It is seen that the fringes at the central

region in Fig. 1(c) are much more clearly defined than that in Fig. 1(b).
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in which poor definition was caused by the crowding of fringes as well as

' the forming of another set of fringes. This set of fringes is also more
visible in Fig. 1(c¢), but intersecting the fringes of partial slopes at such
an angle that they are distinguishable from each other.

Yet another application of rotational mismatch is its use for ob-

taining moiré of moiré patterns as discussed by Beranek [9}.
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The Combinational Use of Both Types of Mismatches

It is evident that both linear and rotational mismatches can be in-
troduced into a moiré pattern simultaneously. As a result fringe densities
along directions perpendicular and parallel to the grating lines can both be
increased so that curvatures as well as twist can be obtained with better
accuracy. Examples are shown in Fig. 10 where Fig. 10(a) shows a pattern of
load and negative linear mismatch and an anti-clockwise rotational mismatch.
and Fig. 10(b) a positive linear mismatch and an anti-clockwise rotational
mismatch. The load was the same as in the previous cases. It should be
noted that the geometry of the model and the loading were such that the opi—
ginal (no mismatch) moiré pattern was symmetrical wifh respect to the vertical
diameter. Therefore, introducing a‘rotational mismatch of opposite sign
would merely ;hange the pattern in such a way that the left and right-hand
sides were interchanged.

It is séen that with the application of both linear and rotational
mismatches, fringe densities along vertical as well as horizontal directions
were increased in the patterns. The pattern in Fig. 10(a) is the vectorial
combination of patterns in Fig. 5(b) and Fig. 3(b) whereas the pattern in
Fig. 10(b) is the vectorial combination of patterns in Fig. 4(b) and Fig.3(b).

In general, with the use of combinational mismatches, a better ba-
lanced moiré pattern is obtained in the sense that there is no "poor" regions
where a mismatch of opposite sign (be it linear or rotational) should be
introduced as is the case in Fig. 4(b), 5(b) and'8(b). While it is true
that a mismatch of any type, if the magnitude is large enough, would result
in a pattern having dense fringes everywhere, there exists the danger of
overcrowding somewhere in the field that a second set of fringes may be

formed. This is one of the things that the proposed mismatch technique is
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trying to prevent in the first place. Therefore it may be stated that while
either linear or rotational mismatch can be used alone to improve a moiré
pattern (usually a region of it), the combinational use of linear and rota-
tional mismatches is preferred if overall improvement of the whole pattern is

desired.
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Conclusion

It may be concluded that the mismatch technique can be used effec-
tively to improve the accuracy of Ligtenberg's reflective moiré method for
plates. Linear mismatch is equivalent to a field of fictitious curvature
whereas rotational mismatch corresponds to a fictitious twist field. The
mismatches can be used either individually or combinationally. If the im-
provement of overall fringe density of a pattern is needed, it is preferable

to use both linear and rotational mismatches. .
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Figure Captions

Moiré Patterns of a Clamped Circular Plate Under Uniform Pressure Showing

the Effect of Grating Being too Fine.

(a) GBL = GAL = 9.54 1pi
(b)Y GBL = GAL = 17.7 lpi o
(e} GBL = GAL = 17.7 1pi and © = 10.15  (counterclockwise).

Optical Arrangement of the Modified Ligtenberg's Method for Facilitating

the Introduction of Mismatches.

Examples of Mismatch Moiré Fringes
(a) Linear Mismatch
GBL(GAL) = 9.54 1pi, GAL(GBL) = 11.46 lpi
(b) Rotational Mismatch
GBL = GAL = 11.46 1pi, © = 10.15° (counterclockwise)
(c) = (a) + (b)
Moiré Patterns Showing the Application of Positive Linear Mismatch
(g} GBL = GAL = 9.54 1lpi
(b} GBL = 11.48 lpi, GAL = 9.54 1pi

Moire Patterns Showing the Application of Negative Linear Mismatch
(a) GBL = GAL = 11.46 1pi
(b} GBL = 9.54 1pi, GAL = 11.46 1lpi

Partial Slope Curves along Horizontal Diameter of the Circular Plate
from Patterns in Fig. 4 and Fig. 3(a).

Partial Slope Curves along Horizontal Diameter of the Circular Plate
from Patterns in Fig. 5 and Fig. 3(a).

Moiré Patterns Showing the Application of Rotational Mismatch
(a) GBL = GAL = 11.46 lpi °
(b) GBL = GAL = 11.46.1pi, © = 10.15  (counterclockwise)

i

nn
"

Partial Slope Curves along Section A-A of the Circular Plate From
Patterns in Fig. 8 and Fig. 3(b).

Moiré Patterns Showing the Application of Combined Linear and Rotational

Mismatches
(a) GBL = 9.54 1pi, GAL = 11.46 lpi, € = lO.lSZ (counterclockwise)
(b) GBL = 11.46 Ipi, GAL = 9.54 lpi, 0 = 10.15 (counterclockwise)
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