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The radlant heat transfer at any given cross section of a non-cireular duct
can be an important part of the total heat transfer. This paper investigates the
influence of radiation convective heat transfer in a flat, semi-infinte duct
for slug, laminar and turbulent flows. Various ratios of the heat generated in
the two walls are assumed in order to model the non-uniform heat flow distribution
in the eyoss section of nom-circular duets. It is shown that if the radiation
effects are neglected, serious errors in the interpretation of experimental data

or in practical engineering caléulat_i ean result.



INTRODUCTION

Recent technological developments have fostered a renewed interest in heat
exchange equipment which is both compact and capable of operating at high temp-
erature levels. Ducts with non-circular cross sections are often used. This
departure from circular symetry introduces peripheral distributions of temp-
‘érature and velocity, thus in fact, adding a new dimension to the heat transfer
preblem.

A previous investigation (ref. 1) examined the temperature field in wedge-
shaped passages under the conditions of fully developed laminar.flow for a fluid
with constant properties, and with a constant rate of heat addition in the flow
direction. This analysis showed that the peripheral temperature distribution has
a marked influence on the average Nusselt number at any cross section. For a
15° isosceles triangle, the Nusselt number with constant peripheral wall temp-
erature, was ten times greater than for the case where the wall temperature
distribution was obtained by prescribing constant peripheral heat input in the
fluid at any section. This Nusselt number was formed by the difference between
the average wall temperature and the fluid bulk temperature. In both cases the
heat addition per unit length was constant. |

This difference in average Nusselt number has a physical ‘interpretation.
The case of constant peripheral wall temperasture could be obtained if the wall
had infinite conductivity in the peripheral direction and the heat generation
rate was uniform. In this way, heat may flow without temperature degradation

to that position in the cross section where it can enter the fluid most easily
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by conveetion. If, however, the wall is visualized as having zero thermal conductivity
in the peripheral direction, the heat is forced to enter the fluid at the wall location
where it is generated regardless of how poor the local convection conditions may be.
Thus, wall temperature differences in the cross sectlon will occur thereby reducing the
average Nusselt number.

If the fluid flowing through a duct is transparent to thermal rsdistion, a situation
similar to that deseribed above will exist. The heat generated in the walls may, rather
than enter the fluid at the location where it is generated, transfer by radiation Ito a
more advanteageous location from a convection standpoint. Thus, radiation supresses
Peripheral wall temperature differences in the same manner as wall conduction with
a consequent increase in the average Nusselt number at the cross section. Although
the effects of cross-section radiation and peripheral wall conduction are the same,
the cross section radiation improves the average heat transfer without the penalty of
additionsl weight and space.

A recent analysis by Keshock and Siegel (ref. 2) has examined the parallel plate
duct for the turbulent flow case where all of the heat is generated in one wall. In
their paper the radiation was considered as taking place between one wall element and
all elements of the other wall as well as out the ends of the tube. In the present
study the radiation exchange is confined to each given cross-section. The advantage
of our simpler formulation is a reduction in the number of free parameters in the
problem (Keshock and Siegel had six free parameters.) Also the purpose of the present
study is to point out the effect of radiation on conveetion and to give some guantitative
results on when this radiation effect might be expected to be important. Results are
presented for slug, laminar and turbulent flows. The present paper is an extension of

an analysis presented previously by one of the authors (ref. 3).
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ANATLYSIS

The semi-infinite duct and the coordinate system are illustrated in Fig. 1.
The upper wall is designated as wall (1) with temperature Tw, while the temp-
erature of the lower wall is |y, . The two walls are infinite in extent in the
% direction and are separated from each other by a distance 2a. The Z direction
is the flow direction.

Throughout the analysis the properties of the fluid are assumed constant and
it is specified that the velocity field is fully developed.

For fully developed turbulent flow the flow field is described by the following

dimensionless differentiasl equation (ref. 4).
i
Emdw' | - Re dPp Y

d dp
JY"(H'D dy' | T 4 dz'

 The boundary condition for Eq. (1) is that W' =0 aty’! =1

|
Since %\—Z-T is a function of the Reynolds number, the solution to Eq. (1) has

the following form

w‘:w'(Re,%—""->&i') (2)

- In fully developed flow, %}m cannot be regarded as -a free parameter since if the

walls are smooth, it will be determined by internal flow processes. Thua, the
dimensionless point veloeity will only depend upon location and Reynolds number.

In laminar flow, the diffusivity €, =0 and dp' - 24 so that
az' Re

wh=wiy) (3)

For slug flow, W "is a constant.
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Referring again to Fig. 1, thé heat transfer pro'blem will now be discussed.
Equal amounts of heat are generated per unit wall area for each wall but the heat
generation rates will, in general, be different for the two walls. The external wall
surfaces are adisbatic. |

When an internal convection problem is solved under the boundary conditions of
heat generation in the duct walls, if wall heat conduction affeets the heat transfer
to the fluid, then the energy equation in the wall and the fluid must be solved '
simultaneously. This difficulty is suppressed in the present analysis since no
temperature differences will exist in the x direction and there will be no wall
conduction in this direction. In addition, since equal amounts of heat are generated
in the flow direction, the wall temperatures will vary in a linear manner in the
Z. direction and thus there will be no wall conduction effects in that direction.
Thus, heat which is generated in the wall must leave the inner wall surface by
either convection or radiation at the generation location.

For turbulent fully developed flow, the temperature field is described by the

relation

_Q__ Eg ?r 56 — &E -P‘( 455_6_

sy |5 Gy | = F Wiz )
In Eq. (4), © is a dimensionless temperature given by 0 = ﬁ_u——l—:ﬁﬂ where the

heat generated per unit area of the upper and lower walls are kcl and Jn:c:2 respec-

-tively. Since this heat must enter the fluid by either convection or radiation, the

boundary conditions on Eq. (4) are

fma, oo ST (TA_T) (52

-




§7 = - o e T T (3

§. is an interchange factor which is equal to unity if the walls are isothermal and
black to thermel radiation. If & is the emissivity of the inner surface of either wall,

then

— 1 | _
“6,+€a’

|
]
The boundary cénditions 5(a) and 5(b) are true only when the two walls are at
constant temperature. This is not the situation here as the wall temperatures vary
in the flow direction causing a radiation exchange between wall elements in this
direction. In the present analysis this effect is neglected 80 that radiation is
considered as taking place only in the plane of each cross sectiom. Thus, the same
amount of heat as is generated at a cross section enters the fluid at this location.
This assumption is‘reasonable when the temperature gredient Py is small compared
to the mean temperature level and is further improved if the wall spacing is small
compared with the wall length in the flow direction. It is shéwn in Ref. 2 that the
latter condition prevails if the ratio of duct length to distance between plate is
greater than 50. . 7
Also it will be specified that at every location in the flow direction the
'tempergtﬁre field has the same shape as a fully developed convective tempersture
field having the same ratio of heat fluxes entering thé fluid. The temperature
Profile is therefore dhaﬁging at gn_éqpai rate in the flow direction and the temp-

erature gradient , is @ constant.
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If, in addition, the temperature difference (Tw, —Twa ) is small compared

with the temperature level, Eq. (5a) may be written:

o\T_. _ 5T :ﬁvsoé .A(TWI—' Wa)
ay - < W d (©)

=3
The dimensionless parameter -S—G;—‘I—;ﬂ-—é— will be written @ It dictates the
influence of radiation on the convective heat fransfer,

'Equations (5a) and (5b) now become in dimensionless form:

o— —

! a
y'= 1, di, = ;; ey —4¢(6w,~9wa)_ (7a)
a - | |
\ o _ - A _ _
\j :—'l J d\j‘ -~ 4__ |+?\. 4¢(ewl ewﬁ)_ (Tb)

where A  represents the ratic of heat generation rates, 02/01.
Equations (4) and (7) indicate that the dimensionless temperature distribution.

in the flow will be given by a relation of the following form:
Em £ :
6 = 6(Prs ResAs b, 552, 1) (8)

Once again for smooth walls £,, and E€gq will be determined by internal
flow processes and cannot be regarded as independent parameters.

For laminar flow the diffusivities &, and Egr equal zero. Furthemrmore, since
the heat added to the fluid at every cross sectlion and the temperature gradient

%%- » are, specified as constant, a heat balance in the axial direction yields

de _ |
dZ — BF Re (%)
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Hence, with constant properties Eq. (4) simplified to

£o _ w
I9® = g (9)
and Eq. (8) becomes
6=06(n¢Y') (10)

A similar expression ig obtained in the case of slug flow. An average heat

transfer coefficient is defined by

Ei = Q-R(Tw: "'_rB)

(11)

or in dimensionless form

_ I
Nv="208w -~ 6 (12)

where Op is the dimensionless bulk temperature.

- Actually, when the wall heat fluxs are specified as in the present case the
Nusselt number is not of great value in describing the heat transfer situation.
Of greater interest is the difference between the wall and fluid temperatures. How-
ever, the Nusselt number defined above may be thought of being inversely proportional
“bd the difference between the upper wall and fluid bulk temperatures.

The drivations of expressions for the temperature field, wall temperature dif-
ference and Nusselt number are presented in detail in the Appendix. Only the results

are given below.
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SILUG FLOW SOLUTIONS

Integration of Eq. (9) and the application of Eq. (7) is straightforward and

gives the following results:

3
o Y lu=a . eli=n) n A-3
° e“”‘té‘*[ﬂuﬁ) ,Mwmu+a¢)]3 N [1éu+n)+
6., — — [— A
" 6We~4(l+7\)(l+arb)
Nu _ 601+ A)
-
¢

TAMINAR FLOW SOLUTTIONS

b (1= )

a -}
j! ] -

6wt - ewe_ =

0E8) T 400 )(1+ 20

[—A

P

32-13

(1+) (1—=12)
A(l1+ap) (1+ n)

(+d)(i=2)

4(1+ )

40+ (1+29)

-+

It is interesting to note that Egs. (17) and (14) are identical.

—

Nu

— 2 (142)
T 2694 1-A
35 -(}[——-ha

-10-

4(adI(i+A)

}

(13)

(1k)

(15)

(16)

(17)

(18)
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TURBULENT FLOW SOLUTIONS

The following two equations were derived by extending the analysis in Ref. (5)
vhere values of /1) __ and Nu(o) are tabulated for a wide range of Prandtl

and Reynolds numbers.

YT A e Nulo) 89 o +1) F
Uy - LeNalol 5+ {TeNalo) + £ (et 1)} (20)

Ne(0) Moo (Moo 2 )+ a4 ¢ (14 A)(Ma1)

Equations (19) and (20) are equivalent to Eqs. (17) and (18) for laminar flow

taking Mo 2.89 and MNu(0) = 5.385, and to Egs. (1%) and (15) for slug flow

taking M . = 2.0 and Muy(0)= 6.0.

DISCUSSION OF RESULTS

Figure 2 shows the effect of radiation on the dimensionless wall temperature
difference in slug and laminar flow for values of A from O to 10. It is clear
that 1f the radiation parameter exceeds 10, the wall temperature difference is almost
completely suppressed; the effect is essentially the same as if equal heat generation
rates had been prescribed in the two walls. It may also be noted that for values of

9‘3 greater than 0.1, the influences of radiation is appreciable and should be
considered. The resulting increase in the average Nusselt number is illustrated in
Figs. 3 and 4 and is seen to be considerable. For example, at A =0 in the slug
flow case, the Nusselt number is doubled by increasing 95 from 0 to 1:0. The

effect is of the same order of magnitude in laminar flow.
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BSimilar curves to the above can be plotted for turbulent flow for each combination
of Reynolds and Prandtl numbers. Figures 5 and 6 show the results in summarized form
for Pr = 1°0. and >\ = 0. It is evident that the effect of radiation on the Nusselt
number and on the dimensionless wall temperature difference is less in turbulent flow
but remains significant with éP greater than ten over most of the Reynolds number
range investigated.

In Fig. 7 the results for laminar flow are compared with those for turbulent flow
at three Reynolds numbers for Pr = 1:0., To simplify direction comparison, the ordinate
scale is expressed as the ratio of the wall temperature differenée V‘fox”' any value of
¢ and A to the wall temperature difference for N =0 and q) = 0. Notice that
for }\ = 0 a value of the radiation para.meterq) = 10.0 suppresses the wall temperature
difference by 95% in the case of laminsr flow. This value decreases to 69%, 27% and
5.5% iﬁ. turbulent flow as the Reynolds number is increased to 15,000, | 150,000, and
1,500,000 respectively.

The high convebtive heat transfer rates assoclated with h:igh Reyﬁolds numbers
diminish the radiation effect. Figure 8 illustrates this for the Nusselt number,
also expressed as a ratio for ease of comparison. For laminar flow, with )\ = 0,
the re-distribution of heat brought about by radiation with ¢ = 10-0 causes the
Nusselt number to increase to 86% of its value for \ = 1-0. Tn turbulent flow the
percentage increase of Nu becomes less, though the absolute value is increased as
shown in Fig. 6. With Re = 150;000 and X = O, CP = 10-0 only gives an increment of

13% of the value at )\ = 1+.0. PFigure 9 shows these results in summarized form for

)\=o.



NUMERICAL EXAMPLE FOR A TYPICAL DUCT WITH AJR AS THE CONVECTIVE FLUID

[ B

Ok in (2a = 02 in.)

1-0 (assuming surfaces black to radiation)
2060°R

1000°R per ft.

aja
= N’—-l A

= 0-0488 BTU/hr.ft.OF

Under the above conditions, ¢ is equal to 10.4l. References to Figures 2
‘and 7 show that for A =0 , the effect of radiation is to decrease the dimension=-

less wall temperature difference by the following amounts.

Slug flow - Dimensionless wall temperature difference reduces by
factor of 20 from 1.0 to 0.05.

Laminar Flow - Same as for slug flow.

T
-

Turbulent Flow - Reynolds Number (g - Twp)P, =720
(B = Tag) = 0, O
1.5 x 10* From 1.0 to 0.32
1.5 x 10° ~ From 1.0 to 0.75
l.5x lO6 From 1.0 to 0.95

SUMMARY AND CONCLUSIONS

The influence of radiation on convection in a flat duct has been studied for
fully developed flows in which the radiation effecta are confined to any given cross-~

section of the duct, slug, laminar, and turbulent flows have been investigated. . The
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conditions have been illustrated under which radiation markedly influences the
convection process. Under these conditions, extreme care should be used in applying
classical convection solutions. It has also been shown that the internal radiation
effect may be used to increase the heat transfer performance of non-circular ducts
without having t§ expend additional space, weight and cost to increase the heat

conduction within the duct walls.

_1y-



APPENDIX

DERIVATION OF SOLUTIONS FOR IAMINAR FLOW

- The temperature distribution for laminar flow fully developed thermally and
hydrodynamically, assuming constant properties, is given by the solution to the

following differential equation.

2 i C\ :
jyi =l Pogn =

The velocity field in laminar flow is giveﬁ by

o - Re A\D'(l_, }’\a}

NIV
vhere C\‘Pf a4
dZ' T Re
so that . wi'= 1.501-4'%) (22)

Assuming that -:\\—27 is a constant, the heat balance on the fluid gives

d

it

1
47" 2 PrRe

o

——c
=

(23)

Substituting Egs. (23) and (22) in Eq. (21) and integrating gives

4
- 2 ¥ A
@ - 5_?:?‘(:{ e ’5”‘"’)‘5“ RY+ B where A and B are constants of integration.

The boundary cohiditions applicable are:
= | de — 1 [ 4 __ ~Bwz)|
J &y — 4 [H—h M’(ew‘ Wa)]

-15-
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and
l

Thus the temperature distribution is given by:

4 ) s
B _ ”34 3 yl \ !“' A‘ — ¢(’“ h')
60— BOwae= 64 T 32 + 9 [5’(&7\) 40+A)(1+2¢)

3A—13 . (d+1)[1-N) |
+ [64“+?\) * 4u+a¢)(\+?\):l

When Y=/ , 6=9,, so that

= A
400+ 2)(1+e¢)

6 Wi ﬁ. ewe -
An average Nusselt number is defined by:
No= 2,69
where the dimensionless bulk temperature is given bys

f
Bs =2 [o(1-y*)dy
-

Evaluation of Bq. (27) finally glves for the average Nusselt number

Nu = 2(1+2)
T 26-9A _ 1=
35 7.’(5__?.2\

-16-
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DERIVATICON OF SOLUTIONS FOR SIUG FLOW

In slug flow the velocity is constant across the duct, and using the same
assumption as in the previous case, the temperature distribution is given by the
solution to Eq. (21). |

In this case, w':z 1, and applying the heat balance expressed by Eq. (23)

gives:
&°o
dy®

p—

[
a (29)

Integrating and using the same boundary conditions as in the laminar flow

case gives Eq. (13).

DERIVATION OF SOLUTIONS FOR TURBULENT FLOW

The solutions were obtavined by extending the analysis presented by R. P. Stein
in Ref. 5. In this report, Stein treats of the effect of the ratio of the heat
fluxes from the opposing walls of annular ducts, on the Nusselt number and temperature
distribution for heat convection only. Flow between parallel planes for laminar, slug
and turbulent flow are treated as limiting cases of annular flow. For turbulent flow,
the universal velocity profile of Deissler (Ref. 6) was assumed. The effective conduc-
tivity in the fluid was obtained by applying the analogy between momentum and heat
transfer.

Stein presents his results in temms of the parameter Nu(0) and "loo , where
Nu(0) is the loeal Nusselt number when heat 1s entering the fluidhfrom one side of

the duct only, and o is the ratio of the heat fluxes at which one wall temperature

-17-



becomes equal to the fluid bulk temperature. All the heat generated in a wall enters.
the fluid by convection from that wall.
Stein's results were utilized by interpreting his value for heat entering the

fluid, as composed of a part from heat generated in the wall and the remainder from

the radiation contribution.

Thus, the ratio of the heat fluxes is given by:

m = -4+ N)P(8w —Bwa)
T A -4l+2) P (6w —Owe)

(30)

Where M is the ratio of the heats entering the fluld by convection, as

used in Stein's analysis; and A is the ratio of the heats generated in the
wall.

The analysis in Ref. 3 can be used to give the following equations:

= Ny (1+7) Moo
Nu= 2(Meo— ")
s |

(ew.~(9wa)t (1 M= 1)

Moo Nulo) (14+m)

and finally

Ty = e Nu (0) 5 (1+ ) [“locNu(o)+8¢(”lou+l):|
T N0 Mo (Moo= M)+ 4@ (1+2) (ME, — 1)

(31)

(1— R)('nloe + f)

, (32)
(H#2) [ Moo Nut0) + 8¢ (ot 0]

(6w —Bwz } =

=18~



Values of ] oo and Nu(0) are given in Ref. 3 for a wide range of Prandtl

numbers. However, in the present report only the results for Pr = 10 are presented.



Fig. 1

Fig. 2
Fig. 3
Fig. L
Fig. 5
Fig. 6
Fig. 7

. Pig. 8

Fig. 9

FIGURE CAFTIONS

Geometry and Coordinate System Used in Analysis.

Influence of Radiation on Dimensionless Wall Temperature
Differences in Slug and Laminar Flow.

Influence of Radiation on Average Nusselt Number in Slug Flow.
Influence of Radiation on Average Nusselt Number in Laminar Flow.
Influence of Radiation on Dimensionless Wall Temperatur e Differences
in Turbulent Flow.

Influence of Radiation on Average Nusselt Numbeypr in mrbulent Flow.
Influence of Radiation on the Ratio of Wall Ten}pem'ture Difference
to Wall Temperature Difference with No Radiation and All Energy
Generated in Wall 1; iaminar and Turbulent Flow.

Influence of Radiation on the Ratio of Nusselt Number Differences
for laminar and Turbulent Flow.

Influence of Radiation on the Ratio of Nusselt Number Differences

in Turbulent Flow; All Energy Generated in Wall 1.
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NOMENCLATURE

half of duct width (Fig. 1)

constant proportional to rate of heat generation

duet hydraulic diameter

local heat transfer coefficient (Ref. 3)

average heat transfer coefficient

thermal conductivity

half of duct length

pressure

dimensionless pressure

heat flow from wall surface into fluid by convection per unit
time and area

total heat flow into fluid at any cross section per unit time
and area

radistion heat exchange (Appendix IT)

absolute temperature

arithmetic average temperature

veloeity in directionof Z coordinate (Fig. 1)

mean velocity in Z direction

dimensionless velocity W
W

coordinate distances

dimensionlegs coordinate distances Xx, y, z,
a & &



Nomenclature (cont'd)

Nu

)

B9 g v WD

local Nusselt mumber hd/k

average Nusselt number hd/k

Prandtl number

Reynolds number Wd/v

emissivity of duct wall

turbulent diffusivity for mementum
turbulent diffusivity for heat

ratio of heat entering the fluid by convection gqy

%

value of "  at which one wall temperature is equal %o
the £luid bulk temperature

dimensionless temperature T

QA
ratio of duct width to length —— )

Kinematic viscosity
radistion interchange factor

_ Cea
ratio of wall heat fluxes (A= s )
mass density
Stephan - Boltzmann constant

radiation parameter



SUB-SCRIPTS
1 upper wsall
2 lower wall
B bulk or average fluid conditions
w wall

-23-
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