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Abstract

A modified approach for rotation-invariant pattern recognition in two di-

mensions is proposed. A class of filters is derived by optimizing a stochastic

performance measure which tends to yield a spike at the location of an ob-

ject regardless of its orientation, and small values elsewhere. These filters are

quasi-invariant under rotation, handle additive noise and resolve closely-space

objects. Simulation results are shown, in which the filters are implemented by

using the FFT.

Index Term: Computer vision, Image processing, Object detection, Optimal

filter, Pattern recognition.

1 Introduction

Object and feature recognition are important areas in computer vision. Human ob-

servers are generally capable of recognizing patterns independently of their orienta-

tion, position, and size within an image; a fundamental obstacle to doing this on a

computer, however, is the dimension of the space to be searched. Techniques have,

therefore, been developed that, to a certain degree, enable one to recognize the pat-

tern no matter what its rotation and size; this paper presents improved methods for

doing this in the case of rotation.

Using simple circular harmonic components, Hsu [1] proposed a method for ro-

tation invariant digital pattern recognition. In this method, a reference pattern is

expressed in polar coordinates by its circular harmonic components, of which only

one is used to cross-correlate with the input image. Multiplication of the Fourier spec-

tra provides linear shift-invariant correlation operations. Wu and Stark [2] modified

this method by using a set of circular harmonic components instead of only one; since

1



several harmonic components are used to determine the pattern, pattern specificity

is improved.

Schils and Sweeney [3] also proposed a rotation-and translation-invariant matching

algorithm. This rotation and translation invariant filter uses the linear combination

of circular harmonic components in such a way that the magnitude of the correlation

between the input and filter is constant, independent of orientation. An iterative

method is used to obtain a group of coefficients to achieve this result. Caelli and Liu

[4] developed an adaptive matched filtering technique for the invariant recognition

problem where, for a given recognition criterion, the number of templates needed

to achieve invariant recognition varies with the pattern structure. With this set of

templates, invariance with respect to translation, rotation, and dilation is achieved,

and uniqueness is preserved up to the threshold chosen.

Moment invariants were used by Hu [5] as image recognition features which have

the desirable property of being invariant under such variations of the image content

as shifting, scaling, and rotation. Since then, they have been given considerable

attention in the literature and satisfactory experimental results [6, 7, 8] have been

reported.

Kummar and Pochapsky [9] proposed a modified matched spatial filter based on

the use of a training set of images. The training set consists of N images 1'1(x), 1'2(x), ..., l'n(x),

which are obtained by deliberately distorting a given image 1'(x). The ECP [10] filter

used in this method is matched to a new image h( x) chosen such that it produces the

same cross correlation value at the origin with all training images ri(x), i=I,2,...,N. It

is shown in the paper [9] that the price paid for detecting N independent images with

a singe filter is a decrease in the SNR by a factor of N with respect to the matched

spatial filter for detection of a known image in the presence of white noise.

In this paper, we propose another approach for pattern recognition. Instead of the
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traditional matched filter method that maximizes the output at the object location,

we derive a class of filters based on optimization of a stochastic criterion subject to

ignorance of the orientation of the object in question. The effect of this is to give a

peak in the output at the object location and small values elsewhere. From another

point of view, the present approach closely resembles a Wiener filter, rather than a

matched filter. This has the disadvantage that it is more sensitive to noise but has the

advantage that it yields sharper peaks,and therefore greater specificity and location

accuracy.

The paper first introduces the basic stochastic criterion to be optimized, and

derives the optimal filters. In part 3, the relationship of these filters to rotation-

invariant filters is discussed. Next, an algorithm which uses several of the filters

simultaneously is presented. Experimental results are shown in section 5, and a

summary and discussion of future directions are given in the last section. The proof

of the main result, and a discussion of the relationship with harmonic components,

are given in the appendices.

2 Optimal Filter

The problem to be solved is the derivation of a filter to detect and locate one or

more instances of a given object at unknown orientations in a noisy image, possibly

while rejecting other objects. It is assumed that the problem data, and therefore the

solution, are translation invariant, and attention is restricted to linear filters.

The major problem is that a direct approach requires a search in three dimensions

(two translation and one rotation). To reduce the dimensionality of the problem we

will, instead of searching in three dimensions for the given deterministic object, search

in two dimensions for a corresponding stochastic object, namely, the given object with

a random orientation.
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The precise formulation is as follows. We will assume that the two-dimensional

object to be detected is given by the function s( x) in some standard orientation and

position, and that the background noise and clutter can be modelled by an additive

two-dimensional random noise process n( x).

The input image is then given by

r(x) = So(x) + n(x)

where e is a random variable, uniformly distributed on the interval [0,21!"),and So is

the object rotated through an angle of e degrees.

For simplicity, we assume that n( x) is a zero-mean, second-order stationary,

isotropic random process; here isotropic means that the autocorrelation function,

and hence the power spectral density, are invariant under rotation.

Since the :filter is linear, it is sufficient to look for one instance of the object; since

it is assumed shift-invariant, it is sufficient to search for an object located at (0,0).

We then look for a linear :filter f( x) to maximize the functional

J(J) = Eo {I(J * So)(0, oW}

subject to

k11: 1: Eo{l(J * so)(xW}d2x + k2E{lf * n12}= 1

The effect of the maximization is that, averaged over e, the largest possible peak in

the output at (0,0) (the location of the object) is obtained, subject to the condition

that the mean square over the entire output, (a weighted sum of contributions due to

the background clutter and the output from the object at points other than (0,0)),

is held constant. This has the effect of giving a sharp peak at the object location,

which is desireable to resolve multiple instances of the object. From another point of

view, one can regard the above objective function as minimizing the effect of clutter,
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where instances of the object at locations other than (0,0) are regarded as part of

the clutter.

Since the solution of the problem intrinsically involves complex filters, we will

assume from here on that all of the filters involved may take complex values.

The solution to the above minimization problem is not straightforward, since both

the objective and the constraint are quadratic; however, it is shown in appendix A

that the solutions are given by the following theorem.

Theorem 1 Let

S(w) = F{s(~)}

and

k1 2
Q(W) = -zEe{ISe(w)1 } + k2Pn(w)47f

where Se (w) denotes the Fourier transform of Se and Pn (w) is the power spectral den-

sity of the noise n. Then) if the noise is isotropic) and the orientation B is uniformly

distributed on the interval [-7f, 7fL the function Q depends only on the magnitude of

the vector w. If further

j
OO

j OO IS(w)12 d2w < 00

-00 -00 Q(w)
(1)

then the stationary points of the functional

J(f) = Ee {I(f * se)(O, 0)/2}

subject to the constraint

k1 I: I: Ee{l(f * se)(~)12}d2~ + k2E{(f * n)2} = 1 (2)

are given by the functions fm whose Fourier transforms are:

Fm(w) = KmQtw) I1f1f Se*(w)ejmedB
(3)

where the constant Km is chosen so that the constraint 2 is satisfied.
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Finally, the value of the objective functional at the stationary points is given by

1 (eo

11
1r - Om</>

1

2 p

Am = J(fm) = 3211"5Jo -1r S(p, <jY)eJ d<jY Q(p) dp
- -

where Sand Q denote Sand Q respectively in polar coordinates.

The proof of this theorem is given in the appendix; here some comments may be

made. First, it follows that the solution( s) of the problem are found by picking the

value(s) of m whichmaximizethe integral 1, and using the corresponding fm given by

3 as the optimal filter (s). Second, we note that the constant Km in the expression for

Fm is simply a scale factor, and does not affect the performance; what we are really

concerned with is the ratio of the objective functional to the constraint functional.

Third, the condition 1 only serves to ensure that the optimum is finite; it is therefore

always satisfied under realistic conditions, e.g., if the signal energy is finite, and there

is a component of white noise. Finally, we note that if the conditions of isotropy or

uniform distribution of () are not satisfied, the solutions are of the same general form

as 3. However, the functions ejme are replaced by functions related to the eigenvectors

of a symmetric integral equation, and the values Amare the corresponding eigenvalues;

in all but the simplest cases, these will have to be calculated numerically.

Examples of the performance of these filters are given in section 5; in the next

section we indicate their relationship to rotation-invariant filters.

3 Rotation Quasi-Invariant Filters

As was mentioned previously, pattern recognition is usually a problem of searching

in a high dimensional space, and the goal of most recognition algorithms is to reduce

the size of the space to be searched. Among the many different ways of doing this,

(e.g., heuristic, pruned tree searches), the present approach is hierarchical; it involves

a two-dimensional search for points at which there is likely to be an instance of the
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given object at any orientation, followed (if necessary) by a one-dimensional search at

these points. A two-dimensional search followed by a small number of one-dimensional

searches requires an order of magnitude fewer computations. The penalty paid for

this is reduced specificity.

The usual approaches to reducing the search dimension in the context of unknown

orientations is to perform matched filtering for one or more of the circular harmonic

components of the object being sought, rather than for the object itself, or to use

rotation-invariant filtering. The relationship between the present approach and cir-

cular harmonics is discussed in appendix Bj here we concentrate on the relationship

to rotation invariance.

By a (rotation) quasi-invariant filter we will mean a filter which has the property

that, if its input is rotated through an angle ()o, the output will be rotated through

()o, and multiplied by a constant, kBo,of magnitude 1. This is a natural generalization

to complex-valued filters of the idea of rotation invariance.

Because of the basic group property of rotation, it is easily seen that we must

have

kBo = ejmBo

for some integer m. Rotation invariance is simply the special case where m = O.

It is also easily seen that quasi-invariance is equivalent to the filter's impulse

response, h(x, y), having the property:

h( x cos ()o+ y sin ()o,-x sin ()o+ y cos ()o) = e-jmBo h(x, y)

for some integer m; if h is expressed in polar coordinates (p, ()) as

h(x,y) = h(rcos(),rsin()) = h(r,())

then one has

h(r,()) = h(r)ejmB
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In the frequency domain, if

H(w) = F{h(x)}

and H is expressed in polar coordinates (p, cjJ)as

H(p,cjJ) = H(pcoscjJ,psincjJ) = H(i.IJ)

then quasi-invariance translates to

H(p, cjJ)= H(p, O)ejmql

If we now recall that Se( w) can be expressed in polar coordinates (p, cjJ)as ,C;(p,cjJ+

0), and that Q(p) is independent of cjJ,it is easily seen that the optimal filters given

by equation 3 are quasi-invariant.

In fact, it can be shown that these filters could have been derived by the usual

Schwartz inequality approach used in matched and noncausal Wiener filtering, subject

to the additional constraint of quasi-in variance; that is to say, each Fm given by

equation 3 is the function which maximizes the functional:

1(1) = I: I: F(w)S(w)d2w

subject to:

I: I: IF(i.IJ)12Q(i.IJ)d~ = constant

and

F(p, cjJ)= F(p,O)ejmql

Here, as before, F is F expressed in polar coordinates.

We feel, however, that the approach in the previous section is preferable, for two

reasons: first, it derives the quasi-invariance of the optimizing solutions, rather than

imposing it as an a priori constraint; and second, it gives more insight into the basic
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statistical assumptions involved. As an illustration of the latter point, consider the

case of object detection subject to unknown magnification, rather than orientation.

If one imposes the quasi-invariance constraint a priori, it is natural to try to derive

an analogous quasi-invariant filter for the case of magnification. It is well known that

this yields very poor results. From the point of view of the previous section, however,

this is to be expected; the crucial ingredient which yields a quasi-invariant filter is

the assumption of a uniform a priori distribution for the random variable e, and the

analogous assumption in the magnification case does not make sense.

4 Use Of Multiple Components

As must be expected, and as is confirmed by the results of section 5, the use of the

optimal filter derived in section 2 results in a lower peak value than the optimal filter

when the orientation is known. In the present situation, however, we have an infinite

set of independent stationary solutions; the question therefore arises as to whether it

is possible to combine several of them in such a way as to increase the specificity of

the filter.

Before turning to this, it should be noted that the loss of specificity can range

from mild to severe, depending on how the energy of the object is distributed among

its various circular harmonics. Objects for which one of the Ak is much larger than

the others will have only a small loss of specificity when the optimal filter is used,

while those for which many Ak are clustered around the maximum value will give poor

optimal filters. In terms of shape, objects which are close to circular will work well,

while long, narrow objects will work poorly. It is also worth noting that an algorithm

which combines a large number of the components will be using the same information

as, and will be computation ally as demanding as, a three-dimensional search.

There is no linear way of combining the various quasi-invariant filters to get better
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performance (since the filter we have derived is the optimal linear filter). It is therefore

necessary to combine them in a nonlinear fashion. The method we have chosen is to

apply a simple pattern recognition approach to the outputs of a moderate number of

the filters corresponding to the largest Ak. Rotation invariance is preserved, since a

rotation does not affect the magnitude of Ak, and accuracy is improved substantially.

In greater detail, the algorithm used may be described as follows:

1) For a given object, calculate Al ( 0 ~ [ ~ L ). Since the object is real, we need

consider only integer [ 2:o.

2) Pick a number M ( M ~ L ); M is the number of components which we can

afford to use.

3) Pick the M values of [1, ..., [M, which give the largest values of Al and pick

tolerances Em. Apply the filters Flu ..., FIM to the input image; denote the output

images by VII' ..., VIM

4) Let the final output be given by

V(x,y) = number of j, 1 ~ j ~ M such that IIVlJ(x,y)/- Aljl ~ Ej

This assumes that the expected input intensity of the object to be detected is

known; if not, the ratios of the Al can be used instead of the actual values.

This algorithm is essentially a robust matching algorithm on the magnitudes of

the outputs. Other matching algorithms (e.g, correlation-coefficient based) could be

used, but they tend to be insufficiently robust to account for the fact that, in a

digitized image, rotations can give only approximate versions of the rotated object.

It should also be noted that, totally apart from the fact that only a finite number of

components is used, this method can not achieve ideal performance, since it would

be possible to have two objects with the same Al values, but whose components have

different relative orientations. Nonetheless, the performance is quite good, as is shown

by the examples in the next section.
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5 ExperimentalResults

The algorithms described above have been implemented on a VAX 11/780; convolu-

tions were performed by means of the FFT, and interpolation was used for polar- to-

rectangular and rectangular-to-polar conversions.

Initially, the optimal single filter given by equation 3 was implemented with the

parameters k1 = 1,k2 = 100 and zero-mean white Gaussian noise with standard

deviation (J" = 0.0001. The object to be detected was a square, and in this case

the optimal filter was given by m = o. The input image in Fig. 1 is the original

image (64 by 64 resolution) contaminated with zero-mean white Gaussian noise with

(J"= 0.0001. The magnitude of the output is shown in Fig. 2a; it can be clearly seen

that there are two sharp peaks at the location of the squares, and substantially lower

peaks in the vicinity of the triangle locations. Further, the size of the peaks at the

square location is independent of the orientation of the square. Conversely, if we use

the triangle as the reference object (with the same parameters as before), the output

is as shown in Fig. 2b, with much the same results as before.

For comparison, the outputs obtained by using the matched filter corresponding

to the zero-order harmonic components of the square and the triangle are shown in

Fig. 2c and 2d, respectively. The following points may be noted: first, both filters

achieve rotation-invariant responses; second, the output from the matched filter is

much smoother, with none of the noise-like peaks which occur in the output from

our filter; third, the penalty for this smoothness, however, is much broader, more

ill-defined peak in the object locations; and fourth, although the matched filter for

square detection correctly has its largest peaks at the locations of the squares, the

matched filter for triangle detection incorrectly places the largest peaks at the location

of the square also. The problem for the matched filter here is that each square may be

thought of as two triangles in close proximity, and the matched filter has an output
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contribution for each of the two triangles, without the resolving power to separate

them into distinct peaks.

Although the single component filter gives good results for the square and triangle,

this may not hold for more complex shapes. For example if the input image is

Fig. 3 contaminated with zero-mean white Gaussian noise with cr = 0.0001 and

all parameters are again as in the previous examples, the outputs due to using the

zero-order quasi-invariant filter for detecting "E" and" A" are shown in Fig. 4a and

Fig. 4b, respectively. In Fig. 4a, the peaks do occur at the correct location, but there

is considerably more interference, in the shape of broader main peaks and noise like

smaller peaks, than there was for the simpler shape; while in Fig. 4b, it is not even

clear which character gives the higher peak. (For comparison, the outputs from the

corresponding matched filters are shown in Fig. 4c and 4d and here the" E" peak is

clearly higher in both cases.)

For this reason, we turn to examples in which multiple components are used as

described in section 4. Since, in using multiple components, we want to find those

with largest At values, the At (I = 0 to 10) values for the square and triangle objects

were calculated. As expected, for the square, the only significant values occur when

I is a multiple of 4. The triangle, on the other hand, gives significant values for all

values of I up to 10, except for I = 1. In the following, we use a number of these

components to implement the algorithm of section 4, with Et = At/3, k1 = 1 and

k2 = 100.

Fig. 5a is the original image contaminated with zero-mean white Gaussian noise

with cr = 0.1. The outputs are shown in Figs. 5b and 5c for detection of the square

(using three f m) and triangle (using four f m), respectively. It is clear that a significant

improvement in detection power has been achieved even with high noise interference.

This is even more clearly shown in Figs. 6b and 6c which are the outputs from the
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image in Fig. 6a; this is the image of Fig. 3 contaminated with zero-mean white

Gaussian noise with cr= 0.1. All parameter are the same as in the previous example,

except that six and eight 1m have been used to detect the "E" (Fig. 6b) and the" A"

(Fig. 6c), respectively.

6 Conclusion

Two methods for the rotation-invariant detection of objects in images have been pre-

sented. Both are based on the optimization of a functional which achieves a peak

at the object location, while balancing between noise suppression and peak sharp-

ness. The first method uses a single linear quasi-invariant filter which optimizes the

functional, while the second achieves greater specificity, at the cost of computational

complexity, by combining a moderate number of quasi-invariant filters with a sim-

pIe pattern-matching algorithms. Examples have been presented which compare the

algorithms to each other, and to the classical rotation-invariant matched filter.

Among the directions for further research in this approach may be mentioned

extending the method to the case of non-uniform prior rotational distribution; to

the dilation case (where the prior distribution must be non-uniform); the case of

feature, rather than object, detection; the problem of handling perturbation, rather

than additive noise; and the problem of extending the present approach to non-linear

filtering. These topics are currently under active investigation.

A Proof of Theorem 1

We want to find the maximum of the quadratic functional

J(J) = EB {I(J * SB)(0, 0)12}
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subject to the constraint

k1 i: i: EII{I(J * SIl)(xW}d2x + k2E[(J * n)2] = 1

If we let Pn be the power spectral density of the noise process n, the constraint can

be written, in frequency-domain terms, as

4;2EII{i:i: IF(w)SII(W)12}d2w+ k2i:i: IF(wWPn(w)d2w= 1

and, with

Q(w) = k\EII{ISII(W)12}+ k2Pn(w)47r

and

G(w) = F(w)VQ(w)

the constraint becomes

i: i: IG(W)j2d2w = 1

In frequency domain terms, the objective functional becomes:

J = Ell {14~2 i: i: F(W)SII(W)d2WI2}
1

j
OO

j
OO

j
OO

j
OO

= 167r4 -00 -00 -00 -00 F(Wl)F*(wz)EII{SII(Wl)SII*(Wz)}d2wld2wz

- ~ j
OO

j
OO

j
OO

j OOG(w1)G*(wz) EII{SII(Wl)SII*(Wz)} d2wld2wz

167r -00 -00 -00 -00 VQ(Wl)Q(WZ)

and so the problem becomes one of maximizing the positive quadratic form J over

all G on the unit sphere.

It is well known that the stationary points of this problem are the eigenvectors of

the Hermitian operator

R : L2(R2) ---+ L2(R2)

defined by

R(U) = V
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where

V(~) = ~ ]
00

] 00 Ee{Sg*(~)Sg(~l)} U(~1)d2w1

161f -00 -00 VQ(w)Q(w1)

The maximizing function is then the eigenvector belonging to the largest eigenvalue,

and the optimal value of J is this eigenvalue. (It will be shown below that every

point, with the possible exception of zero, in the spectrum of R is an eigenvalue.)

To find the non-zero spectrum of R, we first define the operator

T: L2([-1f, 1f]) --+ L2(R2)

by

T(u) = V

where
1

]
71"

V(w) = V Sg*(~)u(B)cf)41f2 21fQ(w) -71"

It is easy to show that this defines a bounded linear operator provided

]
00

] 00 IS(~)12d2~ < 00

-00 -00 Q(w)

and that its adjoint

T* : L2(R2) --+ L2([-1f, 1f])

is given by
1

]
00

] 00 Sg(w) U(w)d2~
(T*U)(B) = 41f2 -00 -00 V21fQ(w)

It then follows that

(TT'U)(",) ~ 1~ ]71"Sg*(~) ]
OO

]00 Se(~l) U(w1)d2~1

161f421f Q(~) -71" -00 -00 VQ(w1)

= ~ ]
00

] 00 -!; J~71"Sg*(~)Sg(~l)cf) U(w1)d2w1
161f -00 -00 VQ(w)Q(w1)

- (RU)(~)

since B is assumed to be uniformly distributed on [-1f, 1f].
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We now use the fact that, with the possible exception of 0, the spectrum of TT*

is the same as that of T*T. The operator T*T is given by

(T*Tu)(O) = ~ 1
00

1
00 S~~\ l1r S;(w)u('lj;)dJPd~1671" -00 -00 271" W -1r

- l1r ~
1

00

100 Se(w)S;(w) d2w u('lj;)dJP
-1r 3271"5 -00 -00 Q("'" )

(4)

Now, if we use tildes to denote functions in polar coordinates (p, <fy),and use the

fact that the random variable 0 has a uniform distribution on [-71",71"],we get

Q(p, <fy)= Q(w)

k1 1 l
1r -

471"2271" -1r IS(p, <fy+ O)12d1 + k2Pn(P, <fy)

which is independent of <fysince the noise is assumed to be isotropic; we will therefore

write Q(p,<fy) simply as Q(p).

In polar coordinates, the integral with respect to w in equation 4 then becomes

1
00

1 00 Se(w)S;( w) ~w = roo -J!- l1r 3(p, <fy + O)3*(p,<fy + 'lj;)&Pdp
-00 -00 Q(w) Jo Q(p) -1r

- k( 'lj; - 0)

where

k( 'lj;)= roo -J!- 11r 3(p, <fy)3 (p, <fy+ 'lj;)&Pdp
Jo Q(p) -1r

Equation 4 then becomes

(T*Tu)( 0) = 21 5 11r k( 'lj; - O)u( 'lj;)dJP
3 71" -1r

and, since this is a convolution equation on the circle, it follows immediately that the

spectrum of T*T consists of eigenvalues

1 l
1r

Am = ~ k('lj;)ejm1/ldJP3271" -1r

- J~ 32171"5100Q~p) i: S(p, <fy)S*(p,<fy+ 'lj;)&Pdpejm1/ldJP
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- 1 tX> P
1

11"

1
11" ~ ~

- 327f5 Jo Q(p) -11" -11"S(p,rjY)S*(p,rjY+1j;)ejm1J;dJj;&pdp

- 3;7f51= Q~p) Ii: S(p, x)ejmxdxl2 dp

with corresponding eigenvectors

Um (1j;) = ejm1J;

Finally, since

T*Tum = AmUm

applying the operator T to both sides gives

TT*(Tum) = AmTum

and so each Am is an eigenvalue of TT*, with corresponding eigenvector Gm given by

1 /
11"

Gm(w) = (Tum)(w) = j SO*(w)um(B)J)47f2 27fQ(w) -11"

- 1 /11"So*(w)ejmOJ)

47f2j27fQ(w) -11"

and so the stationary points are given by

Fm(w) = K'm
jQ(w) Gm(w)

- Km
1

11"

Q(w) -11"So*(w)ejmOJ)

This completes the proof; it may be worth remarking that in the case where the

probability density function of the random variable B is nonuniform or the noise is

non-isotropic, the solution will have the same form, but the Um and Am will usually

have to be calculated numerically by finding the eigenvectors and eigenvalues of an

integral equation.
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B Circular harmonics and quasi-invariant filters

Throughout this section, polar coordinates will be used, and the tildes which have

been used in the paper will be omitted.

The object s(r, ()) may be expanded in a series of circular harmonics
00

s(r, ()) = L sz(r)ejlO
z=-oo

It can then be shown that

F{sm(r)ejmil} = Sm(p)ejm1>

where

1 (27r
Sm(P) = 211"Jo S(p, </y)e-jm1>d</y

We therefore have

Fm(P, </Y)= 211"Km (Sm(P )ejm1»
Q(p)

(5)

Even in the noise-free case, this is not an ideal deconvolution filter; however, if we

take the weighted sum

F(p, </Y) - L 1
- Z 211"Kz Fz(p, </Y)

- 1

- Q(p) ('2( Sz(p )ejZ1»*

- S(p, </y)*

Q(p)

(6)

(7)

(8)

Then F(p, </Y)is the ideal deconvolution filter for the unrotated object in the noise-

free case. We may therefore regard the quasi-invariant filters as the harmonic com-

ponents of the optimal filter for the unrotated object.

From another point of view, one can imagine obtaining the optimal filter for each

circular component directly, using the Schwartz inequality approach:

(Sm(p)ejm1>)*

Fm(P, </Y)= Km :i7ISm(p)12 + k2Pn~P
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In the noise-free case, this would be an ideal deconvolution filter for the cor-

responding component. This component, however, never occurs its own, and the

quasi-invariant filter may be regarded as adding the energy of the other components

in the denominator to account for the fact that they always appear in conjunction

with the given component. From this point of view, the quasi-invariant filter may be

regarded as the optimal filter for a given circular component, treating all of the other

components as unavoidable noise.
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List of Captions

Figure 1: Input Image with Low Noise

Figure 2: a) Output from Optimal Square Filter; b )Output from Optimal Triangle

Filter; c) Output from Matched Filter for Square; d)Output from Matched Filter for

Triangle

Figure 3: More Complex Input Image

Figure 4: a)Output from Optimal "E" Filter; b)Output from Optimal" A" Filter;

c)Output from Matched Filter for "E"; d)Output from Matched Filter for" A"

Figure 5: a)Input Image with High Noise; b)Output from Three-Component Square

Filter; c)Output from Four-Component Triangle Filter

Figure 6: a) More Complex Input Image with High Noise; b )Output from Six-

Component Filter for "E"; c)Output from Eight-Component Filter for" A"
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