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Abstract — This paper presents examples of a class of op-
timal intecpolative (OI) functional artificial neural networks
(FANNs) which process continuous multidimensional signals.
These networks embody for the present case the structure of QI
networks, previously derived in the literature, which best ap-
proximate a nonlinear dynamical system in a Generalized Fock
Space (GFS) under input-output training data constraints.
Among other applications, these networks are useful in the
modeling and identification of the degradation process of im-
age signals occuring while propagating in nonlinear media.

1 Introduction

This paper presents examples of a class of optimal
interpolative (OI) functional artificial neural networks
(FANNS) which process continuous multidimensional sig-
nals. As shown in the generic case {1}, to which we briefly
allude below, the structure of these networks results from
the best approximation of their input-output map in a
Generalized Fock Space under data constraints. Some-
times, in the system theory literature, this type of best
approximation has been called system identification [2](3].

FANNs are continuous-time and/or continuous-space
versions of conventional artificial neural networks (hereto-
fore referred to as ANNs). Conceptually at least, most
results obtained from ANNs easily generalize to FANNs
except for some phenomena, such as limit cycles, which
genuinely depend on the continuous nature of the system.

A unified approach for the implementation of both
FANNs and ANNs, based on a Generalized Fock Space
(GFS) framework was presented by de Figueiredo and
Dwyer in 1980 (4]. In this framework, the input u to the
network is assumed to belong to a real abstract Hilbert
space H, and the network’s input-output map V is repre-
sented as an abstract Volterra series in elements of H,
belonging to a Generalized Fock Space F,(H) over H
weighted by a sequence s. The space F,(H) is a repro-
ducing Kernel Hilbert space with a reproducing kernel
K (u,v) (see [1] for details). In the framework just men-
tioned, the implementation of a neural network map V' is
specified by a set of interpolative constraints V(u;) = y,
where (u;,3:), 1 = 1,...,m constitute the training data.
This implementation is obtained by projecting V into the

span of the representers of the point evaluation function-
als K(wi,.) in F;(H) corresponding to the training points
(in H) uy,...,um. For obvious reasons, the implemen-
tation V' has been called an optimal interpolative (OI)
neural network and can be explicitly written in the form

m

V()= Ky, )

j=1

(1)

where the coefficients c; are obtained by requiring that
(1) satisfy the interpolating training data constraints.

In the case where H is an Euclidean space E™, the QI
net realization V takes the form of a conventional feed-
forward ANN with two hidden layers. This Ol net was
presented in 1990 [5] and its theory and applications have
been widely discussed in the literature [6]. In the case
where H is L*(I), I C R', the OI pet is a FANN which
was analyzed by Zyla and de Figueiredo [7] and reconsid-
ered recently by Newcomb and de Figueiredo [1}[2]. In
the present paper we consider the class of QI FANNs for
which H is L%(I™), I™ C R™.

In what follows we first briefly recall the derivation of
the explicit expression for the OI FANN obtained in {1](3].
Then we illustrate this result by some examples from mul-
tidimensional signal processing.

2 Multivariable OI FANNs

We assume that m pairs of representative input-output
test functions (equivalent to exemplars in artificial neural
networks), u;(.) and y;(.) for j = 1,...,m, are available,
with these functions, along with their K derivatives, being
square integrable over I". We solve for an optimum op-
erator V having the smallest norm in the following sense:

min [V, Veel® and ¥V VYV €F (2

subject to the data constraints

V,,(i)(u,-(.))zyl(‘)(z) 1=0,....K j=1....m (3)

We note that in order to have sufficient information to
perform an identification, we select the m input functions



to be linearly independent over I™. Following (7] and as
developed over I™ in [8], the solution to this equivalent
problem is outlined below:

1. Form the m x m Grammiap matrix

G =(Gy] = [exp [Fm() s ezm] ] @
where, for completeness, we recall that
@O = [ w@u@d 6
zeln

Note that G is nonsingular, since the test input func-
tions are linearly independent.

2. Form the column m-vector of test outputs

yeeat(.) = [5;()] (6)
3. Obtain a column m-vector of coefficients
e(2) = [¢; (@)] = G yreat(2) M
4. Determine the optimum estimate V,(.) of Vz(.)
700 = 3 e@exp [Hus (), duagm]  ®
i=1

which is the key equation {4} upon which we base our
functional artificial neural network discussed next.

The schematic of the resulting functional neural net-
work is depicted in Figure 1, showing a feed-forward two-
layer architecture. The first layer consists of m input neu-
rons, each one processing the same input function u(.),
presented to the network, and producing a nonlinear re-
sponse of exponential form, i.e., exp [(ui, u}/r]. The neu-
ral network design is carried out in a supervised manner,
i.e., using m representative exemplar pairs u;(.) y;{.).
The entries of e(z) = G 'ytest(z), formed with these
pairs, correspond to x-varying synaptic weights, whereas
the entries of the Grammian matrix G act in a linear
manner as neuron nonlinearities, with the weighted neu-
ron outputs added to give the overall output y(zx).

When presented with an arbitrary input (of the class
allowed by the system), this neural network produces an
output that is an approximation to the output of the dy-
namical system the neural network is modeling. The net-
work uses information acquired during its training on the
exemplars to give the desired output in terms of function-
als. As a consequence, the network attempts to incorpo-
rate with a best fit the nonlinear dynamics of the system
being modeled.

3 Examples

Here we illustrate the key theoretical and design ideas
with examples from 2D signal processing.

y(x)
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Figure 1: Multidimensional FANN.

3.1 Closed Curve Classification

For this case the exemplar inputs Ui(z,,z2) and
Us(x1, z2) are surfaces enclosed by closed curves consist-
ing of a circle of radius 1 centered at (0,0) and a square
of side 1, also centered at (0,0) (Figure 2). As part of the
FANN design, a scheme is set up to detect the inside and
the outside of the curves, quantify the result asa 1 or a 0
respectively, and assign the appropriate values to U; and
Us.
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Figure 2: Exemplar inputs U;(z1,z2) and Uz(z1, z2)

The desired input-output mapping is achieved by forc-
ing the network to associate an output Yi(zi,z3) = 1
with the circle and Yi(z1,22) = 0 with the square during
the training process, with the aim of enabling the net-
work to generalize the classification to circles and squares
of any size, centered anywhere in the plane. The latter is
carried out by shifting the center of the curves to (0,0)
and normalizing the dimensions to unity.

The generalization ability of the network is tested on a
set of circles and squares which we refer to as large and
small (see Figures 3 and 4). The associated FANN output
values are, as anticipated, 1 for the circles and Q for the
squares.
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Figure 3: Classification of a large circle
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Figure 4: Classification of a small square.

3.2 Pattern Synthesis

Perhaps one of the most powerful and interesting applica-
tion of the FANN in image processing is pattern synthesis
from a database. For example, using either an a priori or
a posteriori approach, one can design a FANN for image
enhancement and restoration.

As a simple illustration, a FANN is trained to generate
a unit circle, centered at (0,0), for an input of 1 over the
zi-z2 plane and a square of side 1, also centered at (0,0),
for an input of 0 over the plane z,-z2 (Figures 5 and 6).
When the FANN is presented with non-exemplar inputs
close to the constants 1 or 0, the FANN produces a circle
or a square as expected. However, when presented with
a different input, interestingly, as shown in Figures 7, 8,
and 9, the FANN combines the circle and the square to
create a new pattern.

Figure 5: Exemplar input-output pair U;-Y}.
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Figure 6: Exemplar input-output pair Uz-Y5.

4 Discussion

The success of the one-dimensional network introduced
in {1, 2] led us to consider the multi-variate case [8]. Thus,
in this paper we proposed a neural network approach to
the problem of identification of multi-variable nonlinear
dynamical systems. The resulting neural network struc-
ture, called optimal interpolative multidimensional func-
tional artificial neural network (OI FANN) leads to an
optimum characterization of the system via a functional
estimation approach.

The proposed approach employs the idea of the repro-
ducing kernel within the mathematical framework of Fock
and Hilbert space concepts to approximate nonlinear dy-
namical systems, specified by representative sets of input-
output pairs. In so doing, the approach solves the mini-
mum norm problem in a Bochner space. The use of the
reproducing kernel allows the approximation problem to
revert back to that of linear systems while still incorpo-
rating the nonlinearities for which the Volterra series is
tailored. As such it is an attractive alternative to other
system modeling techuiques [9].



The design of the OI FANN is carried out through a
supervised training of the network with exemplar input-
output functional pairs and constructs a set of synaptic
weights, which are also functionals. When non-exemplar
inputs are presented to the network, the latter performs a
system identification by associating a Volterra functional
input-output map.

The key theoretical and design ideas were exploited
in two applications from n-dimensional signal processing,
these being closed curve classification and pattern synthe-
sis, the details of which are covered in the full version of
the paper.

Classified Output Yclas Contour curve for Yelas{x1 X2

X1 axis

Figure 7: FANN output for U = 3/4.
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Figure 8: FANN output for U =2
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Figure 9: FANN output for U = —1.
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MYOPIC MAPS AND UNIFORM APPROXIMATION
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EXTENDED ABSTRACT

Our main result is a theorem which gives necessary and sufficient conditions
under which multidimensional myopic input-output maps with vector-valued inputs
drawn from a certain large set can be uniformly approximated arbitrarily well using a
structure consisting of a linear preprocessing stage followed by a memoryless nonlinear
network. Such structures were first considered in an important but very special
context by Wiener. We consider causal as well as noncausal maps. Approximations
for noncausal maps for which inputs and outputs are functions of more than one
variable are of current interest in connection with, for example, image processing.
Throughout the paper inputs and outputs are defined on the infinite m-dimensional
interval (—o00, 00)™ where m is an arbitrary positive integer.

Preliminaries

Throughout this abstract, IR is the set of reals and IV is the set of positive
integers. Let n and m in IV be arbitrary. ||-|| and (-,-) are the Euclidean norm
and inner product on IR", respectively, and |- | is the Euclidean norm on IR™. With
R_ = (—00,0], RT denotes (IR_)™.

For any positive integer ng, let C(IR™, IR) denote the set of continuous maps
from R™ to R, and let D,, stand for any subset of C(IR™, IR) that is dense on
compact sets, in the usual sense that given ¢ > 0 and f € C(IR™, IR), as well as a
compact V' C IR™, there is a ¢ € Dp, such that |f(v) — q(v)] < e for v € V. The
Dy, can be chosen in many different ways, and may involve, for example, radial basis
functions, polynomial functions, piecewise linear functions, sigmoids, or combinations
of these functions. .

Let w be a continuous /R-valued function defined on IR™ such that w(a) # 0 for
all o and limjg)—o w(a) = 0. With C(IR™, IR™) the set of continuous maps from R™
to R", denote by X, the normed linear space given by

Xw={xeC(R™", R"): su}i) lw(a)z(a)| < oo}
a€R™



with the norm
lzll, = sup l[w(a)z(a)] -
a€ R™

Now let C(IR™, IR™) be the set of all bounded functions contained in C(IR™, R"),
and let S be a nonempty subset of C(R™, R"). For each 3 € IR™, define T3 on S by

(Tsz)(a) = (@ — 8), o€ R™

The set S is said to be closed under translation if T3S = S for each § € R™. Let G
map S to the set of JR-valued functions on IR™. Such a G is shift-invariant if S is
closed under translation and

(Gz)(a - B) = (GTpz)(a), o€ R™
for each 8 € R™ and z € S. The map G is causal if
r(a) = y(o) witha; < 3; Vj = (Gz)(0) = (Gy)(B)

for each 8 € R™ and every r and y in S.
We assume that G is shift-invariant. We say that G is myopic on S with respect
to w if given an ¢ > 0 there is a § > 0 with the property that z and y in S and

Sup flu(@)fz(e) —yll <6 = [(G2)(0) - (Cy)(O)] <. (1)

Thus, and roughly speaking, G is myopic if the value of (Gz)() is always relatively
independent of the values of z at points remote from a.

In our theorem to be presented we refer to certain sets G(w) and G- (w). These
sets concern integrals of the form

/. (98),2(5)) d8 @)

in which z € C(IR™, R™) and D = R™ or IR". Such integrals are well defined and
finite for any (Lebesgue) measurable g from D to R"™ such that

[ Jw®)9(8)] 48 < 0 3)

(because (3) implies the integrability of g). Let D = IR™. By G(w) we mean any set
of measurable functions g from D to R" such that (3) is met for each g, and for each
nonzero z € C(IR™, JR"™) there corresponds a g for which (2) is nonzero. Similarly,
with D = IR™, the set G_(w) is any set of measurable functions g from D to R"
such that (3) is met for each g, and for each z € C(/R™, IR"™) whose restriction to D
is nonzero there is a g for which (2) is nonzero. The sets G(w) and G_(w) can be
chosen in many ways. For example, we show that G(w) can be taken to be the set

2



of all continuous functions from R™ to /R™ such that (3) is met with D = R™. A
similar proposition holds for G_(w).

Finally, let @ be the map from S to C(IR™, R"™) defined by (@s)(a) = s(8) for
each s and a, where 8; = — |a;]| for all j.

Our Main Result

Our main result below gives a necessary and sufficient condition for the uni-
form approximation of myopic maps with vector-valued inputs of a finite number of
variables. In stating this result, we use the fact that integrals of the form

[ ®(8 - @), 2(8)) d8

and

[ (a8~ ).2(5))d8

are well defined and finite for each o € IR™ when z is an element of C(IR™, R"),

p € G(w), and g € G_(w). This follows from the observation that by (3) both p and
q are integrable on their respective domains.

Theorem 1: Assume that S is uniformly bounded and equicontinuous.! (Recall
that G is a shift-invariant map from S to the set of R-valued functions defined on
IR™.) Then the following two statements are equivalent.

(i) G is myopic on S with respect to w.

(ii) For each ¢ > 0, there are an ng € IN, elements gy,...,gn, of G{w), and an
N € Dy, such that
(Gr)(a) = N[(Lz)(a)]|<¢, ae€ R™ (4)
for all x € S, where L is given by
(La)s(a) = [ (hsla—8),2(8)) df )

with h;(8) = g;(—pB) for all 8 and j.
Moreover, if G is causal and @S C S then (ii) can be replaced with:

(ii") For each € > 0, there are an ng € IN, elements g;,...,gn, of G_(w), and an

N € Dy, such that |(Gz)(a) — N[(Lz)(a)]| < € for all @ € R™ and z € S,
where L is given by

(Lz);(@) = /( thila — B), (8)) dB (6)

—o0,a]

1S is uniformly bounded if there is a positive constant ¢ for which ||z(a)|| < c for all z € S and all
a, and S is equicontinuous if for each € > 0 there is a § > 0 such that ||[z{a,) — z{a )}l < € whenever
z € S and |a, — as| < 6.



with h;(8) = g;(—0) for all 3 and j, and where (—o00,a] means (—o0, a;] x
-+ X (=00, Q).

The full version of the paper includes extensive introductory material, a section
on comments, and one on the specialization of our result to generalized finite Volterra
series approximations.?
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In this paper we consider the nontrivial ques-
tion of the usefulness of manifolds and espe-
cially differentiable manifolds in the theory of
electrical networks. Of course, it is obvious
that many concrete mathematical objects, e.g.
the set of zeros of linear and nonlinear equa-
tions, a set of functions and operators and so
on, include such mathematical structures but it
is not clear at all that we have to extract these
structures in order to clarify a certain system-
atic question in network theory. In other words,
there is a danger that a more abstract descrip-
tion presents no deeper insight in a problem or
emphasizes a not suitable mathematical struc-
ture. There are several examples of this kind in
the history of electrical engineering science. A
typical example is the so-called phasor method
where complex voltages and currents are intro-
duced in order to solve the linear time-invariant
network equations with sinusoidal inputs quan-
tities. The complexification which is common
used introduced an additional mathematical
structure into this problem that have to be
extracted after the process of calculation be
means of building the real (or imaginary) part
of the final result. It can be shown that using
complex voltages and currents is unnecessary
(see Mathis, Marten [3], [4]). It can be shown

that not a complexification is the useful way
to abstract this problem but we have to use a
complex structure in the sense of linear algebra
in order to get a structure that is well-adapted
to point of view of applications.

We consider some cases of network theory
where differentiable manifolds can be helpful
to understand or to solve problems in network
theory. At first we consider the set of linear
electrical problems where the network parame-
ters and the network topology characterize the
concrete mathematical object. Now it can be
shown that Grassmannian manifolds are useful
to study these networks. More detailed con-
siderations can be found in Diepold and Pauli
[1]; see also Pauli [8] [9].

Another subject of this paper is the discus-
sion of linear and nonlinear dynamical RLC
networks where differentiable manifolds can be
used to characterize their descriptive equations
and to understand the problems that are arise
in circuit simulation. For this reason we sepa-
rate the typical or generic behavior of these
networks from the nongeneric behavior that
forces a circuit simulator into problems; see
e.g. Mathis [4]. Furthermore a geometric pre-
sentation of the theory of networks emphasizes
a unified concept of these essential class of



physical systems; see Mathis [5] [6] and Her-
mann [2]. For example a unified theory of du-
ality of linear and nonlinear networks can be
set up Mathis and Marten [7].
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EXTENDED ABSTRACT

One of the earliest results in the area of neural networks is the propaosition that any con-
tinuous real function defined on a compact subset of JR* (k an arbitrary positive integer) can
be approximated arbitrarily well using a single-hidden-layer network with sigmoidal nonlin-
earities (see, for example, [1]). Among other results in the literature concerning arbitrarily
good approximation that concern more general types of “target” functionals, different net-
work structures, other nonlinearities, and various measures of approximation errors is the
proposition in [2], [3] that any continuous real nonlinear functional on a compact subset
of a real normed linear space can be approximated arbitrarily well using a single-hidden-
layer neural network with a linear functional input layer and exponential (or polynomial
or sigmoidal or radial basis function) nonlinearities. This has applications concerning, for
instance, the theory of classification of signals (see [3]).

In interesting papers [4], (5] by Chen and Chen related results are given concerning the
approximation of nonlinear functionals. In {5] they show, for example, that for the case in
which the nonlinear functional’s domain is a compact subset of a Banach space with a basis,
the linear functionals can be taken to be the coefficient maps associated with the basis (see
their Theorem 3). Here we observe that this type of result follows from either {3, Theorem
1], or the variant of part of [3, Theorem 1] proved in the appendix!, and the observation
we state in the form of a proposition in the appendix.

We also give a tool theorem in the appendix that is useful in focusing attention on the
range of applications of results concerning the approximation of nonlinear functionals. This
theorem shows that certain sets of functions defined on unbounded domains are relatively
compact in spaces with weighted norms. The theorem is useful because while the usual
criteria for compactness concern signals defined on a compact subset of R™ (where typically
n = 1,2, or 3 in engineering and scientific applications), signals defined on infinite n-
dimensional intervals are often of interest. A simple corollary of Theorem 2 is that for each
positive o and 3, the set of all real-valued continuous functions z defined on JR™ such that

!Theorem 1 in the appendix is stated without proof in [6] which establishes a connection between (3,
Theorem 1] and one of the main results in [4] involving linear functionals that have the special form of a
finite sum of integrals of a certain type.



sup,, {z(7)| < @, and such that z satisfies a Lipschitz condition with Lipshitz constant g,
is compact with respect to the metric p(z,y) = sup, [w(¥)[x(7) — y(7)]|, where w is any
continuous positive function on IR™ such that w(y) — 0 as {|y|| — 0.2 This establishes, for
example, a setting in which it is possible to use certain simple network structures (see [3])
to classify patterns represented by real-valued functions defined on [R™. Further details and
other types of applications of Theorem 2 are described in (8] and [9].

I. APPENDIX
A.1 Approximation Theorem

Let C be a nonempty compact subset of a real normed linear space X, and let X* be
the set of bounded linear functionals on X (i.e., the set of bounded linear maps from X to
the reals IR). For each p > 0, let Y, be any set of maps from X to IR that is p-dense on C
in the closed unit ball of X* in the sense that given ¢ € X* with ||¢}| < 1 thereisay e,
such that {¢(x) — y(z)] < p, z € C.

Let U be any set of maps u : IR — IR such that given ¢ > 1 and ¢ > 0 and any
bounded interval (8, 32) C IR there exists a finite number of elements u4,...,u; of U for
which | exp(a8) — X u;(8)| < o for 8 € (61, 62).°

Theorem 1. Let f be a continuous map of C into JR. Then given ¢ > O there are a
positive integer k, real numbers cy,...,ck, elements uy,...,ux of U, a positive number p
and elements y, ..., yx of ¥, such that | f(z) — 3; cjus{y;(2)]l <eforz € C.

Proof

Let f be given, and notice that the set V of all functions v : C — IR of the form
v(z) = 2, a;j exp|¢;(x)], in which the sum is finite and the a; and the ¢; belong to IR and
X*, respectively, is an algebra under the natural definition of addition and multiplication.
By a consequence [10, p.198] of the Hahn-Banach theorem, given distinct z, and z, in C
there is a ¢ in X* such that exp[¢(z,)] # exp[@(xs)], showing that V separates the points
of C. 1t is clear that v(z) # 0 for some v € V for each x. Thus, by a version of the Stone-
Weierstrass Theorem [11, p.162], given ¢ > 0 there are a positive integer p, real numbers
dy, ..., dp, and elements wy, ..., wp of X* such that

|f(z) =D djexplw;(z)]| <&/3
3

forz € C.* Select & > 1 so that each z; := w;/a has norm at most unity.

We may assume that 3°; |d;} # 0. Choose v > 0 such that v, |d;| < ¢/3. Let [a’,b’]
be an interval in IR that contains all of the sets w;(C), and let real a and b be such that
a < a',b>b'. Select n > 0 such that |exp(B1) — exp(B2)| < 7 for By, 52 € [a,b] with
|61 — Ba| < n. With p = o~ ! min(n,a’ —a,b—b’), choose y; € Y, such that |z;(z) — y;(z)| <
p, € C for all j. This gives | explaz;(z)] — explay;(z)]l <7, z € C for each j (because

%A result similar to this for n = 1 is proved in [7].

30f course we can take U to be the set {exp(a-),a > 1}, or the set {u : w(8) = (aB)*/nl, a > l,n €
{0,1,...}}. Another acceptable choice is {u : u(3) = cs{wB + p), c,w,p € IR}, where s is a continuous
function with limg_.. 8(8) = 1 and limg— _a $(8) =0.

‘Here we view C as a metric space with the metric derived in the usual way from the norm in X.



we have ay;(C) € [a,b] and |az;(x) — ay;(z)| < n for each j and ), and thus

If (x)—Z d; explay;(z)]| < |f(x)~)_ djexplaz;(x)]|+] Y dj explaz;(z)] - d; explay;(2)]]
J J J 7

<&/3+3 1d;| - | explaz;(x)] - explay;(z)]| < (26)/3, ¢ € C.

Now let [¢,d] C IR be such that ay;(C) C [c,d] for each j. Pick uy,...,u¢ € U so that
lexp(af) — Ziu(B)| < m, B € lc,d] where m 35, d;| < €/3. Then

1f(x) = 33" dyusly; ()]l < 1f(z) = Y d; exploy; (@)l +1 Y d; explay;(z)]
I 7 7

=33 djusly;(@)]l < (2€)/3 + Y |d; exploy;(z)] — d; Y waly; ()]
7 i 7 1

< (26)/3+)_1d;jl - | explay; (@)] = Y wily;(x)]| < (26)/3 +m Y_ldsl <=
J i

j
Since 3°; 3, djui[y;(z)] can be written in the form 3°; cju;(y;{z)], with the ¢;, uj,and y; in
R,U, and Y,, respectively, we have proved the theorem.®

A.2 Approximation of Linear Functionals on Banach Spaces With a Basis

In the proposition below we consider the case in which X and C are as described
earlier, and X is an infinite-dimensional Banach space with a (Schauder) basis e}, ey, .. ..
We use g;,j = 1,2,... to denote the functionals with the property that z = 332, g;(x)e;
for z € X.

Proposition. Given p > 0 there is a positive integer £ such that |¢(z) — 3%, ¢(e;)g;(z)| <
p, zeC forall ¢ € X* with ||¢}] < 1.

Proof

The proposition follows directly from the fact that given p there is an £ such that
52 er1 9i(T)esll < p, z € C (see [12, p. 136]).

A.3 Weighted-Space Tool

Theorem 2. Let S be a subset of a complete metric space A with metric p, and let
T1,T3, ... be maps of A into itself such that

(1) Ti(S) is a relatively compact subset of A for each k, and

(#%) p(8,Tks) — 0 as k — oo uniformly for s € S.
Then S is a relatively compact subset of A.

®As mentioned earlier, Theorem 1 is a variant stated in (6] of part of {3, Theorem 1]. That part of [3,
Theorem 1], which is provable using a direct modification of the proof above, asserts that Theorem 1 above
remains true if “a positive number p and elements yy, ..., yx of Y,” is replaced with “and elements ¥,..., ¥k
of Y,” where Y is any set of continucus maps from X to IR that is dense in X" on C, in the sense that for
each¢ € X' and any e > Othereisay € Y such that |¢(z) —y(r)| < ¢,z € C, and U is instead any set
of continuous maps u : R — R such that given o > 0 and any bounded interval (8;,32) C IR there exists a
finite number of elements u;,...,u, of U for which | exp(8) — Z,' u;(8)} < o for B8 € (B1,52).



Proof

Let € > 0 be given. Select k so that p(s,Tks) < ¢/2 for s € S. Since Tx(S) is relatively
compact, A contains an e/2—net ay, as, . .., ap for Tk(S) (see p. 200 of {13] ). Now let
u € S be given. Choose j € {1,2,....p} so that p(Tku,a;) < ¢/2. Thus,

p(u, a;) < p(u, Teu) + p(Thu, a;) < €/2 +¢/2 =¢,

showing that a;,az,...,ap is an e-net for S. Since A is complete and A contains a finite
e-net for S for every € > 0, S is relatively compact (by the theorem on p. 201 of [13]).
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MONOTONE RESISTIVE NETWORKS

BRrRUCE D. CALVERT

1. Introduction.

We revisit the work of Minty [6 and 7] who gave among other things an existence
result for the branch voltages and currents in a finite network, which on each branch
are related by a maximal monotone resistance function, and we extend it to an
infinite network.

This contrasts with the papers in which existence is given for all current or
voltage sources in some vector space. A feature of Minty’s Theorem is the set of
bounds for the solution, which is used to give an easier proof than the original one,

for a finite network.

We call a function f: R — 2R monotone to mean (fz)>*-fW)*)z-y) =0
for f(z)* in f(z) and f(y)* in f(y). We may write (z,y) € f to mean y € f(z).
Wesay f: R — 2R is mazimal monotone if (z1,11) € R? and (y—)(z—z1) >0
for all (z,y) € f implies (z1,11) € f.

We define with Minty a resistor in branch b of a locally finite digraph (B, N)
to be a maximal monotoné M,:R— R, We write, given f : R — 2R, domain
(f) ={z e R: 3y, (z,y) € f} and range (f) = {y € R: 3z, (z,) € f}-

Wesayi: B — R satisfies KCL or is a cycle, where (B, N) is a locally finite
digraph, if its boundary &i is zero [4] , where for any n € N,0i(n) = E{i : the
head of b € n} — T{iy: the tail of b € n}.

1



2 BRUCE D. CALVERT

We say v : B — R satisfies KVL if it is a coboundary be [4], ie. if there is
e: N — R with vy = e(n;) — e(ns) where n; and n,, contain the head and tail of b

respectively, equivalently

Z Uptp =0

g€B
for 1 any finitely supported cycle.

We say, following Minty, that a monotone network M on a locally finite digraph
(B, N) is a function that assigns to every branch b a resistor M. And a solution

of M counsists of 1 satisfying KCL and v satisfying KV L such that for all b € B,
vp € My(is).

Given a closed nonempty convex subset A of R, let A° denote the element of least
norm, @ € A such that la] < |b| for all b € A. Given f : R — 2R, maximal
monotone, and (z,y) € domain (f)x range (f), we let f~(y) = {z: (2,y) € f},
and

6l(z’y1f) = l(f_l(y) - z)olv

the distance from (z,y) to the intersection of the graph of f and the horizontal line

through (z,y). And we denote

6”(27yv f) = I(-f(z) - y)°l°

Given a monotone network M on (B, N) and (i4,v4) € domain (My)x range (My)
for all d € B, giving 1 and v from B to R, we set
Si(3,v, M) = sup{Z&'(i,g,‘va, M) : C a finite cutset of (B, N) containing b}.
Similarly we set e

Sy (3,v, M) = sup{}_4¢c 8" (14, v4, Ma) = C a finite loop or path containing b}.
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3. Existence and Bounds.

Theorem 1.  (Minty’s Theorem). Let M be a monotone network on the
locally finite digraph (B, N). Suppose i! : B — R and v! : B — R satisfy
KCL and KVL respectively, and for all b € B, i} € domain(M}),v} € range
(Ms), Sp(it,vt, M) < oo and S{(i!,v}, M) < 0.

Then M has a solution (i°, v°) such that as functions from B to R we have

i — ') < 57, vty M) (1)

and |0 — v!| < §7(i1, v, M). (1)

Lemmal. Let f:R — 2R be maximal monotone, and let 1 € domain (f)
and v € range (f).
Then there exists a sequence (f,,) of monotone homeomorphisms f,, from R onto
R such that:
(a) if (Tn,Yn) € fn for all n and (zn,yn) — (z,7) in R? then (z,3) € f,
(b) &(,v, fa) / 6 G,v, f), and
(c) 8"(Gv, fa) /7 8" (i, v, f).

The following is a statement of the “no gain” property, as in Wolaver [10].

Lemma 2. Let M be a finite network, with every M} a monotone bijection
from R to R. If i! and v! satisfy KCL and KV L, and (i%1°) is a solution of M,

we have for each branch b :
i) — i}| < Y gec 8’33, v}, Ma) for some cutset C containing h, and (2)
v — v} < Z&” (i}, v}, M) for some loop C containing b. (2')
deC

The finite dimensional case of Minty’s Theorem is proved using the approxima-
tions of Lemma 1. Then the network is approximated by finite subnetworks. In

both cases the bounds give compactness and hence existence of a solution.
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Networks with Distributed and Lumped Parameters
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ABSTRACT

For a network composed by transmission lines (described by telegraph equations) which
interconnect grounded resistors and capacitors, two main results are obtained: existence of
solutions and bounds for voltages in any point.

1. Introduction

The progressive miniaturization as well as the continuous increasing of clock frequency, gave emphasis to
the interconnection wire as being responsible, to a great extent, for the delay time in VLSI circuits [1]. This
is why the adequate modeling of interconnections and apriori estimations of the delay time, are research
topics of major importance.

By using the lumped parameter approximation of interconnections, many papers provided bounds of the
delay time (see, for instance, [2]-[5]). Other works use the one-dimensional telegraph equations to model
the lines, treating them by Laplace transform [6], [7] or in time domain (8], [9].

Our present paper works in time domatn and tries to cover the lack of generality in our previous attempts.
Namely, we consider the network in Fig. 1, where the distributed parameters lines connect the RC grounded
devices. If N is the set of nodes (excluding the ground) then we consider the set of lines L C N x N and
each line (pq) is directed from the node p (where the space variable z = 0) to the node g (where £ = 1).
Neglecting the inductive effects, we have

Oupg _ 1 upy Gy
Bt RoyCy 057 Gy, ret®) (1)
te(0,T), ze(0,1), (pg)el

where Rpy = rpedpg, Cpq = Cpedpg, Gpg = gpedp, are, respectively, the total resistance, capacitance and
conductance and dp, is the line length.

G

p
I I o -

\m/ line (mk) Jr/
4 G (,I/}cf

Fig. 1: The network under study



Let us denote by u,(t) the voltage of node &, and by £y all nodes connected with k by a line which ends
in k. Similarly, R, are the nodes connected with k& by a line which starts from k. Then, we have

we(t, 1) = upr(t, 0) = ur(t) (2)
foralllie Ly, reRe, t €10,T).
The KCL for the node k gives:
1 Oup 1 Oug, diiy - .
-5 — t 1 ZE(10) = Cp —= )
2 Ry DT :‘; B 5 (00 = Cegp + Gela(t) + e (8) (3)

for all t € [0, T7].
Also, the initial voltage at any point is given by

Upq(0,2) = ugq(r) (4)

forall 2 € (0,1}, (pq) € L.

We have now a system of parabolic equation (1}, coupled by boundary conditions (2) and (3). Let us de-
note the dynamic problem (1)+(2)+(3)+(4) by DP(j(t), u®) where j(t) = (ji(¢))ren and u® = (ud )p gjeL.
The time independent variant of it, consisting of (1)+(2)+(3) without time derivatives and with constant
current sources, will be denoted by SP(j).

2. Existence and Uniqueness of Solution — Case C, =0
For very smooth sources and initial conditions of square integrable type we have the following result.

Theorem 1. Hypotheses:

a) For all k € N. the functions ji : [0,T] — R are differentiable with Hélder continuous derivatives,
J; € C”(0,T;R).

b) For all (pg) € L. uy, € L*(0, 1; R).

Then. for each (pq) € L there exists u,y, € C*(0,T;L%(0,1;R)) such that DP(j(t),u") has an unique

solution.

Here by “solution” we understand a vector function u = (upq)(pq)ez Whose components have time
derivatives with respect to £2(0, 1: R) norm, and space derivatives in the distribution sense.

The main disadvantage of the previous result is the strong restriction imposed by assumption a). In
order to manage the usual discontinuous signal sources we give the next theorem.

Theorem 2. Hypotheses:

a) Forallk € N, j, € LY(0,T:R).

b) For all (pq) € L. ugq € L*(0,1;R).

Let (j?)n be a sequence of step functions such that j} — ji when n — oo, in L'(0,T;R) for allk € N. Let
(ug;]”)n be a sequence of functions in L*(0.1; R) satisfying the boundary conditions (in distribution sense)
such that ug'q" — ugq in L2(0, 1;R). Then.

1) For each n the DP(j™ u%™) is satisfied a.e. int and r by up, € C(0,T; L%0, 1;R)), (pg) € L.
2) ug, — upq in LY(0.T; L*0, ; R)).

This limit (upg)peerL 15 the “weak” solution of our DP(j(t), u®).
Now we prove the existence of the steady-state solution.

Theorem 3. If for each line (ki) without dielectric conductance (i.e. Gy = Q) there erists at least one end
which is resistively grounded (i.e. G > 0 or Gi > 0), then there exists u™ = (up))ipg)eL, Upq € C?(0,1;R)
solving uniguely the SP(j) problem.



The next result assures that the transients will reach the steady state regardless of the values of the
initial conditions.

Theorem 4. If j(t) = j = constant, ugq € L*(0,1;R) for all (pg) € L and the assumption of Theorem 3 is
fulfilled, then

Jim Ylupg(t, ) = upg(ll 20,1 Ry = 0
for ail (pq) € L.

The proofs are partially given in [10].

3. Bounds for the Solution — Case j, =0

We suppose now that the lumped capacitors are connected at some nodes, all the sources are zero, and all
initial conditions have the same constant value, such that the solutions are of classical type (C! in time and
C? in space). The following result regards the upper and lower bounds for the solution.

Theorem 5. Hypotheses:

a) up,(z) =1 forall(pg) € L, €0, 1].
b) There exists at least one node k € N such that Gy # 0 and C¢ # 0.
¢) Every node can be reached departing from any other one, i.e. the network is “horizontally connected”.

Then there exist the numbers ax € (=5.5) forallk € N, and A > 0 such that

tanar Y “‘—"Rl‘l'l <Gy = XCi forallk € N, (5)
mELLUR: km

and
T < (ak —a)® G

S TRaCo + Ca for all (k1) € L. (6)

With these numbers we denote
cos[(1 — z)ap + za,)

min{cos ar; k € N}

Fog(z) =

and obtain the upper bound:

Upg(t, z) < qu(r)e‘)‘"

A similar result holds for the lower bound case. The proof will appear in [11].
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NODE VOLTAGES IN NONLINEAR RESISTIVE
TRANSFINITE NETWORKS*

A. H. Zemanian

Abstract — Transfinite electrical networks need not have node voltages even when branch
voltages and currents uniquely exist. The difficulty is that the sum of branch currents along a
transfinite path from a selected ground to a particular node may diverge or may depend upon the
choice of the path. Sufficient conditions are given herein under which node voltages exist and are
unique at all nodes, whatever be the choice of ground node.

1 Introduction

The idea of a transfinite electrical network arises quite naturally when finite networks are expanded
into infinite ones [3, Section 1.4]. In particular, a transfinite network is one wherein there are at
least two nodes that are connected by an infinite path but not by any finite path. A theory for
such networks was introduced in [1] and expanded in [3].

A peculiarity of such networks is that, even though branch voltages may exist throughout the
network, node voltages may not. This is because the sum of branch voltages along a transfinite
path from a preselected ground node to some other node may diverge or because that sum —
though convergent — may depend upon the choice of path. Examples illustrating this are given
in [3, Section 5.5]. Thus, additional conditions are needed to insure the existence and uniqueness
of node voltages. Such have been devised for linear transfinite resistive networks in [2], but not for
nonlinear ones. This paper presents a set of sufficient conditions for a class of nonlinear resistive
networks that insures the existence and uniqueness of node voltages. In the following we freely
use the definitions and results of [1] and [3]. The proofs of all the lemmas and theorems given
below will appear elsewhere. Here we merely present our results along with an outline of how
they are achieved.

2 A Class of Nonlinear Transfinite Networks.

Let N¥ (0 £ » £ w) denote a nonlinear v-network [1], every branch of which is in the Norton form,
as shown in Figure 1. Thus, the jth branch is a parallel connection of a pure current source h; and
a nonlinear resistor R;(+) carrying a current f;. In accordance with the polarity conventions shown
in Figure 1, the branch voltage v; equals R;(f;) = R;(¢; + h;), where i; is the branch current.
Thus, there is no coupling between branches. As always, we take the branch’s orientation to be
that indicated by the arrow for i; in Figure 1. In the special case of a linear resistor, the constant
branch resistance r; is the slope of the straight line f; — R;(f;), i.e., r; = dR;/df;.

*This work was supported by the National Science Foundation under Grants DMS-9200738 and MIP-9423732.
The author is with the University at Stony Brook, Stony Brook, N.Y. 11794-2350. FAX: 516-632-8494. email:
zeman@sbee.sunysb.edu



Conditions 2.1. N” (0 < v < w) is a nonlinear v-network whose countably many branches
are in the Norton form, shown in Figure 1. Every R; is a continuous, strictly increasing, odd
mapping of the real line R! into R! with R;(f) — oo as f — 0.

For f,v € RY, we set M;(f) = f{ Rj(z)dz and M;(v) = [4 G;(y)dy, where G : v —
Gj(v) = f is the inverse function of R; : f — R;(f) = v. Given that N" satisfies Conditions
2.1, the modular sequence space Iy is defined as the set of all sequences f = (fj, f2,...) of real
numbers f; such that 3 M;(f;/t) < oo for some t > 0, and ¢) is the subspace of Ipq for which

> M;(f;/t) < oo for all ¢ > 0. (Here, 3 denotes a summation over all branch indices j.) Iy and
cM are Banach spaces with the norm

I£l = inf{t:t> 0,5 M (%) <1).

We assume henceforth
Conditions 2.2. The nonlinear v-network N" satisfies Conditions 2.1. Moreover, h =

(h1,ha,...) € lpg. Furthermore, there are a positive integer jo and two positive numbers a and 3,
both greater than 1, such that, for every j > jo,

(i) fR;(f) £ aM;(f) for 0 < f < a;, where a; is the unique positive number for which
M;(aj) =1, and

(i) uG;(u) < BM;(u) for 0 < u
M3(dj) =1

IN

d;, where d; is the unigue posstive number for which

Let I35 be the dual of /s and ¢} be the dual of cpp. Also, let = denote an isomorphism
between Banach spaces. Under Conditions 2.2, we have the following relations [1, pages 129-130].

IM = ecMm . (1)
l;\d = C-M > lM‘ (2)
()" = (M) 2 Moy = IM (3)

Thus, lpp is reflexive; that is, the dual of the dual of /) is isomorphic to lpg.

A basic current in the transfinite network N* is defined on [1, page 154]. It is a countable
superposition of (generally transfinite) loop currents satisfying certain conditions. £° is the span
of all basic currents in l)g, and L is the closure of £° in lpg. £ is a linear subspace of lpf and is
a Banach space in itself when supplied with the norm of lj.

In the next theorem R denotes the resistance operator R(f) = (Ri(f1), R2(f2),...), where
f = (fi, f2,...)- R maps I into Iy« [1, Lemma 4.7-2). According to the polarity conventions
of Figure 1, the branch voltage vector v = (vy,v,...) is related to the branch current vector
i = (i1,43,...) and the branch current source vector h = (hy,hs,...) through the equation
v = R(i+ h). Furthermore, for v € Ip. and s € I, (v, s) will denote the pairing (v,s) = 3 v;s;
. [1, page 126).

Theorem 2.3. Under Conditions 2.2, there ezists ¢ unique i € L such that

(R(i+h),s) =0 : (4)

for alls € L. Furthermore, i satisfies Kirchhoff ’s current law at every finite mazimal 0-node, and
v = R(i+ h) satisfies Kirchhoff’s voltage law around every 0-loop and also around every (-loop
(1 £ ¢ < v) having a unit flow in L.



3 Permissive Paths and Node Voltages.

Let p and g be real numbers such that p~' + ¢! = 1 and 1 < p < 00. Thus, 00 > ¢ > 1. The
inequality (5) below is illustrated in Figure 2.

Lemma 3.1. Assume that a branch resistance function R; is bounded according to

£\
(—.) < Ri(f) < pif? (5)
75

for all f > 0, where v; and p; are positive numbers with 1/7;-"l < pj. Then, both restrictions (i)
and (ii) of Conditions 2.2. are satisfied by that R;.

Definition 3.2. Let P denote either a ¢-path or a (-loop (( < v) with infinitely many
branches [1, pages 144, 147, 148]. (Our conclusions hold trivially if P has only finitely many
branches.) Also, let © be the index set for the branches embraced by P except for possibly
finitely many of them. P is called strongly permissive if © can be so chosen that, for every j € O,
there are two positive numbers v; and p; such that the following hold:

(i) e= 7;-’"1pj, where ¢ is independent of j € @ and 1 < ¢ < o0.
(i) The bounds (5) hold for all f > 0 and j € O.
(il) Yjeepi < .

If P is a representative of a {-tip t¢ [1, pages 140, 148), then #¢ is also called strongly permissive.
The algebraic sum of the branch voltages along the oriented (-path or (-loop P is

Z +v; (6)

jen

where II is the index set for all the branches embraced by P and the plus (minus) sign is used if
the orientations of P and the jth branch agree (respectively, disagree). Kirchhoff’s voltage law,
when it holds for a (-loop P, asserts that (6) equals 0.

Lemma 3.3. Let P be a strongly permissive (-path or (-loop. Then, (6) converges absolutely.

4 The existence and uniqueness of node voltages.

Theorem 4.1. Under Conditions 2.2 and the voltage-current regime dictated by Theorem 2.3,
Kirchhoff ’s voltage law is satisfied around every strongly permissive (-loop ({ < v), and for such
a loop (6) converges absolutely.

Let n and m be two totally disjoint nodes (1, pages 72, 141], whose ranks need not be the
same. Also, let P be a {-path ({ < v) that meets n and m terminally and is oriented from n to
m. If P is strongly permissive, we define(6) to be the node voltage of n with respect to m along
_ P. The definition of “nondisconnectable tips” for tips of arbitrary ranks is given in {3, Section
3.3]. Also, a tip is called strongly permissive if one of its representatives is strongly permissive.

Condition 4.2. If two tips are nondisconnectable, then either they are shorted together or at
least one of them is open. If those tips are nondisconnectable and strongly permissive, then they
are shorted together.

Theorem 4.3. Under the hypothesis of Theorem 4.1, assume that the tips of ranks no larger
than & in the v-network N” (v < w) satisfy Condition 4.2. Let ng and ng be two nodes (of possibly

3



different ranks), and let there be at least one strongly permissive path connecting n, and ng. Then,
no has a unique node voltage with respect to ny; that is, ny obtains the same node voltage with
respect to ng along all strongly permissive paths between n, and no.

Corollary 4.4. Under the hypothesis of Theorem 4.1, assume that the tips of all ranks no
larger than & in the v-network NY (v < w) satisfy Condition 4.2. Also, assume that every two
nodes of NV are connected through at lesst one strongly permissive path. Choose a ground node
ng in N¥ arbitrarly. Then, every node of NV has a unigue node voltage with respect to n,.
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ABSTRACT

There are a category of problems about internal struc-
ture identification for a multi-layer medium according to
reflection wave measurement on the surface. The mathe-
matic model is that the output signal, i.e., the reflected
wave series, is a convolution of the input signal, i.e., the ex-
ploration wave and the sequence of reflectivity at the inter-
face positions between every two layers, which describes the
multi-layer structure. The difficulty for this problem is that
the reflectivity sequence has to be identified with the input
signal unknown, since the exploration wave is seldom ob-
tained in many cases. The presented methods are all based
on some additional assumptions and/or other information,
so they can’t guarantee to solve this problem in any case.
To overcome this drawback, an essentially new approach is
proposed in this paper based on blind identification theory.
According to our method, reflection wave measurements are
performed twice at every exploration point by different ex-
ploration waves so that the two exploration waves can be
estimated from the two output signals, and then the reflec-
tivity sequence can be obtained by some deterministic de-
convolution algorithm. An example for seismic prospecting
is given in this paper, which demonstrates the effectiveness
of this new method.

1. INTRODUCTION

In practice, a category of problems are to identify multi-
layer structure of medium from measurement data by re-
flection wave exploration on its surface. The principle of
reflection wave exploration method is that the exploration
wave, which is stimulated on the surface, can be reflected
back to the surface again whenever it encounters an in-
terface between two different layers in its way toward the
medium interior. Thus, an reflected time series signal, s.e.,
the reflected waves, can be received on the surface, which
records information about every interface position under
the exploration point. The collection of many such adja-
cent reflected signals constitutes a two-dimensional profile,
from which the internal structure of the medium can be
shown though not with high resolution and accurate po-
sition. For example, B mode ultrasonic scan technique is
often used to study internal structure of a human body, es-
pecially for abdomen and breast, for tumor inspection. Ac-
cording to B mode ultrasonic scan technique, a very short
duration interrogating ultrasonic pulse is launched into tis-
sue as the exploration wave, then the reflected ultrasound is
recorded as the measurement signal by a transducer, where
abdomen and breast can be considered as layer-structure
organs below their surfaces. As the transducer turns left

and right, a two-dimensional image, which is usually in the
shape of sector, is formed to display the tissue structure.
Another typical example is seismic tomography, which is
used to find out subsurface structure for the purpose of ge-
ologic survey and mine/oil prospecting. According to seis-
mic tomography technique, explosion is conducted on the
ground to make a very strong acoustic pulse, i.e., seismic
wavelet, as the exploration wave, then the reflected seismic
waves, i.¢., seismic trace, are received as the measurement
signal by the sensor. The subsurface is clearly one kind of
multi-layer medium. In fact, there are huge amount of such
seismic traces collected in the course of seismic data acqui-
sition. They can even construct a three-dimensional data
set to exhibit the subsurface formations.

Fig.1 reflection wave exploration at local point

A linear mathematical model about reflection wave explo-
ration with respect to one exploration point can be estab-
lished by assuming: i). internal layers under the exploration
point are locally horizontal and parallel; ii). exploration
wave can be considered as a time limited signal and it is
invariant along with its travel path; iii). multi-reflected sig-
nals are ignored in measurement, so received signal is only
composed of first-reflected signals; iv). exploration wave
and its first-reflected signals can penetrate layers without
energy lost. Actually, above conditions can only be satisfied
approximately in practice. Denoting s(-) as the exploration
wave, {r:} as the reflectivity sequence, n(-) as the additive
measurement noise, and z(-) as the received signal, we can
describe the reflection exploration process as follows,

n

z(t) =D ris(t — i) +n(t) (1

=1

where, r; is the reflection coefficient at the interface between
ith and i + 1th layer, which is determined by the difference
of wave resistance between this two layers; 7; is the delay
for the exploration signal s(-) to travel from the stimulation
point on the surface and pass through the reflection point
at the ith interface then return to the receiver point on the



surface, 11 < T2 < *-- < Tq; n + 1 is the number of layers.
As shown in Fig.1, it should be noticed that this mathemat-
ical model doesn’t care if the stimulation point, where the
exploration signal is sent out, and the receiver point, where
the reflected waves are recorded, are located at the same
position or not. If they are located at the same position,
e.g., in case of the B mode ultrasonic scan, the received
signal shows the internal structure under this point. If not,
e.g., in case of seismic tomography, the received signal can
represent the internal structure under the central point be-
tween them. In the later case, the exploration point refers
to the central point between the stimulation point and the
receiver point.
Replacing {ri} by r(),

w={3" S o

we can find formula (1) actually represents a convolutlon
model suffering from noise,

z(t) = r(t) * s(t) + n(t) (3)

Obviously, the purpose of internal structure identification
is to get {r;} as accurate as possible. Our blind exploration
method is designed to estimate s(-) based only on z(-), so
that r(-) can be recovered easily with s(-) known.
According to formula (1), the measurement signal z(-)
can not display internal multi-layer structure very clearly,
since those interfaces shown by z(-) are represented by wave
lobes of the exploration wave s(-), which are often relatively
too wide to locate the interface positions accurately. In ad-
dition, they also introduce some illusions into the structure
profile when thin layers are present because of wave inter-
ference. Hence, the conventional way for internal struc-
ture identification is to estimate r(-) based on z(-) and s(-),
which is called as deconvolution. By the way, deconvolution
can not recover the reflectivity sequence r(-) accurately if
the exploration wave s(-) behaviors as a band-limited filter.
In such case, this problem is usually named as resolution
improvement. According to the convolution model, now
that z(-) is already known, the next step is to measure s(-).
Unfortunately, in many cases, s(-) can not be measured, or
it can not be accurately measured. For example, such s(-)
can not be measured in seismic data acquisition because
it is conducted by explosion. In fact, when acoustic wave
is adopted as the exploration wave, it would unavoidably
be attenuated due to incomplete elastic media in the ob-
ject and as a result s(-) varies with time actually. In this
case, we have to introduce an average of s(-) into the con-
volution model, in which s(:) is supposed time-invariant, in
order to reach an optimal approximation about r(-). Thus,
even though we can measure the exploration wave accu-
rately when it is stimulated, it is still useless because it is no
more than the initial status of s(-) and it is usually far away
from the average of s{-). It is due to these problems, various
alternative methods have to be designed for resolution im-
provement for reflection wave exploration in all application
field. For instance, very high frequency ultrasound have
been received much attention to be used as the exploration
wave, by which the wave lobe can be made very narrow so
that the interface position can be located accurately enough
based only on z(-). Nevertheless, this technique is severely
limited by human safety and equipment property [5]. For
another instance, various seismic deconvolution algorithms
have been elaborated to improve resolution for seismic pro-
file. However, because seismic wavelet s(-) is unknown, all

presented methods for seismic deconvolution rely on im-
posing some "reasonable” assumptions on the reflectivity
sequence and/or the seismic wavelet in order to get more
constraints so as to make seismic deconvolution feasible.
For example, the earliest canonical seismic deconvolution
algorithm is based on two "reasonable” assumptions that
the reflectivity sequence r(-) is a white noise and the seismic
wavelet s(-) is minimum phase [6], which are later proved
different from the reality in general. This kind of imposed
additional assumptions can also be found in other famous
seismic deconvolution methods, such as Maximum Likeli-
hood Deconvolution (MLD) {2}, Minimum Variance Decon-
volution (MVD) [3], L1-norm Deconvolution [7], Lp-norm
Deconvolution {1], and Minimum Entropy Deconvolution
(MED) [9], which all assume that the reflectivity sequence
is a sparse series more or less. It damages seriously the
reliability of those seismic deconvolution methods because
various assumptions all seem reasonable but they lead to
different results. Moreover, they are taken for granted but
it may not be consistent with the real situation.

In order to resolve above problems, we present an essen-
tially new approach, the dual exploration method, for in-
ternal multi-layer structure identification, by which we can
recover r(-) without any additional assumption on r(-) and

s(-).
2. DUAL EXPLORATION METHOD

The idea about the dual exploration method for layered
structure identification is as follows:

i). measure twice at every point on the surface by differ-
ent exploration waves 3,(-) and 32(-), and then record the
corresponding reflected signals z,(-) and z3(:);

ii). estimate the two exploration waves s;(:) and s(:)
based only on the two reflected signals z;(-) and z2(');

iii). recover the reflectivity sequence r(-) as clear as pos-
sible based on deterministic deconvolution algorithm.

The key to dual exploration method is in step 2, namely,
to estimate s, (-) and s2(-) with only z;(-) and z2(-) known
in the following equations,

{zl(t) = r(t) * 91(t) + ni(t) (a)
z2(t) = r(t) x 32(t) + na(t)

where n1(-) and n2(-) are random noise assumed as i.i.d.
Gaussian white noise.

First let us not take the additive noises n,(-) and na(-)
into account. Thus, we can get rid of r(-) from (4) and get,

z1(t) * 32(t) = z2(t) * 9:(t) (5)

Considering that s,(-) and s2(-) are time-limited signals but
z1(-) and z3(-) can be of any length, we can find (5) is actu-
ally a set of overdetermined linear equations if we rewrite it
in discrete form. To avoid getting a singular solution to this
equation set, we can solve it with the following constraint,

lss O? + llsa(HI* =1 (6)

According to presented results about blind identification
in the fields of communication and signal processing (8], the
linear equation set (5) has unique solution under the con-
straint (6) if and only if the two FIR filters with s,(-) and
s2(-) as their impulse responds have no common zeros. As
far as the reflection wave exploration method is concerned,
this sufficient and necessary condition can be almost always
satisfied, since it takes at least several tens of samples to
describe the waveform of 81 (-) and 32(-). As we know, there



is little probability for two high-order FIR filters with dif-
ferent impulse responds to share common zeros.

Obviously, above method still works even if there are
some noises. In this case, (5) is no longer satisfied accu-
rately. We can pursue some solution with minimum error,
such as the least square error solution under the constraint
(6). There are already many effective algorithms to solve
this problem [4] (8]. Limited by paper length, the concrete
algorithm and its derivation are omitted here.

After we estimate s;{-) and s2(-) by blind identification
method, it is then easy to recover r(-). There are already
many deterministic deconvolution algorithms to solve this
problem. How to do so is not the interest of this paper.
However, we should point out that we can not expect the
reflectivity sequence R to be recovered exactly as its actual
form, even though the exploration waves si(-) and sa(-)
have been known. Because in practice the exploration wave
is usually similar to a low-pass filter, it is almost impossible
to restore the high-frequency information of the reflectivity
sequence in noisy situation by inversing a low-pass filter.
We can only get an estimation about reflectivity sequence
without certainty of real high-frequency components.

3. AN APPLICATION EXAMPLE

Guided by above idea, we succeed in developing a blind seis-
mic deconvolution algorithm for two-side CMP (Common
Medium Point) prestack seismic data to improve its resolu-
tion, in which we take the advantage of current technology
of seismic data acquisition skillfully so that twice measure-
ments can be obtained with respect to every exploration
position without additional acquisition work needed.

In seismic prospecting, the subsurface structure under ev-
ery exploration point is described by a set of seismic traces,
namely, a CMP gather. There are two reasons why so many
seismic measurements are needed for one point exploration:
one is due to low SNR in seismic data acquisition; the other
is because the subsurface formations are not strictly hor-
izontal. In case of slant subsurface formations, a seismic
trace no longer represents the subsurface structure under
the central point between the explosion point and the sen-
sor point, as shown in Fig.2. However, the poststack seismic
trace of a set of measurements, a CMP gather, with various
distances between the explosion point and the sensor point
is very close to do so when the subsurface formations are
slightly slant with random directions.

As we know, two-side seismic CMP gather consists of
many pairs of symmetrical seismic traces. In each pair, the
explosion position of one trace is right the receiver position
of the other trace, and vice versa, as shown in Fig.2. Ob-
viously, no matter how irregular the subsurface structure
is, if one wavelet can travel down from the explosion point
and reflected up to the receiver point, see Fig.2(a), another
wavelet is definitely able to travel down from the receiver
point and reflected up to the explosion point through the
same path, see Fig.2(b). This fact, not an imposed assump-
tion, implies strongly that the reflectivity sequence repre-
sented by one trace should be ezactly equal to those by its
symmetrical trace in a CMP gather. In addition, we should
note another fact that these two symmetrical traces are dif-
ferent to some extent because they are stimulated by dif-
ferent explosions and recorded by different receivers. That
is to say, their wavelets are different to some extent. Ac-
cording to above discussion, our dual exploration model for
blind seismic deconvolution is as follows: two symmetrical
seismic traces are considered as two measurement signals

Fig.2(a) wavelet travel path
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Fig.2(b) inverse wavelet travel path

z1(-) and z3(-), two different wavelets as two different ex-
ploration signals s, () and 33(-). Where, no additional mea-
surement work is needed to construct the dual exploration
model. Based on this model, two wavelets s1(-) and s3(-)
can be estimated according only to a pair of symmetrical
traces z;(-) and z2(-), and then deconvolution can be per-
formed easily to get a pair of high-resolution seismic traces.

It should be emphasized that we can only get a high-
resolution seismic trace instead of the reflectivity sequence
even though seismic wavelets 31(-) and 32(-) are now known,
because the effect of s;(-) and s2() are similar to that of
two low-pass filters. In addition, considering low SNR and
computation burden in prestack seismic data, we take de-
convolution upon a whole CMP gather by an average zero-
phase wavelet instead of doing it trace by trace by individual
wavelets in practical seismic signal processing.

4. SIMULATIONS AND RESULTS

As shown in Fig.3(a), there are two synthetic seismic
wavelets with a slight difference. One is represented by
solid line and the other by dotted line. Convolving them
with a random reflectivity sequence and adding 2% Gaus-
sian white noise, two seismic traces are then obtained as
shown in Fig.3(b), which are so similar that they can hardly
be distinguished by eyes. In fact, there should be much
difference between two symmetrical seismic traces in real
CMP gather. Estimated wavelets are displayed in dotted
line in Fig.3(c) and Fig.3(d) respectively. There is only a
scalar difference and a very small phase shifting between
synthetic wavelets and estimated ones, which don't matter
for the result of seismic deconvolution. From the simulation
results, It can be found that blind wavelet extraction is fea-
sible even though there is only a slight difference between
two wavelets.

Fig.4(a) shows an upper section of a real two-side CMP
gather with rolling waves and first arriving breaks cut away.
Fig.4(b) shows its high-resolution result processed by our
blind prestack seismic deconvolution method. The effect
of our new method for resolution enhancement is obviously
good.
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Fig.3(c) wavelet 1 (solid) and its estimation (dotted)
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Fig.3(d) wavelet 2 (solid) and its estimation (dotted)

5. CONCLUSIONS

Simulations and results demonstrate our blind seismic de-
convolution method is stable and effective. From this suc-
cessful application example, it can be concluded that our
dual exploration method for multi-layer structure identifi-
cation is feasible in practice as a general way. The key to
this method is to design twice measurements by different
exploration waves at every point on the surface. If they are
designed skillfully, measurement work need not be doubled.

ACKNOWLEDGEMENT

Thanks to Dr. Xiaoxin Ying for providing software to dis-
play seismic profiles.

REFERENCES

[1] H. Debeye, P. Riel, ”Lp-Norm Deconvolution”, Geophysical
Prospecting, 1990, vol. 38, pp. 381-403

[2] J. Goutsias, J. Mendel, "Maximum Likelihood Deconvolu-
tion: An Optimization Theory Perspective”, Geophysics,
1986, vol. 51, no. 6, pp. 1206-1220

[3] J. Mendel, "Minimum Variance Deconvolution”, IEEE
Transactions on Geoscience and Remote Sensing, 1981, vol.
19, pp. 161-171

HF = L.
rsasin) Bt |
- $ =Y. uk% -
ot * o ..:_—‘~ -
- s S < 9 , > 4 -
2 vl
DT || [
Xy ErR2e i

914 -
136020
l%ie{\\ égﬁ;ﬁ; [

Fig.4(a) an low-resolution CMP

weeeomze2RAIRARS

o~
5
) halh oid '
-
%
'
H

M, ;L( | %?%‘?iégﬁ%'
Ll R

Fig.4(b) an high-resolution CMP

!
§

{4] E. Moulines, P. Duhamel, J. Cardoso, S. Mayrargue, ”Sub-
space Methods for the Blind Identification of Multichannel
FIR Filters”, IEEE Trons. on Signal Processing, 1995, vol.
43, no. 2, pp. 516-525

[5] N. Rao, "Investigation of A Pulse Compression Technique
for Medical Ultrasound: A Simulation Study”, Medical &
Biological Engineering & Computing, 1994, vol. 32, pp. 181-
188

[6] E. Robinson, ”Predictive Decomposition of Time Series with

Application to Seismic Exploration”, Geophysics, 1967, vol.
32, pp. 418-484

(7] H. Taylor, S. Banks, J. McCoy, *Deconvolution with the L1
Norm”, Geophysics, 1979, vol. 44, pp. 39-52

[8] L. Tong, G. Xu, T. Kailath, ”Blind Identification and Equal-
ization of Multipath Channels”, In Proc. of International
Conference on Communications, 1992, pp. 1513-1517

[9] R. Wiggins, "Minimum Entropy Deconvolution”, Geoezplo-
ration, 1976, vol. 16, pp. 21-2§



Analysis of n-dimensional Nonlinear Nonuniform Grounded
Infinite Grids *

Victor A. Chang and Armen H. Zemanian

Department of Electrical Engineering
University at Stony Brook
Stony Brook, N.Y 11794-2350, U.S.A
e-mail: vchang@sbee.sunysb.edu , zeman@sbee.sunysb.edu
FAX: (516) 632-8494

Abstract

An iterative method is devised for determining the voltage-current regime of an n-dimensional
nonlinear nonuniform grounded infinite grid. This is accomplished under conditions restricting
the nonlinearity and nonuniformity sufficiently to allow the operator arising from a nodal anal-
ysis to be decomposed into the sum of a Laurent operator and a nonlinear operator, which in
turn can be rearranged into a contraction mapping.

1 Introduction

A structure appearing in early vision chips is a triangular grid of resistors whose nodes are excited
by current sources due to an image falling upon an array of photosensitive devices (see (2] and
the references therein). The grid is perforce finite and the resistors are in general nonlinear and
nonidentical, that is, the grid’s graph is uniform (i.e., automorphic) but its electrical elements have
nonlinear characteristics which vary in general from place to place. An outstanding problem is the
determination of the voltage-current regime for a given set of excitations. Since early-vision grids
are large, standard nonlinear solution techniques are onerous and time-consuming for this purpose.
Another approach is to replace the grid by an infinite linear uniform one, in which case the solution
is easily obtained by using Laurent operators (3, Sections 7.1 to 7.3]. The use of an infinite grid
is usually acceptable if the behavior at more central points of the grid is of primary interest. The
assumptions of linear and uniform element characteristics are less acceptable. In this paper we
present a new iterative method for solving an infinite grid whose nonlinearities and nonuniformities
are sufficiently mild to allow a nodal analysis to be solved by means of a Laurent operator and a
contraction mapping. The result will be a method of solution that is much more efficient than would
be a standard technique for solving a large nonlinear network. Moreover, we establish herein a class
of networks with possibly nonmonotone characteristics having unique operating points.

2 The general n-dimensional Grid

Consider an n-dimensional grid with nodes indexed by the integer n-tuple j = (ji,j2,...,Jn) € Z"
plus an additional ground node. Each node is connected to ground through a nonlinear conductance

*This work was supported by the National Science Foundation under Grants DMS-9200738 and MIP-9423732.



described by i = g;j(v) and to a node displaced p units (where p € Z") by another nonlinear
conductance described by i = ff’)(v).

Let P = {p : p € Z"} be the finite set of integer n-tuples such that, for all j, nodes j and
j + p are connected by the nonzero conductance ff.p )(-). Since we are working with grids that have
automorphic graphs, P does not depend on j. Also, P satisfies the following two conditions

1. 0" =(0,0,...,0) ¢ P
2. if p=(p1,p2,-..,Pn) € P then —p=(—py,—p2,...,—pn) €P.

(The triangular grid shown in Figure 1 is a particular case of this structure with n =2, P =
{(1,0),(0,1),(1,1),(-1,0),(0,-1),(~1,-1)}, and the node indices are as indicated). Of course, the
conductance connected from j to j + p is the same as the conductance connected from j + p to j.
However, since we are dealing with nonuniform grids, these conductances may vary as j and p vary.
We also assume that, for each j € Z", there is a current source h; connected from ground to each
node j such that the h;’s comprise a vector h = {h; : j € Z"} € I3,; I3, denotes the real Hilbert
coordinate space with coordinates indexed by Z". Since Kirchhoff’s current law is satisfied at each
node j,

05(05) + 3 £P(v; = vj4p) = by (1)

PEP
for all j. (Here, fi?) = f{77)).

3 The Conductance Operator
We now express each f}’ )() and g;(-) as the sum of a linear component and a nonlinear one:

ff’) (vj = vi4p) = My (vj —vj4p) + ffp)(vi - Vj4p) (2)

9i(vj) = myv; + §j(v;) (3)
where m,(,) and m, are constants independent of j. The my(,)’s may differ for different p, except
that M) = My(-»).

Since the linear part is chosen independent of j, it represents a uniform linear grid, and the

nonlinear part represents in general a nonuniform nonlinear grid. Equation (1) can now be rewritten
as

S Im s (05 = v34p) + A7 (05 — vy4p)] + myv; + 5(v3) = by (4)
peP
Rearranging this, we obtain
(Mg + Y mpn)os = 3 My visp + 3 £ (05 = vj4p) + §i(v3) = bj. (5)
peE?P PEP 1134

The first two terms of this equation are linear and combine into a Laurent matrix {1}, [3, Section
7.1). Let yr be that matrix. The last two terms combine into a nonlinear operator yx. Then,
yr-v+yn(v)=h . (6)

Here v, h € I3, represent the node voltages and current sources respectively.
The 2n-dimensional Laurent matrix y. = [yj +], (j, k£ € Z") is defined by

Mg+ ,ep My ifg=0,
Yij+e = —my0 =~-my-a ifqEP, "N
0 otherwise.



The nonlinear operator yun : 13, — {3, is defined by

yn (V) = [5(5) + 3 FP (05 = vl (8)

pPEP

where we denote a vector x € I3, as x = [z;];,7 € Z", and z; are the components of x.

Let [—x,x]” denote the Cartesian product of n replicates of the real interval [—x, 7] and let
6 € [—x,7]*. Also, let multiplication by Y;(8) be the image of the operator y; under the n-
dimensional Fourier transformation of node-voltage vectors (See {3, Section 7.1}). Thus,

YL(8) = (mg + 3 mym) — O mymcos(p - 6), (9)
pEP PEP ’

where (p - 8) denotes the dot product.
Assume my(,) > 0 Vp. We can define

1= gy ve() = m, (10)
We can then choose m, > 0 so that y;' exists. Equation (6) can be changed to
v+yzlyN(V) =yi'h. (11
Therefore, we have
v=y'h=yrlyn(v) = da(v). (12)

If yzlyN is a contraction on v then so too is dj, and we can find a solution using the fixed point
theorem and the usual iteration.
Now consider yy. Let w,x € I3,.

llyw(w) = ya (Ol =li{g5(w;) + 3 FP (w5 = wigp)ly = G5(z) + O FiP(zj = zjap)lill. (13)

pEP peEP

Applying the triangle inequality, we have
llyn(w) = yx Il < N35(w5) = (2Ll + D NP (w; — winp) = FP(zj — ziap)lill. (14)

pPEP

We assume a Lipschitz condition on gjand f;’ )uniformly for all j. In particular, we assume Va;, 3; €
R and ¥j € Z", that

1gj(a;) — 3;(B;)l < malaj — Bj) (15)
and
1£)(a;) - £P(8) < Vi laj = Bil, (16)
where 7;(,) and 7; are positive real constants. Applying the triangle inequality again, we see that
yzlyN satisfies a Lipschitz condition:

N+ 2 ,ep 70
m

yz'yn(w)y=yzlyn(x)|l < llw - x]I. (17)

If
N +2Y,6p Ty
= m'

k

(18)

is less than 1, then both yzlyN and dj, are contractions. This allows an iterative solution for the
grid in the standard way.



4 Selecting the Linear Part of the Conductance Operator

Let a(f’) and a, be the infima of the slopes of all the chords of all the f}” ) and all the g; respectively.

These are finite by our assumption of uniform Lipschitz conditions. Similarly, let b(!p) and b, be the
corresponding suprema, also finite. For every p € P, set

m = @ +59), (19)
m, = é(a,+b,). (20)
Then, we will have
R Y ) @
w o= 3(b-ay). (22

It can be shown that with these choices the contraction mapping constant k given by (18) assumes
its lowest possible value and that value is less than 1.
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