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-~ APPLICATIONS OF GENERALIZED FUNCTIONS TO NETWORK THECORY
H. Zemanizn
State University of New York at Stony brook
Stony Brook, N. Y. 11790, U. S. A. i
1. Introduction A

It has been someftwehty years now since L. Schwariz developed his
theory of distridutions (Schwartz [17]) Its importance in pure mathematics
W&Q instantly recognized, and a large body of mathemat ical literature on the

subject has since been published. A good part of this llterauurs is con-

'cerned with the applications of distributions and other generelized funciions

to the theory of partial differential equations (Friedman [1], Gelfand and
.Shilov [1], and Hormander [17), and as a consequence the latter hheory has re-

‘ceived 2 strong impetus in its devnlopmen ts. In the mathenzlical s
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the most noteble application of distribution theory has beer to quentum fisld

‘theory {Bremermann [1], de Jager [1], Guttinger [1], Streater and Vizhimen

[1], and Vladimirov [1], wherein it has been crucially important, Turning to
the’ subject at hand, namely, network theory, we feel it is fair to say thas
dlstrlbutﬂon tqeory has been and will continue to be of valuez in certain
iareas, most unotably in the axiomatiic foundations of linear system'thﬁory, DR

"is useless in other areas, such as nonlinear system thsory.

Our original intsnt in writing this paper was to discuss most ¢f the 2p-

r ]
&

‘plications of gene ralized functions to network thec: ry, but it rapidl;

.clear that the paper would be excessively long if this objective was adnerad
. to. Because cf this we shall examine cnly a few parts of the subject 2xd
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vwill, in fact, devote most of the discussion to the axiomatic

I~

‘lirear one-port theory. In this introduction we shall msrely point to the
literaturs where other zppiications of generalized functions %o network

i

rtheory are given. No claim is being made. that the following Iiteraturs cita-

iven
jtions exhaust the pertinent biblicgraphy.

results obhtained counld not have besn developed without them. This occurs, for

‘example, in t no time-domain theory of linear n-ports, as is indicated in 3Sacs.
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Iy end 5, and in obtaining a freguency- domain criterion for the causality of
;aCtive networks, a subject we discuss in Sec. 6. This is also the case in

i . .

%the theory of the generalized Eocde equations and in the characterization of

’tVar;ous b“Odd classes of systems by their real frequency behavior. See

.Arsac (1] (Chapter 7), Beltrami [1], Beltrami and Wohlers [1] (C hapter III),
| B

i[2], Bremermann [1] (Chepter 1), CGattinger [1], Lauwerier [1], Schwarte F%]
;Taylor 1], Tillmann [1], end Wonhlers [1].. Generalized functiocns are also
Eused in an essential way in the analysis and synthesis of time-varying neb-
<jWOIKS, see, for example, Anderson and Newcomb [1], Dolezal [1], [97 t31,
;Newccmb 2], Newcemb and Anderszon [1], and Spaulding and Newcormb [17.

; In other subjects various clas sical nrob]pmp} vhich had been solved in
?terhs of classical mathematicé, become open problems once agein when they are
reforwi ted in terms of ggnerc71zad funcblon An example of this is the
:classica7 time~-domain approximzticn problem which requires the consiruction
of a function that can be realized as the response of & specifisd type of
'networﬁ and that approxlmates a given signal in some sensa. If the given
161gn¢1 is a gene rallzed function; the classical solutions become inapplicable

‘and substantial modifications in the approximation theo ry must ve made in or-
.der to make the problem tractable again. For two examples of this, see

.Zemanian [3] (Sec. 9.10), (L), [5]. S

4

; Similarly, it is well-known that certain types of time-varying networks
1 . .
.can be analyzed by means of the Mellin, Hankel, and K itransformations

'(bseltine [1], Cerardi [1]). Here again,. these classical transformations be-
‘come inappliceble if the signals within the nelwork are generalized uncu¢onw

‘One must now resort to the corresponding generalized integral transformations;

i : |
.see Zemanian [3] (Secs. L.5 ard 6.9). ) . 5

2. Some Notations and Results from the Theory of Distributions

g The symbols and terminology used in thzs paper follow that employed in
|Zemanian [1], and we refer the reader to that scurce for a more detailed dis-

fcussion of the definitions used here. D and D’ denote the conventional

"Schwartz spaces of testing furctions of compact support and distributions re-

t
‘spectively. Also, S is the space of testihg funciions of repid descen® zn
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S’ the space of distributions of slow groiwth. E’ is the space of distribu-

‘tions of compact support. .The usual topologles for these spaces ars under-
sto d. Ve chall use the terms "distrdibutions" and "generalized functionﬁ” in.
dlfl rent ways: A geﬂeraljv d function is any continuous linear function al |
;on‘some testing—function space as defined in Zemanian [3],>Sec. 2., On the }
%other hand, a distribution is a special type of gcnerallzeo Tunction and is,

‘nemely, any member of D’'. For a geneﬂallfed function to be a dlttrlbuulon 1i

'is not sufficient that its domain contain D and its restriction to D be lin-

‘ear and contiruous on Dj it must also be such that its behavior as a gensral-
; :

‘ized function is completely determined by its restriction to D. The dual of
‘B (see Schwartz [1], vol. II, p. 56) and Z’ (the space of Fourier transforme
2

of 2ll £ € D’) .are spaces of generalized functions but not spaces of distri-

butions. T 3
R denctes the real line and throughout this paper t, 7, x, ¢, and w are

variables in R; also, p, u, and v are complex variables with p = ¢ + 1w .

[2, b] and (a, b) denote respectively a closed and an open interval on the

‘real line with endpoints a and b, a < bj the notations [a, b) and (a, b)) are

3
m
i
[N

[
]

[¢]
H

defined similarly. Supp f denotes the support of either a convention

- ~
‘tion or distribution . f(n) denotes the nth derivative of f. £ is the

i . . '

‘ . - . v , .
tranépose of f; i.e., f(t) = £(-t). A smooth function is one having continu-

ious derivatives of all orders at all points of its domain.
t ’

DR (respectively, DR denotes the space of smooth functions (respectively,
: . T ’ . |
distributions) on R whose supports are bounded on the left.

i DR is not the ‘
, ’ :
‘dual of DR; also, DR c DR‘ Di is‘the space of distributions on R vhose sup- -
norts are becunded on the left at the origin. Thus, f € D’ if and only if :

'f € D/ and supp £ < [0, ). A seguence {w } converges in DH if and only if
‘thpre is a fixed real mumber T > - o such that supp @, © [T, co) for all n.
‘and, for each nonnegative integer k, {Dkqh}n converges uniformly on every com-
Epact subset of R. Similarly, a sequence {fn} converges in Dé if and only ii,
g for some fixed real number T > - o, bupp f, € [T, ) for all n and {£,} con-
verges in D’. D is dense in D’ and DR . . o
: At various places in this work we will be concerned with a conventionzl
:or generalized function y in some'Spacé A that s defined either on the real

3 * )
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line or on the real plane. To indicate that ; is dsfined cn the rzzi linc we
: . / " . . RO 3 ). ~ . .
write y = y(t) € Akt, d to indicats that it is delinsd on the rszzl nlane ws
write y = y(t, 1) € Alt . A similar notation is used when t and T &re re-
i 2
| .
placed by the complex variebles u and v and y is a conventional or general-

r
4

ized function on eithe
| o
feuclidaan gpaces.,

in distribution theory is

rm

A stendard fo

tlon (Schwartsz [2J)"h1 h is defined in the

Let y = y(t, 1) € D']t . and let v = v{r) € D|_.

chwert

following

the one-dimensional or tuo- c1mvn51on'l corplex

m

ay.

Then, yov = y(t, T) ov(7) denotes a distribution in D’lt defined as followe:
Ay

For any ¢ = ¢(t) € ~£t’

; . A R Sy

? <Y?V: @> = <Y(t: T) s V(T) Q\t)>

Thus, v = yev is a mapping of D into D’ and is, in fact, lirear and continu-

, ) P 3 P}

ous from D into D’. The converse also happens

linear mapping of D into D’ has a kernel reprsssnt

strlctlonc cr y this mepping can be extended Irom

0 te true:

=k

Do

every continuous
cion Under suiteble re-
onvo wWicdesr svaces ol dis-

trlbu tions (say, onto 4). But, in the latter cese unc right-hand side of the
iabove definition may not posssss a sense. (The ex“ension is made viz the cor-
t;nulty of the mapping on A and the denseness o of D in A.) Ve shall make uce
;01 these facts later on. .
I Still more symbols will be introdﬁced in Szc, 6 es the need erisss.

3. VWhy Bother with Distributions?

One reply is that distributions arise quits naturally as the rssponses

of systems that contein paerfect differentiators, such as the purs cezzcitor
under a voltage excitation. In classical analysis any signzl tha® is novu
differentiavle at certain timcs carmot be an allowable input to such 2 sye-
‘tem. An excepticn can be made for signals with ordinary discontinuities by
iintroducing the ta functional and its deriveitives, which in itself testi-
fies to the need for distributions or other iypes of generalized Zunctions.
‘If one wishes to 2llow an arbitrary number of verfsct differsniiztors in
verious types of systems and wanis to analyze thescs systems in & classically-
‘rigorous manner, hs will have to restrict the allowatle signals to those

L.



functions having continuous derivatives of sufficlently high order. Under a
!

!

idistributional analysls he is free to troduce any locally integrable sig-

nal or, more generally, any distributional signal. :

But, even if one does restrict all signals to smooth functions, the use

of distribution theory is still advantagecus. Indeed, an input-output system

jcan be viewed ag a mapping”of one class of smooth functions into another such
%claés. Under certain linearity and continuity assumptions this.mapping can
lbe.fepresented in the time-demain by means of a distributional kernel
1(Schwartz e, and;one'can then employ all the results connected with

. :
ISchwartz's kernel theorem. This result applies to time-varying &s well as
|

jtime;invariant systems. From a physical point of view the kernel y(t, 7) for
‘the ﬁystem can bc 1nterpreted as the response of the system to the delta

Vfunctzona' 6(t 7) aoplled at time t = _ f

5 Lhat the kernel is in general a d;strlbuulon and not a function is il-
lustr ted by a fixed inductor L whose kernel 1is 6(1 (t -7). But, since the

ffirst derivative of the delta functional is such a familiar object, let's
present another system vhose kernel is a singular distribution.

1

Consider the infinite Foster-type network showm in Fig. 1, where we as-

'

! . . .
Sume that the voltage v is the input and the current 1

3

is the oatout. The re-

Tsoonse y (%) of this system to v(t) = 8(t) is formally
E ©
i . y(t) = aol+(t) + Qnglan1+(t) cos n t
where )
1 1 ]
L P
! ° %
' 1 . . T
L = . 3 G - T—— 5 n = l’ L), 3, LN ] .
i 1 can ] I n Ll'l .
0 t<0
1,(8) =3% t=0
! ' . 1 1t >0

i o
‘A gufficient condition for the series for y(t) to converge in the distribu-

‘tional sense and for the infinite network of Fig. 1 to have a sense as the

11m1t of a sequence of fln;te quue” networks is that the coefficients &, be

‘such that
i ©




[In fact, this condition is necessary as well as sufficient for the egsries

for y(t) to conmverge in D’] In the special case where a, = 1 for all
n=0,1, 2, ..., y(t) can be shown to be equal to the delta train:

v(t) =m 8(t) + 2n & 8{(t ~2m).
m=1

- For other permissible choices of the a0 y(t) can bg made equal_to other dis-:

. <

tributions that are not conventional functions. The kernel for the system

v+ i of Fig., 1 is y(t-1).

<

St111 other systems containing an infinite collection of ideal elements

i

;whose time or frequency domain characterizations require the use of general-
f i
'ized functions are given in Zemanian [6]. It is worth noting that the fre-

! !

.quency-domain descriptions of the two systems in Zemanian [6] lie outside the

realm of distributicnal as well as classical mathematics and require instesad

]

the theory of generalized functions. Another situation like this is present-

ed in Sec. 6. ' %

We end this apologia for the introduction of generalized Zuncticnes into
‘network theory by merely referring to a cogent argument devised by Liverman

é[l]. Vhen a voltage v is represented by a conventional function v(t), it is

éimplicitly being asserted that at some precise instant of time the precise
‘value v(t) of voltage is known. This is a fiction. The perception of any i
‘physical variable requires some kind of méasurement. Any measurement of v(t);
‘will contain two random errors, one in the value of the voltagé and oue i
“in the detemmination of the time t at which the measurement is being made. |

;Upon taking into account the presence of such errors, one is naturally lead

.to a functional description of v. Namely, v is more properly described as a
functional on the subspace P of all probability density functions in D. .

' Iiverman proved (among other things) that the values that any f € D’ assigns
.to P determine f on 211 of Dj in other words, we need only test a given dis-
“tribution on the space P in order to determine it, This result is noib only.
intuitively satisfying, but will probably be quite useful.
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. N\
_rents, and scattering paremeters (in the time domain) are real since nothvng

L. An Axiomatic Approach to One-ports: The Admittance Formuliem

We shall discuss one-ports rather than n-ports since almost all the im-
portent ideas can be discussed in this context. The n—pO“* he ry follows
essentially the same development as that for uhe one-port theory, Dat re- |
quires a more complicated notation (see Beltrami [1], Beltrami and Wohlers

(1], Newcomb [1], and Zemanian [2]. We a2lso assume that all voltages, cur-

i ine 1lowi c ex quantities. e view a o s opera-
is gained by allowing complex quantit il a one-port N as an ra

. tor mapping vollages into currents and possessing certain properties as de-

scribed by the postulates stated below. These postulates'are similar but

not the same as those used by Konig and Meixmer [1] and Zemanian{1], Chapter
! ' ' -

:LO. N " . :

Pl. N is a single-valued mapping of D into D',

As is indicated here, we at first restrict the domain of N to the space

- D. Later on, N will be extended in a unique way onto various spaces of dis-

v, and vy in' D, we have ' -

for 811l v € D.)

~operates on D (i.e., o Nv = Mo v for 211 v € D and a1l x.)

tributions. -

P2, N is linsar cn D.

This means that given any two real numbers « and 3 and any two funcitions

V(e vy + 8 V) = o N vl + BN vy .

P3. N ig'continuous from D into D’

That is, if v, = v in D as n — oo, then N vy = Nv in D',

These first three postulates allow us to invcke Schwartz's kernel theor-

|

em (Schwartz [2]) to show that N has a kernel representation on D. L
1

Theorem 1: W satisfies P1, P2, and P3 if and only if thers exists a

unique kernel y = y(t, 1) € D’ l Lo such thaet N = Ve on D. (That is, Nv=ysv

We call y the admittance of the one-port.

PlL. N is time-invariant on D.

To explain this, let Oy be the shifting operator defined on any conven-
tional function or distribution £(t) by T, f(t) = £(t + %) where x is any

real number. Then, the postulate means that N commutes with Oy whenever N

7 : ! HBRARY
: ’ : © WYSTURIVERSITY OF NEW YORS
e R -~ - AT STONY BROOK 2
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. Under this additional postulate the kernel representation beccnes a
‘convoluticn representatio (Schwartz [1], vol. II, pp. 53-5L); that is,

,y(t, T) becomeb y(b T) where y(t) is now a member of D,.lt' In particular,

'we have

I . A . .
{ Theor m 2: N satisfies P1 through Pl if and cnly if there exists a
! .

‘unique y = y(t) € D It such that N =y % (i.e., W =y v = {y(7), v{t-1))
‘for all v € D). : : o - 4 .

X4
We can now extend N via its convolution representatlor onto the space E

1of distributions of compact supoort. That is, for any v € E’, Nv is delined

. ';as v % Vv €D’, Because D is dense in E’, this extension of N is unique:

There cennot be another continuous linear mepping

‘of Ef 1nto D’ that agrees v1th N on D but differs from N on Some other member

.of~E-. Now, y can be identified as the unit impulse response of N; that is,
Né =y % 6 where & denotes the delta functional. Furthermore, if the dis-

tributlon Yy happens to be suitably restricted; we can extend N onto still
~1arger spaces of distributions via the convolution representation. For ex-
~ample, if y € Dé, then N can be extended onto Dy, and, if y € E', then N can

?can(be extended onto all of D’. These extensions are also unique beczusze D

:ié'dense in Dé as well as in D’.

: In the;case where N does not satisfy PL the same-sort of unique exten-

o H i
fsion can te made via the kernel representation: N = ye. Let's be more pre-
*cise. Assume that A is a complete countebly multinormed'ér a complete count-

able—unlon space of smooth functions on R (see Zemanian [3], Chapter 1), and
let A’ ve tne weak dual of A. Suppose that A and A possess the following
four propez ties: ' . : ' . !
- I. DCA; convergence in D implies convergence in A; D is dense in A.
: II. If § € A and if A is a smooth functloq on R.such that it and each
'of its derivatives are bounded on R (i.e., A €B), then \ ¢ € A, %
: TIT. D is dense in A’. _ i
P IV. For certain (but not necessarily all)-w € D', the operator we is
'defiped on A’ and is a continuous linear mapping of A’ into D’ Qsee Schwartz
[2], Pp- 2?1;—225), ' ' : ' .
! Condition I implies that A .' is a Subspace of D’ and that.convergence in
A implies convergence in D’. We will use condition IT in = subsequent

proof. It is conditions ITT and IV that allow us to extend N = ye onto A’ if

8.




y happens to be one of the w indicated in IV. From now on we shell alvays
~assume that N hac been extended through the.rig’* rand side of I = ye onto
;every such space of distributions that satisfie i
Ewith y = w. Condition IIT implies that this extenslorn is unique in the
jaforementlonea sense. '}b also assume thaﬁ_N is extenced no furthér
[ _ : _
! .PS. N is passive on-D. A ' :
5 This means thzi, for ev r: v €D, i b Nv is lecelly intsgrabls (i.e.,

Lebesgue 1ntegrab7e on every bounded intervel), and in addition, for svery

FRY .

freal finite number i, we have that
‘ It v(x)i(x)dx = 0
-0
‘Note that, if N satisfies Pl through Pl, then, for any v € D, i =y % v is

. smooth and therefore locally integrable.

. 3

Definition of causality: Iet v, and vy be disvribuiions in the domain

. I . .
~of an operator W mepping D’ or a subset of D’ into D', and let i, = Wy, and
£H
AL

<.

)
¢}
m
§
)
hY)
].J
.
(%

e

<

N
e

i) = Wvo. Wie said to be causzl (or to satisfy

the condition

<ﬁ&)=%ﬁ)m~oa<t<%1mh%pMB%ﬁ)%h@}m—m<t<%am
.if this property holds for 21l real values of ty -

The equalities herein are understood in the ssnse ¢
1Ml so, a causal operator is clearly single-valued. Anothsr obviocus result

‘that we shall need later on is

Lemma J: If N is a causal mapoing of D- intc D/ and is passive cn D,
1

n
then, for a1l v € Dy, i 2w is locally integrable znd (1) ho

t < o (i.e., N is passive on D, as well),

~We cen characuerlze causaliity in the following way:

(=}

Theorem 3: Let N satisfy P1, P2, and P3; then, (the erxtended) N i
0

‘causal if and only if the support of y = y(t, 7) is ¢

i -_—
i

s
then, (the extended) N is causezl if and only if the suoport of

~contained }n the intervel 0 £ Lt < .

¢t

: The secound sentence follows from the first one throuzh the

o
g

by

lequation y(t, 1) = y(t-1). To prove the first senience, let v € D be such
.that v(7) = 0 for T < t,s and let o € D be such that supp ¢ © (-o0, 1),
{

vThen, the support of v(7) ©(t} is contained in the hzli-plan

n
‘plane A & {(t, T): t = 1), YNext, assume in addiiion thet I satisfies Pl




Moreover, | ' . . ' i
(Nv, @) = {yev, C«) {y(t,7), v() “P(L>>
. The only way that the right-hend side can equal zero for every.éuch v and @

f is that supp J\t, T) C A . This proves the "only if" part of the first~sen—

I
| tence.
|
! Th:

l—.

s also proves that 1(t) & (Wv)(t) = O distributionally for t < b

<

it

whenever supp y(t, ) €A, v € D, and v(%) = 0 on -0 < t < ty. We shall
show that the same result holds when v is any distribution in the domain
:of N @hét is distributionally equal to zero on -0 < t < toe Indeed, by the
ii«zay N was extended; v is a masmber of some épace:of distributions A’ on which
N is a continuous linear mapping into D’ and in which D is dense. Given any
;a > 0, choose‘a égquence_of functions Vg € D such that vy 7 v in A? as n- o
fand supp vy & (b, - ¢, 00) for all n. (That this can be done follows from
“c
Tour previous result, i, 4 Nv, = O distributionally on -oc < t < o - € But;

condition II sbove and the fact that supp v is contained in t, £ t < w.) By

v

‘in i 8 Nv in D' 'since N is continuous on A’. Therefore, i = O distribution
ally on -~ <t < tg — & .Since ¢ > 0 was arbitrary, this is true on

LD < t . ’ .

; © <t <ty .

‘ The "if" part of the first sentence now foiléws‘from the linearity of N.
Q.E.D. -
i A remarksble fact discovered by Youla, Castriota, and Ca”]ln [1] (98950
so Youla [1])states essentially that linearity and passivity 1mp1y causality.
Eor cne-ports possessing kernel representations, this fact can masna&ﬁ‘aé fdlas.
Theorem : If N satisfies P1, P2, P3, and P5, then N is causal. :

B A

j For a proof, see Zemanian [1], pp. 301 303. (The proof OL lemma 2 on

p. 301 requires now a modification to make it applicable to xernel represen-
.tatlo“U, the argument needed is that given in the first paracraph of the.
- proof of theorem 3 in this paper.) , .
Theorems 1, 3, and L 1mply that, 1f N satisfies Pl, P2 P), and PS, then
DR is cuntalﬁod in the domain of (the extended) N N. . ! ‘
i The next theorem characterizes, in six dlfferent ways, one- pO"tS thau’”
v satisfy P1 through PS.

10.
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Theorem 5 5: I#f N saztisfies Pl through_PS, then y & N§ (the e""ﬂpwjg s

understood here) satisfies She following six souivalent conditions. Con-
! {:’) &) =
gversely3 ify € D’ satisfies any one of the follewing conditions, then
v 8 y » satisfies Pl through 75. : §
4
i 1. The Laplace trensform Y of y is a positive-real function.
i 2. v has the representaiion: 4
| h _
l (1) ey 49 f” ' 2y m p

' - [ COos | !

y(t) =08/ (t) + 1(t) | (1 + 1) cos Tt dH(T) (2)

- . -

1here @ is a2 real nonnegative nurber, 1,(t) is the unit step function defined

Q

tin Sec. 3, and H(T) is a2 real nondecreasing bounded function on -0 < N < @,

i - [y

3. Y& alsc has the reor “cen'ablon

2

7 L) ()

L e 100 50 2,00 -

"Here, o and P are real nonnegative numbers and

!
8

at the origin,

3

‘where BT is a rea2] nondecrszsing bounded functioh continuou
(1)
= +
by o=t 7o

memucr of D and a distributicn of zero C-ordsr; morecver, the sven par@ o

pr}

here « 1s a real nonnegative number, 2nd Vo is &

¥ namely: . ' A .
o vo{t) =3 y(t) + y(-2)]

'is a nonnegative-definite *chibution. ' .

Q.
e

' - .
5, y € D+, and, for every real nomnegative nurber ¢ and every ¢ £ D,

>0 ' ' (5)

(

ate
38
-8
/‘\
v

. et ‘
(y(t)e %, olt)
o . ‘

6. Let y denote the Fourier transform of y. Then,

o) = f0 (o= [7 aHMI + Q@+ ) i) -1 5 w2 B (9

‘where « and H are defined in condition 2 and Pv 1/w is the standard pseudo-

- function arising from Cauchy's principal value.

.

: Remarks: ILet us meke some explanations about ez uh of these conditions.

"

ne

ch
[N
6]
0,
s

i Condition 1: A positive-real function ¥ (p) is a function %
¢

ifined eon the open right-helf p plane {p: Re p > 0} end satisfies there the
' following conditions

(1) wp) is enalytic.
(i1) W(p) is real whensver p is reel..



-wé,nu‘. i

(ii1) Re w(p) = 0.

! For a proof of this part of the theorem, see Zemanien [1] Chapter 10.

-
¢

1 ‘s . - .
j Condition 2: The invegral in (2) rust be 1ﬁterpreted in the general

ized

;_!

sense since it doesn't converge in general in the conventional sense. In

particular, the second term on the right-hand side of (2) is a distribution

of slow growth and the value that it assigns to any ¢ € S can be shown $0 be

equal to : : ' .
f dt I o(t) cos Tt dH(ﬂ) + f dt I © ?)(t) (1 - cos Mt aH(M)
o

-

‘Again, see Zemanian (1], Chapter 10.

Condition 3: This repre sentation is due o honlg and Meixner [1]. See
also Konig [1] and Meixner [1]. L
B “Condition L: This repfesentation is proven in Konig and Zemanian [1].
éBy the C—oraer of a distribuﬁion‘we mean.ﬁhe least nonﬁegative integer r for
Lwhich the (r + 2)th-order primitives of yo ére continuous functions. Also, &
distribution f is said to be nomnegativs-definite if, for every testing func-
“tion ¢ in D, {f, ¢ % €. 2 0 where $(t). 4 o(-t).
Condition 5: This is proven in Wohlers and Beltrami [1], p. 168.
Condition 6: This condition is also due to Beltremi and Wohlers [1.,
. . 86- 89. It can be viewsd as a generalized Bode equation characterizing
fposwtlva—real functions. These authors alsc show thab ‘(w) is the limit ea
'.50'* 0.+ of the Laplace transform (o +1w) of y in the sense of convergence in
. the spece S’ ' . _ : T
! 5. Two Other Axiomatic Approaches to One- pO”bS' The SCatuerlnc Forrmu-
lism. '
_We turn now to the scattering formulism for ong-ports. This is obteained

;by defining two new varizbles.as follows:
(v o+ 1) B 16
b=%(v-1) . o (8)

2 and b can be physically interprsted as incident and reflected waves. If N

]

; a

. satisfies P1 through Pli, then i = Nv = y % v, and
% (5 +y) « |

b= (6 -7) xv
- If, in aAdition, N satisfies PS5, then § + y possesses an inverse in the con-

IL

il

S 12.



SSCT 68

. + 7 . - . ) I's
volution algebra DR' That 1s, there exists a unigue member of DR’ whicn we

3-1

" denote by (& + v) such that

(6 + y)** 4 (6 +y) }

Indeed, the Laplace transform of &.+ y ig.1 + Y(p), which is positive-real.
Consequéntly, 1+ %(p)]™* is also positive-real and therefore the Leplace

tran5¢orm of a unique member of D! S nanely, (& + y)"‘1

These results show that, if N satisfies Pl through P5, th&n, for evany

v € Dé and 1 + Nv and for a and b given by (7) and (8),.We have

b = s 3

>

a ‘ : . C ) (9)

| where . ; ’
S s =(6-y) (6~ y)""~1 | (10)

i

o » . ' : " L : .
| Equation (10) is the scaitering representation, and s is called the scatterin
| .

:parameter for N. Wohlers and Beltrami [1], p. 168, have bointed out that the

7.
reoresenuﬂtlon (9) con tains all a € DR in its domain beCauso for every a & DR
there exists a un:que v € D! such that 2a = v + Nv. We can establish this by

R
agaln taking Laplace transforms and 1nvok1nc the positive-reality of 1 ¥(p)

as above°

f Actually, we can arrive at & scattering formulism in ano+her Wy
;deed obtain greater.generality if we eﬂploy a different set of postulztess.
IThe pos tulaues, which we now present, are a modlfled form of those suggested
:by Youla, Casu-,ota, and Cerlin [1] and are very similar to those used by
gh weomb ral. '

Ql. N is a single-valued or multivalued mapping of a subset of D’ into

Dl
We have not as yot'specified the domain of N. A rather restricted do-

main for N is Jmplled by the next postulate.

In contrasu to. postulate P1l, QL &llows N to have more than one respense

iep’ to ‘any given v € D’ in the domain of N. An example of a multivalued
N is the ideal short circuit. Ibs domain contains only one voltage, the zero
distribution; but, it can respond with any current in D’. The short cireuit
was prohibited under postulate P1. (Multivaluedness occurs mere commonly

ameng n-ports. The ideal trensformer is an example of a multivalued 2-pori.
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.as e traverses D. In symbels,

"By Q2, every such v, 1 is 2 pair of elements in D

-and that this v will be & rember of Do, The last squaticn signifies that a

Fig. 2. - : ) ’ i

. . _ _ - - P I s s - .
Q2. N is uniouely sgolvadble from D into DQ with eoluticns in Do,
A

“a

By this we mean thei, given any e € D, there exists a uwnigue v € DR
which satisfies .
e =V + Nv
unit’ resistor has been connectad in series with the one-pori and that e is

the voltage applied te the resul

Postulate Q2 implicitly specifies a rather resiricted domein for N and

Y

also restricts the range velues. In particuler, let C(v, i) denote the set

.of all pairs v, i appearing as solutions of the ecuationsi

e ='v + Nv, i+ N ' -

C(v, i) = {v, i+ e=v+ Nv, i+ Nv, e €D}.
. (Vhen ¥ is the ideal

4

- short circuit, v is always the zero distributicn, whereas 1 can be any member
L
[®)

of D because in this case 1 = e € D.) Ve will assume for

3
L
‘domain of N is restrictad to the set of v's appsaring in C(v, i) and that the
6 iy =) 3

>

PRy

‘range of N is also resiricted in eccordance with C{v, i). Subsequently, the

o

domain and range of N will be extended by means of 2 kernel representavion

: for the so-called "augmented one-port." ‘ .

i=N

fe
3
1o}
‘U
o
-
[$M]
oQ
(o
[t}
o]
ja
=
o]
=]
O
Y
]
=
o
ct
o
¥
iy
—

{A remark: As is indicated by the preced

scribing allowable pairs
Fig. 2 and Q2 su

vhere 1 = Nv = e-v, v € Dé. N, 1s called the augnented one-port or

v
gest that we can define a new operator on any ¢ € D by

a

. the augmented operator. Moreover, N, turns out to be a single-valued mapping

' . 7o esv s . - . . .
.of D into Dy with its rangs in Dp. Indeed, by Q2, given any e €D, v and

. verifies our assertion. : |

“having any other values in D°. Henceforth, we adoo

‘physical significance of this is that we are requiring that the onz-port Ny

. . . A . 5 o . . '
. therefore i = Nv = e - v are unique members of D) tha%t are both in Do, wvhich

fid

‘ _ i

Because N, is single-valued from D into Dé, we can define it as a single-
valued operator from D into D’ simply by prohibiting ¥ e (for any e € D) from
. ’ B

this convention. The

i

be initizlly at rest. Tor example, consider the nsiwork of Fig. 3. We have
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+ comes a single-valued maop ng of D into D’

" that A

Every free oscillation of this metwork 1lg of the form:
' , 3 o ' ) S
e =0, v = ce t, where ¢ is any constant. ~ It follows that the one-

c

~

port N satisfies Q2 becense the. only so_utlon of D =xr+v(1) in DR is the zero
(

. v g . ‘o 1) b
distribution (1. e ifc # O, then ce” ¢ D’) On the other hand, O= v+ v( )"

-
o .

o s o=t e s
has an infinity of solutions in D', namely, v = ce with ¢ arbitrary. Hence,
- - ’ i
Na is not single-valusd as a napp;ng of Dinto D/, But, if we add the addi-

tional condition thet N, be initially at rest (so that c'= O), tngn N, be-

Q3. N is linear on ¢(v, i).

This means that, if vy, i, and vy, iz and two pair‘ n C(v, i) and if
fo and B are real numbers, then ¢ vy *+ 8 vy, o i; + B i, is another p air in
c(v, i). ) ;

‘which verifies. that N. satlsfies P3.

It readily fellows from Q2 and Q3 that Né is linear cn Dj that is, N

b2}
oL

satisfies P2, as "elT as P1

QL. N is passive on ¢lv, i).

This means that, for every peir v, 3 in C(v, i), (1) holés for 21l fin-

ite t; that is, N '
fu v(x) i(x) éx-= 0

A useful result can now be established: Under the preceding four postu-
. ~7

lates, N, is a continuous napping of D into D'. 1Indeed, let n be any pos

i
tive integer. TFor any e, €L, e, =V + Nv,, and i = Nv,, Q2 implies that

n n = :

both v, and i, are memoers of D;. Hence, all the integrals in the following
P : i
equation exist for each finite value of 1. : !
b t it ’

24y = 2ax + [0 i2ax + I R |

I e’ dx f v, dx f isdx + 2 v, ip dx (11
-0 - -0 : -0 ) ‘

Furthermore, the last term ic nennegative according to Ql, and so are 21l t hé
others. Assume now that e, » 0 in D as n ~ . The left-hand side of (11)
tends to zero as n -~ . lherefore, each term on the right-hand side does
too. Next, let © € D with supp w € [1, T], -c0c < 7 < T < ». Then, !

. r." m 1 .
.y o] = ljf in';n.cbc{S[jT‘i;dx " Pax]®- 0 n-
- - -0 -0




. Moreover, when N satisfies Q1 through QL, N, also satisfies P5 since

for any e € D, we have

jt'ei dx = jt vi dx + jt iax 2 0 .
-y : - -1

Vv

We have juét seen that the augmentation technique indicated in Fig. 2

allows us to start with a one-port N which is neither single-valued .nor con- ;
tinuous and to obtain from it a one-port Ny which is. Moreover, even though
t N may not contain all of D in its domain, N, will. Furthermore, we have

| . J Ta J

§~ . Theorem 6: If N satisfies Q1 through QL, then N, satisfies P1, P2, P3,

a
- ! and P5. Moreover, N, is causal and has a kernel representation Ny = y, e

.

: . ’

Y, T = = .
cwhere v, = y,(t, ) = DYy
| Proof: We have already established the first statement; we remind the read-
‘er that the satisfaction of Pl by N, is a consequence of our convention concerm-

'.ing the single-valued definition of the range of N,

in D’. The second state-
ment follows immediately from theorems 1 and L.

v, is called the augmented admittance of N,

' As was done in the édmittance formilation, we can now extend N, via the *
f kernel representation Na'= ¥,® onto every space of distributions A’ that sai-
isfies the conditions stated in the preceding section. This extension is

. unique in the aforementioned sense, and we henceforth assume that it has been
' made. This automatically extends the operator N, under the constraint thai
it hes been augmented as in Fig. 2, into a mapping from a subset of D’ into
D’ defined by

i=N(e- 1)

~ where 1= Nae = y,¢e.

; We add orne moré postulate:

Q5. N is time-invariant on C(v, i).

This means that, if v, i is a pair in C(v, i) and if Oy is the shifting

operator as before, then Vs oki is also & pair in C(v, i), whatever be the

. value of x. Since i = Nv, this implies that o, Nv =1No v for every v, Nv
in C(v, i). - . o .

If N satisfies Ql, Q2, and Q5, then N, satisfies PL (i.e., N, is time-.

invariant on D). To show this, we start from e = v + Nv, e € D. Thus,

= T. _- e mr - : . L . . -
0, € = TV + Oy Nv = gVt N Oy Vs and this decomposition is unique b Q?,

16. 4 | :



- where y, = ya(t) € D'|¢J : N

- Therefore,

N that satisfies Ql through Q4. We have that

SSCT 68

]
Therefore, for all e € D, i
ox Ny e = O Nv = N o = Na o, . : o ‘ i

wnlch verifies our assertion.
Under the additional poctu*ate Q5, theorem 6 becomes

Theorem 7: If N satisfies Q1 through Q5, then N, satisfies P1 through
P5. Moreover, N, is ceusal and has a convolution representation N, = ¥ga*

Ve are at last ready to derive the scattering Iormullsm for a one- port

i=yyve = -(vl+ i)

AT o | |

A

- [Here, & cenotes the kernel 5(t - '), so that e i= J.]

" Now, substitute the quantities: v =.a + b, 1 = 2 - b. This yields .
b=sea - g ' (12)

where o , |
a=Y(v+i),b=Y%v-i)),

P
|

" and s is the kernel

f theorem 6. Moresover, supp s(t, 7) € {(%, 7): t 2 7}, If in addition N

=s-2y, (13)

s is the time-variable scattering parameter for N.

Theorem §: If N satisfies Q1 through QL, then N has the scattering

formulism (12) and (13), where ¥g is the augmented admittance indicated in

' satisfies Q5, then ’ . - [

- domain of the operator se .

.« postulates imply the Q postulates. Indeed,'assume that N satisfies Pl-

. where s =.s(t) E’D'[t and supp s & [0, o). (1L)i

b =85 %a

l

Proof: Invoke theorems 3, 6, and 7. ,
The restriction on the support of s implies that Dé is contained in the

As one of the major conclusions of this section, we have that the P

through P5. Then, N obviously satisfies QI. ‘That it satisfies Q2 can be

. established through am argument due to thleré énq Beltrami [1], p. 168. Q-

“and Q5 are also clearly satisfied since i = Nv = ¥y % v where y € Dl . This

170 " ’ ‘ ;



. lates the reflected wave b to the incicent wave a. TIndeed, Sl through sk

read precisely the same.as PL1 through °L. Therefore, S1 through S3 imply :

can now extend M onto larger spaces of distributions (for exarple, onio Dh)

The left-hand side converges as t =  , and therefore the niddle term does

COT oL
SJL. oo

. also shows that N is a causal mzpping of D into~L§, and it now follows from

I lemma 1 and PS5 thet N satisfiss QL. ' ' o

Let us list some of the properties of the opsrator Il = s % assuming that

a4
™
A
.
o
e
3
o
e
[()
vg
-
+,
[
v
O
=)
o,
H
n
1

N satisfies Q1 through Q5. In view of theoren

tributional cénvqlution, we have the following:

Sl: M is 2 single-valued mzoping of D into D",
S2: M is.linear on D. |

S53: Mis continuwous from D into D’. . i

Sh: M is time-invariant on D. {
~ 85: Mis causal on D. 1

S6: M is weakly passive on D

|

Property S5 msans that the causality property defined in the preceding

section holds whenever the elements a in the domain of M are restricted to D.

. . . i
-Property S6 means that, given any a € D, the integrel: ) ;

]‘w_vi at = J‘m(a"*-bg) dt ’ | .(15)?

exists and is nonnegative. Thdt M = s # truly satisfies S6 can be shown as

follews. For any a € D, we have that b = Ma = s % a €D

.Hence, v = €Dpendi=2-b € DR‘ Mso, v, i is a pair in C{v, 1)
since 2a = v + i. By QL and the fact that vi = 2® - b2, we have that for all
finite t -

jta":dxz_j‘tbzdxzo.‘ ‘ | - | i
-0 ) © - ' . |
I

toc. Hence, (15) exists and is nonnegative.-

The concépt of weak passivity was used by Raisbeck [1].

"Wohlers and Beltrami [1] have shovm that the theory of one-ports can be

derlved by using the S properties as postulaites on the operator M that re-

that M has a kernel repfesentation: M = se, and S1 through Sl imply that M
hés a convolution representation: M = s %, The additional postulate S5 and
the argument in the first peragrarh of the proof of theorem 3 show that s

satisfies the sams restrictions on its support as does y in that theorem. We

via these representations and this extension must be unique as explained

8. | S
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. before. = / .
" Theorem 3 and its proof show that, if M satisfies SL through Sk, and isl
also passive in the sense that o ) ‘ 5
' t ~ , ‘ :
f (a?—ba) dx 2 0 2 €D, -0 <t<oo - (16)
- . .
| jthen M is causal. It is also weakly passive on D. Conversely, Wohlers and
Beltrami [1], p. 167, have shown that S1 through S6 imply that M is passive
in the sense of (16). Thus, assuming that S1 through Si; are satisfied, we

can conclude that postulates S5 and S6 are equivalent to the single assump-

tion that M is passive in the sense of (16) However, using S5 and 56 is
preferable since causality and weak passivity aré independent assumptions.
Indeed, that S5 does not imply S6 follows from the exﬁmple s = 26. That S6
does not imply S5 follows from the example s(t) - §(t + ¢) where ¢ is a posi-

[

. tive number (sece Wohlers and Beltrami (1], p. 165). A -
: By itself, postulate S6 2llows one-ports that up to finite instances of
'i\time have emitted more energy than they have received, but will ultimatelj

; (i.e., as t = oo) absorb at least as much energy as they have emitted. Such
" one-ports are prohibited by either PS5 or QL.

i It is worth noting that, when N sétisfies P1 through Pl, the nonﬁegativ;
ity of (15) for all v € D and the cauqality of N do not imply the passivity

of N according to PS. In this regard con51der the example, N = NACO N

It may also be argued, especially when the one-port is a part of a waveA
propaoatlon system, that the basic phyqlcal varlables are the incident wave a
ana the reflected wave b. If this point of view is accepted, then the ax*oms |

that ought to be used are the S postulates and not the P or Q postulates.

Operators M that satisfy the S postulates can be characterized as fol-

i lows: , ' . , ]
Theorem 9: If M satisfies postulates S1 through S6, then S Bus (as
; always, the extenaed ¥ is undefétood here) satisfies the following three

equivalent conditions. Conversely, if s € D’ satisfies any one of the fol-
 Yowing conditions, then M & & i satisfies S1 through S6. ‘

1. The laplace transform S(p) of s is a bounded-real function. [s(p)

i

' is.called bounded-real if on the open right- _half p plane {p: Re p > 0} we

! have that S(p) is analytic, S(p) is real whenever p is real, and IS(p)l Sl.]

W

19.




20 seDin D/ , and, for every ¢ € D,
2

(6 - ’>‘S: 9 *§ 20

thre f(t) é £(-t). [For a definition of DL , see Schwartz, vol. II, pp. Sb—
{56 1 ' '
.il - .3. Let g)denéte the Fourier tranéform of s. Then, s (w) is a conven-

D~ - — — -

" tional function such thdt |s(w)l < T almost everywhere on - <w < @,

'thfw) is equal to the complex conjugate of s(w), and

| | g({)(w) = %; s(*)(m) % Pv l‘.

&)

where Pv 1/w is again the standard pseudofunction arising from Cauchy's prin-

" cipal valus.
!~ This theorem is proven in Bnltramw and Vbhlors (1], pp. 89- 9J; and
~Beltrami [1]. The third condition presents another example of & generalized:

' Bode equation.

; N

We have seen that the P poétulates imply the Q postulates which in turn
:imbly the S postulates. On the other hand, we cannot go from the Q postu-
‘.lates to tﬁe P postu laﬁcs,~the ideal short circuit being an example that

verlfles this assertion. However, conditiov 1 of theorem 9, and a2 theorem of
Youla, Castriota, and Carlin [1], pp. 116- 117, assert, that thd S postulates
imply their form of the Q postalates. )

~ é Uhder the present formulation we can get from the S postulates to th Q

postulaues in the follow1ng way. Under the S postulates we have b = s * a or.

x
v -1-= % (v + i) whenever v + i € Dé. This can bs rearranged into

| ~ (6 -58)%xv=(5+s) %1 N (l?);
i To verify Ql, we shall show that there exists at least one pair of distribu-
étions v, i that satisfies (175. Two cases arise. - B
§ (i) S(p) F - 1 for Re p > 0. Then, by the boinded reality of S(p) and
' the maximum-modulus theorem, I + S(p) # O at every point in the right-half p |
:plane, and . _ '
: o o
) - flt__f»s.% | o | (18) |
llS a positive-real function. _Let vy € Dé be its inverse Laplace transform.
| Then, for &1l v € D/, we have that 1 =y % v € D} satisfies (17). Indesd, up-
;on substituting this i into (17), we get

20. g ) L




I

_over, in case (i) we see from theorem 5 (condition 1) and the fact that

\

- (5 -8) %xv=(6+8) %-y * V. ' ' L
S;uae‘Dé is a convolution algebra with no divisors of zero, the last equatio%
can hold for all v € D' if and only if & - s = (8 + s) % y, which is seen to
“be true by taklng Laplace transforms again. . L

(11) S(D) = - 1 for Re p > 0. Thus, 8 + s is the zero member O of

DR and hence of D', and (17) becomes 28 % v = 0.% i. Therefore, v must be ‘j
the Zero.member of D’ whereas i can be any member of D’. This degenerate o

case corresponds to jthe ideal short circuit.

In both cases, we have obtained a one-port N that satisfies Ql. More- |

1-8(p) . . |
) |

- is p051t1ve-rea1 whenever S(p) is bounded—real that N Sthsfles the P postu—;

lates and therefore the Q postulates. In the degenerate case (ii) it is ob- -

' vious that N satisfies the Q postulates.

-~ -

We can also conclude at this time that the only possible multivalued

~

one-poft satisfying the Q postulates is the short-circuit. (On the impedance

" basis, it would be the open-circuit.)

i One- po*t

o vy_e D’ It' Under these conditions a criterion for causality is provided by

Ay

In the case of n-ports (n > 1) however, thers are many operators exhib-
iting multivalue&ness. When the n-port is treated on an admittance basis as
aoove; it is multivalued when and only when the n x o_matr;x ln + S(p) is
Singular everywhere in the right-half plane Re p > 0.. Here, ln denotes the

n x n unib matrix.” On the impedance basis, the n-port is multivalued when
and only When the n x n matrix 1, - S(p) is singular everywhere.in the half-
plare Re p > 0.

6. -A Frequency domain Gharacterlyatlon for the Causality of Active’

If a one- port N for more gcnerally any input-output system) satlsfles

postulates Pl through Pli, then, according to theorem 2 N = y % for some _!

prem 3, which states that N is oausal if and only ifsuppyc( 0, ©).:

21.
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Theorem 10: Let N satisfy P1 through Pl, let y = N5 be Laolace-trans}

i formable in Schwartz's sense, and let Y(p) be the Laplace transform of y.

\ Then,’ nccessa.y and sufficient conditions for N to be causal are that there

!
|
i
i
|
i
i

be a half»glanr Re p > a on which Y(p) is amalytic and satisfies

[¥()| = P(Ip]) (19)! '

where P is some polynomial. o o : l

However, this result is too restrictive since there exist active sys-

< |

tems for which y is not Laplace-transformable in Schwartz's sense. For ex-

. ample, this is the case when y(t) = l+(t) exp t?. (See, also, Zemanian [6]) -

v

A criterion is needed that is applicable when y is any distribution. This

" can be obtained by modifying a recent result due to Zielezny [1] and combin-

ing it with theorem 3 above.

We again refer the reader to Zemanian [1] for more information concern- .

1

| ing the symbols used here. Our notation differs somewhat from that of

i Zielezny, as does our definition of the Fourier transform f of any £ € D/,

~ which is

G ot

. . / ~ - y i ] . o 2
. where © € Z, £ € D', and o = F ¢ € D. F denotes the Fourier transformation

{ .
and F! its inverse. For the testing functions we have

¥t) =F o= f°° o(a) ¢ qu. L

i}

F1 =2

olu) 7 g() & at

1.

2n
Z is the space of inverse Fourier transforms of testing functions in D and
Z+ is that subspace of Z whose members have the form 7! ¢ where ¢ € D and

@vsupp o< (0, @w). Aso, Z' is the space of Fourier tr ransforms of the mem-

" bers of D', In this section, u, v, and z aenote complex varlables. We

Spec1fy that Z’ is a space of generallzed functions on either the one- dlmen-‘

. sional or two-dimensional compWex euclidean spaces by using the notation

Z I or 711 respectively. Z] and Z] carry 51m_¢ar mean1ng

U, Vv

If f, g €7 ! s the direct product f(u)() g{v) is defined as a member

of 2’| by | : E
i

-<f<u>@'é<v>, o) ¥ 2 E o G, 0 ()

| where @, § € ZI That (20) suffices as a definition follows from the fact

that testing fanctvonc of the form w(u) ¥(v) span a dense subspace of Z[u iy

Flu+v) & glv) is a merber of Z[u obbc.lpcd from Tlw) o g(v) by the

™ 22,




" substitutions: vy u + v, v v, Zielezny showed that

| O F(u s v) @Eh)=ﬂ(w o glr- )] (21,
iwhere now F denotes the two-dimensional Fourier transformation and ’

! f(t) @ g(t-1t) is that member of D [ . obtained from the cuétomary di-
rect product {(t) © g('r) by meking the ’substitutions: t + t, TP T - t.

Ir h(u, v) € 2 ’lu y and ',’:(v) € ZI ‘then the kernel representation

' h(u, v)o y(v) is a member of Z l deflned by ' ]

| hls, ) o (0, o) 2 (ale, 9, o) ¥ (22
i l ' ¢ € Zl

We can char:cterl-.e the members of Z as follows: ' i

Lemma 2: € 2, [i.e., y = F! ¥ where 7 € D and supp § © (0, )] if
:g_rig only if ¢ is an entire function and there exist two real numbters @ and b |

:with O0<a<b<o anda sequence of positive numbers {Ck};zo such that for each

V5 ¥(v)| = Cke'Im V& Imv=20 . o , ;

IV w(v)] < o eI mys<o

! Mso, we let F E denote the space of Fourier transforms of those f € B’

; satisiying supp f € rO ® J; that lS, f €F E' if and orly if f=F £ and
feDn/neE. : - i

| ~ . ~
‘ Lemma 3: ferF E' if and only if f is an entire function satisfying the

! following two conditions:

(i) There exists a polynomial P such that

[T | < P(lul) . Imuso
, (4i) There exists a real pumber T > O and a polynomial Q such that
n Fw ] sqlu)) e™* T mu=o0

. Proofs for lemmas 2 and 3 can be extracted from Zemanian [1], Secs. 7.6
" and 8.L. A '
Now, the speciai form of Zielezny's result that leads to the criterion
we seek is given by .
Theorem 11: Let yv € D' Also, let ¢ E Z have no zero at the origin
(i.e., w(_o) # 0]. Then, supp y © [0, @) if and only ify @ & my is such that




. [F(u + v) G\'§+(v)} o y(v) €F E/ (23)

Here, l__r is the Fourier transLorm of 1, and is defined as & functional

-

on Z by

. |

- s \

~ . -Cl . !

‘ q,,eo=[ 8(z) 4, ;
. Yo -ci 1z

(O]

Lo K} - -~ - Y “ .
where c'ls any real p051t1ve nurioer and § € Z, Note that (23) is an asser-

|
tlon concernlng speces Z, and F E] of entire (and not cennrallzed) functlonc.i .
D] if and only if |

|

!

The 1dea beh;nd Zielezny's proof of theorem 11 is that T €

f €D’ and T € D N B’ where A(t) is some fixed smooth function that is
1dent*ca11y equal to & ‘nonzero constant on a neightorhood of (~c0, 0] and

identically equal to zero for all sufficiently largs t. _ §.

We combine theorems 3 and 11 to obtain the principal result f this sec-

P tion: . . !

Theorem 12 I=t N

causal if and only if ¥

atisfy P1 through PL, and let y = %é. Then, N is

g y satisfies (23) for one (v) in Z_ that has no

“gero 'zt v = 0.

Dr. A. Csurgay has DOlDued out to the author that for certain studles it
n

‘is important to knowr whether t = 0 is the smellest esse

'y A N 6. That is, is it true tha inf supp y = 0? This matier is resclved

"by the following corollaries

Coro]lary 102: Agsime that the conditions of thedrem 10 are satisfied.

Then, inf supp y = 0 if aﬂd only 1f for each 7 =0 uhnre does not exist any

polynomlal M for which Y(p) 1Q bounded according to

x| = w(lp]) P

on some half-plane Re p > k.

; Corollary lla: Assume that the conditions of theorem 11 are satisfied.

Then, inf supp y = O if and only if for each T > 0 there does not exist a y

polynomial M for which

(5 +v) @ T, (W1« ¢(v)] s m([u))eme T  Imus=0.
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