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A lattice version of the microemulsion model introduced by A. Ciach, J.
H0ye and G. Stell [J. Chern. Phys. 90, 1214 (1989)] (CHS) is studied within
a mean-field approximation. In the absence of (orientational) surfactant-
surfactant intera.ctions, an exact. integration of the amphiphiles' orientational
degrees of freedom in the CHS model yields an effective spin-one Hamilto-
nian with multi-body, temperature dependent interactions between particles,
closely resembling the model introduced by M. Schick and W. H. S~ [Phys.
Rev. Lett. 59, 1205 (1987)] and subsequently studied by G\>mpper and Schick.
The phase diagram for the CHS effective Hamiltonian on' a two-dimensional
lattice is calculated at a mean-field level. Comparisons with selected results
from Schick's model are then discussed. The calculated structure functions
are in qualitative agreement with experimental results, showing a structural
evolution from water-in-oil, to bicontinuous, to oil-in-water microemulsions
as the water to oil concentration ratio is varied. The $ymmetric (pW = pO)
subspace of the disordered phase of both models is then investigated using a
percolation theory previously introduced by the authors. In both models the
bicontinuous microemulsion phase is identified as a region of the phase diagram
where the three molecular species are simultaneously percolating. Finally, the
percolation threshold lines are investigated, for both models, as functions of
their energy couplings. We find, again, similar behavior for the CHS effective
Hamiltonian and Schick Hamiltonian. However, the thresholds are found to
be more sensitive to the amphiphilic strength of the surfactant in the former.
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1 Introduction

From the standpoint of microscopic theories of rnicroemulsions one would

like to understand both the phase diagram, which is very rich in structure,

and the underlying microscopic structural changes that can occur within the

diSOTderedphase. The later are particularly important in connection with

the fonnation of the microemulsion phase itself. It seems that many of the

unique properties of these systems, like the inability of the microemulsion to

wet the water-oil interface, the extremely low surface-tension between water

and oil, and also the very distinction between an ordinary disordered fluid

and the microemulsion phase, stems from its structural properties [1,2,3].

Both the phase diagram and the structure functions for the disordered phase

have received considerable attention in the literature for the last few Y€ars

({3,4,5,6,8,12,9,10,11]). Although a good qualitative picture has emerged from

these studies, it is safe to say that the thermodynamic phase behavior of mi-

croemulsions is still far from completely understood on the basis of a single

Hamiltonian model. Not surprisingly, different models are able to explain some

properties better than others. For instance, it is known that the disordered

phase coexists with water- and oil-rich phases and that many spatially mod-

ulated phases are present at higher concentrations of surfactant [16,17,18,19].

The model proposed by Widom and collaborators [4]captures this later feature

but fails to produce the former, while in the model proposed by Schick[1,20]

the trend is reversed. There is first-order transition between disordered and

water/oil-rich phases, but among the lyotropic phases only the lamellar phase
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seems to be present. A good comparison between some of the available re-

suIts of different lattice models can be found in reference {21]. However, the

most successful models are still not fully investigated, and much remain to

be done before a comprehensivecomparision a.mong them can he made. One

anticipates tha.t such a comparision will help us to understand better the ac-

tual microphysics of surfactant mixtures, and prove useful in the pursuit of

a more refined theory for microemulsions. In this work we shall explore a

mn.nection between two apparently very different lattice models, namely, the

model introduced earlier by Ciach, H~ye and Stell[8,7] (CHS) and a model

due to Schick and collaborators[1,3,20]. This is accomplished by integrating

the surfactant orienta.tionaJ degrees of freedom in the partition function of the

CHS model, which leads to an effective Hamiltonian with interactions sim-

ilar to those present in the Schick model. Using the effective Hamiltonian

formulation we study the phase diagram and also the structure functions for

the disordered phase of the model in two dimensions within a local mean-

field approximation. From the knowledge of the structure functions we then

investigate the bicontinuous phases of both, the CHS effective Hamiltonian

model and the Schick model, from the perspective of a percolation theory

recently proposed[22] to study site-correlated percolation problems in Hamil-

tonian models of microemulsions. For both models we find that, within a

mean-field-like approximation, the bicontinuous microemulsion pha.se contains

a part of the phase diagram where the three molecular species are simultane-

ously percolating. The threshold lines are then investigated as functions of the

coupling energies of both models.
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The remaider of the paper is organized as follows. In the next section,

following Ciach {9J,we recast the CHS model mto more convenient form. In

section 3 we present a description of the local mean-field approximation and

calculate the instability of the disordered phase induced by modulated fiuctu-

ations of the order parameters. In section 4 we perform an exact integration

of the surlactant orientations in the partition function of the CHS model to

obtain an <effectiveHamiltonian which contains temperature-dependent many-

body interactions involving only structureless occupation variables. Similari-

ties with Schick's model are then discussed. A local mean-field theory is used

again in section 5 to study the phase diagram of the effective Hamiltonian

on a two dimensional la.ttice with emphasis ODtransitioJlS to the disorOOed

phase. In section 6 we study the behavior of the sca.tteriDg functions for the

<lisoIdered phase.aDd some qualitative compaxisoJlSare made with expeximen-

tal results. Finally, in section 7 we briefly present our approach to percolation

in these systems and apply it to investigate some clustering properties of the

bicontinuous phases of two microemulsion models.

2 CHS Lattice Model

In the lattice version of the CHS model introduced in Refs. {8,7]every

site of a lattice, taken to be hypercubical for simplicity, is occupied by a

single particle of some kind. Interactions are considered only between pairs of

particles which are on nearest-neighbor sites. The Hamiltonian of the mixture

can be written in terms of multicomponent lattice gas variables, which m a
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general form is given by

'Ii = - I: L ~j(r' - r) nj(r) ni(r') - L:L pj nj(r) .
i~j <r,r'> j r

(1)

The variables nj(r) assume values 0 or 1 depending on whether the site r

is occupied by a particle of species j or not. (The surfactant molecules with

different orientations can be viewed as different species in the mixture [7].) The

sums in i and j are over the 2+ 2d "components" of the mixture (i = 1,2 refers

to water and oil respectively, while i > 3 refers to the amphiphile particles

with their 2d possible orientations. For obvious reasons Jli = Jlj = Jls for

all i,j ~ 3. (The terms amphiphile and surfactant are used interchangeably

throughout this work.) One of the essential characteristics of the model is

the fact that the amphiphile particles have selective ends, i.e. the interaction

strength between, say, water and amphiphile is changed if the water molecule

is replaced by an oil molecule or if the relative orientation of the amphiphile is

reversed. This is accomplished by an asymmetry m the interaction couplings

fij with respect to spatial inversion or with the interchange of the labels i and

j when either i or j > 3 as discussed in {7].By introducing spin-l variables

S(r) = nl(r) - n2(r) ; Sj(r) = n2j+2(r) - n2j+1(r) ; j = 1,2, ...,d (2)

the Hamiltonian can be conveniently [9] written as

1-l = 1-lo + 1-l1+ 1-l2 (3)

where 1-lois of the form of the Blume, Emery and Griffiths [23] (BEG) model

1-lo= - L [J S(r)S(r') + K S2(r)S2(r')]- H 2: S(r) + Ll2: S2(r). (4)
<r,r'> r r
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The couplings J and K, as ~ll as the fields H and ~, are trivially related to

the particle-particle couplings and chem.ical potentials through the relations

J = (€n + €22 + 2€I2)/8 j K = (€n + €22 - 2€12)/8

H = (PI - P2)/2 j ~ = P8- (PI + P2)/2 . (5)

The second term in (3) represents the mter.a.ctions of the surfactant with oil

and water, which can be written as

d

'HI = - eLL S(r) [Sj(r + ej) - Sj(r - ej)] ,
r j=I

(6)

where we have assumed the surfactant interacts equally strongly with water

and oiL The third term in (3) is an interaction between amphiphiles which

favors the molecules to be parallel to each Dther. Such an interaction can be

written as
1 d

'H2 = -"291: L LSj(r)Sj(r+o.d ,r j=I 6.1

where 0.1 corresponds to the 2(d -1) nearest-neighbor sites in the directions

(7)

perpendicular to the direction j. The spin variables are subject to the con-

straint S2(r) + r:1=1SJ(r) = 1 which reflects the fact that there are no empty

sites on the lattice.

Several studies on this model or variations thereoff, have been published in

the last few years {7,8,9,10,11]. Very recently Matsen and Sullivan [13]studied

a one-dimensional version of the CHS model with results similar to those

of reference [11]. They have also studied interfacial properties of a slightly

modified version of the CHS Hamiltonian within the mean-field and Bethe
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approximations [14]. Also recently, Laradji et.al. [15] have performed large-

scale Monte Carlo simulations of the CBS model on squaTe lattices and also

presented mean-field results which are similar to those reported in reference

[9]. The Ramiltonians used in references [13,14,15] may be better recognized

as the CRS model (with Blight v.a.riationsin the case of reference [14]) when

the CRS Hamiltonian is written in the form of equation (25) (see section 4).

3 Boundary oflnstability ,of the Disordered Phase

In order to study phase coexistence and instability of the system we in-

troduce a set of local order-parameter fields defined by

7](r) = < S(r) > ; p(r) = < S2(r) >

Mj(r) = < Sj(r) > ; Qj(r) = < S}(r) > (8)

Here 7]measures the local wa.ter and oil concentration wfference, pS = 1 - P

measures the surfactant concentra.tion (irrespective of orientation), Qj gives

the concentration of surfactant with principal direction j, while Mj specifies its

orientation along this principal direction. The simplest theory is a mean-field

one, where the free energy functional is given by a standard expression

FMF = - 1: {J 7](r)7](r') + ]{ p(r) p(r')] - L[H 7](r)- ~ p(r)]
<r,r'> r

d

-c ~ ~ 7](r) [Mj(r + ej) - Mj(r - ej)]
r j=l

9 d
-- ~ ~ ~ Mj(r) Mj(r + h1.)

2 r j=l 6.!.
(9)
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+ T L L [Qj + Mj 1n Qj + Mj + Qj - Mj In Qj - Mj ].
r j 2 2 2 2

In order to study the phase diagram this functional must be minimized

with respect to the order parameters under the constraint

d

'If =LQAr)+ p(r) -1 =O.
j=l

(10)

This procedure yields then self-consistent equations for the order parameter

fields whose solutions are used to calculate the value of the free energy. These

equations, which are easily obtained by means of a local Lagrange multiplier,

are given by

d

p(r) = [1+ e-b(r)secha(r) I: cosh bj(r) r1
j=l

(11)

(12)

fl(r) = p(r) tanh a(r)

d

Qj(r) = [1- p(r)) cosh bj(r)[2: coshb;(r) r1 ,
j=l

(13)

(14)

M;(r) = Qj(r) tanh bAr)

where

b(r ) =

d

(3J L[ 71(r+ ej) + 71(r- ej)]
j=l

d

+c LIMj(r + ej) - Mj(r - ej)] + {3H
j=l

d

(3K 2: [p(r + ej) + p(r - ej)] - (3A
j=l

(15)

a(r) =

bj(r) = (3C [71(r - ej) -71(r + ej)] + {39 2: [MAr + b.d + Mj(r - b.d].
6J.
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There will be in general many solutions of these equations representing differ-

ent candidates for the density profiles. At a given tempera.ture and chemical

potentials the stable phase corresponds to that solution for which the free en-

ergy is a global minimum. When two or more solutions of these equations have

the same minimal V4lue for the free energy, at fixed temperature and chemi-

cal potentials, the corresponding phases are said to coexist. To construct the

entire phase diagram is a formidable task in view of the fact that many period-

i<:a.llyordered phases are presumably present. In section 5 we .shall carry out

part of such a progr-am for a special case, once we have eliminated the orien-

tational degrees of freedom and thus reducing the number of order parameter

fields in the problem.

For uniform phases the problem becomes very simple. In this case we

have 7](r) = "1,p(r) = p, Mj(r) = M and Qj(r) = Q . Minimization of the

free energy leads to the equations

{3A =

1 P+TJ
-In - -2d{3JT/
2 P-7]

1 1 - P
2d (JKp - 21n (p2- 7]2)+ 1n ---;j -lncosh [(d-l){3gM]
I-p -

-r tanh [(d-1){3gM] . (16)

{3H =

M =

The disordered phase in the symmetric case H = 0, where water and oil are

present in equal amounts is characterized by the solution 7]0= Mo = 0 with

Po given by the solution of the equation (l~) for a. given temperature and

surfactant chemical potential~. Notice that at this level of approximation

the interaction between amphiphile and ordinary particles gets completely

washed away when considering spatially uniform phases. 'This can be seen,
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for instance., from the ecpression for the free energy functional (equation 9).

This means that the tricritical temperature, below which the disordered phase

coexists with water- and oil-rich phases, is essentially the one given by the

Blume, Emery and Griffiths [23] (BEG) model. We shall see shortly that this

tempera.ture is much too low and that a transition between the disordered

phase and a lyotropic modulated phase will preclude the existence of such a

tricritical temperature in this mean-field treatment.

In order to determine the boundary of instability of the disordered phase

it is convenient to work in Fourier space considering small fluctuations around

the uniform solutions of the order parameters, keeping only terms through

second-order in a Landau-Ginzburg expansion of the fr~energy functionaL

The Fourier expansions of the order parameters are written as

x(r) = xo+ L X(k) eik.r ,
k#o

(17)

where X stands for Tf , p , Mj or Qj. In the symmetric case we have Tfo=

Mo = 0 and Qo = (1- Po)/d. Expanding (9) up to second order in the Fourier

amplitudes, we obtain

FMF = FoMF+ L fk '
k

(18)

with

fk = ak Tf(-k) 1](k) + t3kp(-k) p(k)
d

+?: [-{ (Tf(k)Mj( -k) -Tf( -k) Mj(k) )
)=1

1 .
]+ 2QoQj( -k) Qj(k) + Ok Mj( -k) Mj(k) ,

(19)
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where

T
ok = - - JA(k)

2po

oj Td .k = .-./1 - \ -gA~(k)

T
; ,8k= - - I<A(k)2po

j {= i c sin(kj) (20)

and
d

A(k) = Lcos(kj) j Ai(k) = L cos(ki)
j=l ir#j

The quadratic form fk can be cast in a matrix representation and di-

(21)

agonalized in a standard way. In three dimensions its determinant is gi~n

by

det(T,~, k) = ok Dk Ok Ok + hie? nk Ok+ hic)2Oknk + hfc)2nk ilk '

(22)

where it is understood that po is the solution of the equation ,8.6. = 6,8I<po+

In(Qo/po), which is obtained from equation (16). A second-order phase tran-

sit ion from the clisordered phase into an ordered state of wavevector k occurs

when

det(T,~, k) :;;::0 . (23)

At a given surfactant chemical potential .6. the wavevector k = kc character-

izing the periodically ordered state is the one for which the solution of the

equation above has the highest T. This condition then generates the locus of

critical points of the disordered phase in the (T, A)-plane.

In Figure 1 we show this critical line for some representative values of

the coupling constants for the symmetric case H = o. At smaller values

of the surfactant concentration, i.e. to the left of the point kc = 0 where
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pS = O.12R,the disordered plw;e undergoes a, continuous phase transition into

uniform water-rich and oil-rich phases. At higher surfactAnt conrentra,tions'the

system prefers to organize itself into a liquid-crystalline phase of wavevector

kc ¥ O. We have found that the highest temperatures in the solution of (23)

occur along the direction (1,1,1). (The system is not rotationally invariant

because of the lattice.) In Figure 2 we show kc versus surfactant concentration

along the critical line of Figure 1. H there were a tricritical point in this

approximation it would be located at TtcfJ = 3.6 and pfc = 0.4. Belowthis

temperature the line of critical points between disordered and water-rich foil-

rich phases would merge into a triple line along which these phases would

coexist. The point to notice here is that the system would prefer to or~r into

some modulated phase much before this temperature CAllbe reached from

above, thus precluding three-phase coexistence between the disordered and

the uniform water foil-rich phases in disagreement with experiments [16,17].

We point out however, that almost surely this is not attributable to a fault

in the model, but it is a consequence of the mean-field approximation which

averages out the anti-symmetric pair-interactions between the surfactant and

the ordinary particles for uniform phases. In section 5 we shall see how this

can be easily remedied.

So far we have found the line of second-order transitions separating the

disordered fluid from other phases. This line may not reflect the actual bound-

ary of existence of the disordered phase of the model for all values of surfactant

chemical potential since a first-order transition into a modulated phase could

take place at temperatures higher than the ones given by line of continuous

11



-- __n- _n- _--n- - -- __n- -- ------

transiticms we.h.a.vedetermined. A more complete scenario including first-order

transitions between phases will be given in section 5. First let us derive an

effective Hamiltonian for the CHS model where the number of order parameter

fields gets reduced.

4 Summation of the Surfactant Orientations

In t~ 5pin-1 model developed by Schick and collaborators the amphiphilic

nature of the surfactant particles is represented by a three-body potential

which favors the surfactant molecules sitting between the water and oil molecules.

It has been suggested [3] that this interaction should not be thought of.as a

r-eal thr~-paIticle molecular interaction, but rather that it can be thought of

as resulting from an angulaI integration of a more fundamental, orientation de-

pendent, interaction between surfactant and nonsurfactant particles. In fact,

it has been shown [24,25] that an integration over the directional degrees of

freedom in binary mixtures of water and surfactant leads to a Hamiltonian

wi.th temperature-dependent coupling energies between clusters of three and

more (stTUctureless) particles. It is, therefore, natural to adopt here similar

procedure for the CHS ternary system.

First we notice that the oriented surfactant occupancy variables Sj can

be written as

Sj(r) = [1- S2(r)]oAr) (24)

where [1 - S2(r)] determines whether the site r is occupied by an amphiphile

molecule or not, while the variable oAr) = ::1:1specifies its orientation along
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the jth direction in case the site is occupied by an amphiphile. The equations

(6) and (7) become

d

1-l1 = -c ~ ~ S(r) ([1 - S2(r + ej)] O"j(r + ej) - [1- S2(r - ej)] O"Ar- ej))r j=1
1 d

1-l2= "2g L L [1 - S2(r)] [1 - S2(r - ej)] !:Tj(r)!:TAr- ej) .r ;=1
(25)

The partition function is given by

z= ~ e-f31io ~ e-I3(1tl+1i2) .
{5} {u}

(26)

When the interaction between oriented amphiphiles is neglected the sum over

the variables 0"can be carried out at once since the O"J'sare not coupled to one

another in 'HI. One is left with a partition function of the form

z = ~ e -13(1to+1teff) ,
{5}

(27)

where the effective Hamiltonian 1-leff,which depends solely on the structureless

occupational variables S, is given by

d

1-leff = -I:[1-S2(r)] ln~ 2cosh (LkIS(r+eJ-S(r-eJ)])'r 3=1 .

(28)

The logarithmic function above can be exactly written as a polynomial in the

vaTiables S for various lattices since Sa = S (recall that for every siteS(r) can

assume only the values 0, :H.) For a one dimensional chain this polynomial js

easily obtained and 1-leff is simply given by

1-l:ff1 = ~ [1 - S2(X)] [Jl S(x + 1)S(x -1) + J2S2(X+ 1):t:

+JaS2(x+l)S2(X-l)] . (29)
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where the temperature dependent couplings are

1
J1 = -2 In (2 cosh 2{3e) ; J2 = In (2 cosh {3e) ; J3 = -J1 - J2 (30)

This Hamiltonian presents a striking similarity with Schick's. The term

m J1 reflects the amphiphilic nature of the surfa.cta.nt molecules by favoring

configurations where they sit between water and oil particles. The second term

merely renormalizes the coupling K and the surfactant chemical potential in

the Hamiltonian 'Ho. It is worth noticing that the terms in J2 and J3 represent

interactions between structureless amphiphiles which are a by-product of the

interactions between water and oil with an oriented surfactant molecule. The

last two terms in (29) are not present in Schick's model. Nevertheless, we

have found that the topology of the one dimensional phase diagram remains

unaltered within mean-field theory. Similar polynomial expansions for (28)

are obtained in two or three dimensions. For a two-dimensional square lattice

such a polynomial is derived in the Appendix A. There we find that, besides

terms like the ones above, many other multi-particle interactions appear. The

phase diagram in this -case is somewhat different from the one given by the

Schick's model as we shall show by applying the mean-field theory of section

3 to the effective Hamiltonian in the upcoming section.

We close this section with a comment on a similar relationship between

earlier versions of the Alexander [26] and the Widom. Wheeler [27]models. In

the later the sites of a hypercubicallattice are filled with a spin-1/2 variable

assuming values u = :1:1. Every nearest-neighbor pair of +1 spins represents

a water molecule, every nearest-neighbor pair of -1 spins represents an oil
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molecule..and every pair of opposite spins represents an amphiphile. The parti-

des are thought of as located on the bonds between sites. In this way water and

oil are always separated by a correctly oriented amphiphile. The Alexander

model is also a spin-1/2 model, but one in which the water and oil molecules

are represented by the two spin states on each site. An additional variable

p = 0, 1 is placed on the bonds between sites indicating whether a surfactant

molecule is pxesent ox .Dot. In this model, water and oil are not necessarily

separated by an amphiphile, but their separation depends on temperature and.
on the strength of the bonds governed by the variables p. When no interaction

between these bonds is considered one can integrate out the variables p in the ..

partition function obtaining an effective spin-l/2 Hamiltonian very similar to

that of the Widom- Wheeler modeL

5 Mean-Field Results for 1-leff

The integration of the surfactant orientations in the CHS model left us

with a very long Hamiltonian w.hen written.a.s a polynomial (Appendix A).

Nevertheless, its treatment via mean-field theory is much easier to handle

since now we have only two order-paTaIDeter fields, namely, 7](r) and p(r).

Obviously, both the original CHS and the 'Heff formulations yield the very

same thermodynamic and structural properties if these could be obtained in

an exact way for any dimension. However, this is not the case when using

approximation methods. For instance, in section 3 we saw that the mean-field

approximation averages out the effects of the surfactant interactions with wa-
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ter and oil in the original CHS formulation when considering uniform phases.

We shall see here that this is not so when a mean-field theory is applied to

the model after the summation of the amphiphile orientation is done in the

partition function, with a subsequent polynomial expression for the resulting

effective Hamiltonian. We have found that as long as one is not seeking proper-

ties which depend directly on the surfactant orientations, it is more convenient

to work with the effective Hamiltonian where the orientations have been im-

pJicitly accounted for. The results we xepmt here axe for a. two-dimensional

square lattice. In view of the ground-state properties of the model [7] it is

evident that the phase diagram for a three-dimensional system is much richer

in structure due to the presence of 3-d modula.ted phases like the cubic phase.

However, .as far as mean-field theory is concerned we expect our calculations

to exhibit the characteristic features of the full model for those parts of the

phase diagram where three-dimensional structures are not present. The treat-

ment we shall give here and in the next section, follows very closely the one

of reference [3] due to the similarity of both Hamiltonians. We shall ooncen-

trate on the symmetric subspace in which H = 0 and where the surfactant

interacts equally strong1y with water and oil. In this case the mixture is said

to be balanced, i.e. water and oil are present in equal amounts in the system.

Therefore there are only two external parameters to be varied, namely, the

temperature and the surfactant chemical potential. The symmetric model is

expected to describe real mixtures containing only non-ionic surfactants where

the system balances at water to oil concentration ratios very close to one. For

ionic surfa.ctants one must take into account the fact that there is asymme-
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try in the intera.cti01lSbetween the surfactant and the other two romponents

[6,16]. The effective Hamiltonian in this case is somewhat different from the

one we have derived here.

The free energy functional is given by

FMF = 1i+T~ [p + 1]In p+ 1]+P -1] In P -1] +(l-p) In (l-p)], (31)
7' 2 2 2 2

where 'H = 110+ 'Heff' Here 'Hodenotes the BEG energy given by

'Ho = - L [J 1](r)1J(r') +]( p(r)p(r')] - I:[H 1](r)- L\p(r)] .
<r,r'> r

(32)

The energy functional 'Heff is obtained by replacing the site occupation vari-

ables S(r) and S2(r) in the effective Hamiltonian derived in the Appendix A

by theiT Tespective average values. The result is given by

'Heff = - L (1- p)h(1')
r

(33)

with

2

h(r) = L [J11](r - ej) 1](r+ ej) + J2p(r + ej) + J3 p(r - ej)p(r + ej)J
;=1
+J4 D,x p /)..!IP + Js(ITX1] /)..!Ip + IT!I1]/)..xp) + J6( nx p /)..!IP + IT!Ip /)..Xp)

+J7(IIX71 TIYp + llJ/ll nx p) + J8 TIx71llJ/1] + Jg DXp TIJ/P . (34)

Throughout there expTessions it is understood that 71= 71(1')and P = p(T).

Also n; f(r) = f(r+ej)f(r-e;) and /)..;f(r) = f(r+e;)+ f(r-e;) for j = x, y.

The temperature dependent couplings are given in Appendix A. Minimization

of the free energy functional (31) leads to equations for the order parameters

:fields '1{f')and p(r) which are very similar to the ones given in section 3.
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At high temperatures the stable state is a uniform disordered phase char-

act~ized by 7](r) = 7]0= 0 and p(r) = Powhere these values are obtained

from the uniform self-consistent equations. As we lower the temperature at

low surfactant concentrations we find no spatially modulated phases, so that

the system separates into uniform water-rich and oil-rich phases characterized

by 7]=/:O. In a magnetic language the disordered phase is paramagnetic while

the water/oil-rich phase is ferromagnetic. In order to study these transitions

the free enexgy f{)funiform 1fand p is expanded around the diSOTderedstate a

la Ginzburg-Landau [3,23,28]. The expansion has the form

{3pMF = {3Po+ A2(T,~)1f2+ ~(T,~)1J4 +... . (35)

The coefficient A2 is given by

T 2
)A2(T,~) = -2 -2{3J-(I-Po)(2J1+2poJs+PoJr

Po
(36)

where for given T and ~, Po is the solution of

~ = 4Kp+2J2(1-2p)+2(J3+2J4)p(2-3p)

+4 J6p2(3 -4p) + J9p3(4- 5p)+ T In 2(1- p) .
- p

(37)

In this way we have minimized the free energy with respect to p, but not with

respect to TJ. By standard minimization with respect to TJwe find that the

equation A2(T, A) = 0 defines a line of critical points, along which the trAIlSi-

tion between disordered and water/oil-rich phases is of the second order. This

line terminates at a tricritical point whose position is given by the solution of

A.c(T,~) = O. For temperatures belowthe tricritical point the trAIlSitionis of
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the fiTst order, therefore there exists three-phase coexistence between the dis-

ordered phase and the water-rich and oil-rich phases. The line of three-phase

coexistence, commonly referred to as the triple line, is most easily found by

determining the~, as a function of temperature, for which the free energies of

the disordered phase (1]=0) and thewaterJoil-rich phases (71~ 0) are equal to

each other. (Recall that in the symmetric model both water-rich and oil-rich

phases have the same free energy.) For larger values of ~,which means higher

surfactant concentrations, the system develops spatially modulated phases.

The strategy in this case is as follows. First we use the Landau expansion for

the free energy in Fourier space to determine continuous transitions between

the disordered and modulated phases as discussed in section 3 (thi5 explWsion

is found in the next section where we discuss the scattering functions). Next

we write down the ~ergy functiomJ (31) .along with the self-consistent

equations for many different modulated phases and look for lines of coexis-

tence with the disordered phase. At any given ~ the modulated phase which

yields the highest transition temperature to the disordered state is the one

that prevails. Thus, we are able to determine which modulated phase is in

contact with the disordered phase in the phase diagram, as well as the nature

of the transition. Because the particles are confined to a lattice there will also

exist fust order trAIlSitioJJSbetween modulated pba.ses of different periodici-

ties. In real systems no such transitions take place, as the period of a certain

modulated phase varies continuously with changes in the relative amount of

the components of the mixture. This is not to be confused, however, with

first-order transitions between modulated phases of different dimensionality.
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These do occur. in real systems, as well as in our model calculations.

A typical phase diagram.in the (T,~)-pWle is shown in Figure 3 for

the symmetric model with c/ J = 6.0,K / J = 3.0 and H = o. First-order a.nd

second-order phase transitions separating the disordered from other phases are

shown by solid and dashed lines respectively. The dotted line shown in Figure

3 is not a line of thermal phase transitions and can be ignored for the moment.

(We shall refer to it in the next section. ) The general trend shows a disor-

dered phase undergoing second-order or first-order transitions into wa.ter-rich

and oil-rich coexisting phases for small values of A (low surfactant concen-

tration).These two regimes are separated by a tricritical point denoted by a

full dot. As thea.rnount of surfactant is increased the disordered phase ~

comes destabilized by the presence of a modulated phase which appears to be

la.mellar. Along this line the critical wavevector kc varies continuously in the

interval (0, 1!'/2) indicating the presence of modulated phases which may have

very long periods. As the surfactant chemical potential is increased still fur-

ther, the disordered phase coexists with a 2-d modulated block-phase of period

four. The point where the solid line intercepts the dashed line on the right

upper corner of Figure 3 is nDt a tricritical point. Below the disordered phase,

at lower temperatures, there is three-phase coexistence between water-rich,

oil-rich and lamellar phases. There is also coexistence between lamellar and

2-d block phases at higher values of A. However, we have made no attempts

to determine the precise position of these lines. This is not the region of the

phase diagram we are most interested in, and it is technically difficult to tune

fust-order transitions between modulated phases with non-constant periodic-
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ities. Iller-efore, coexistence lines between lamellar and water/oil-rich, and

between lamellar and 2-d block phases are shown by the solid-dashed lines in

Figure 3 schematically, rather than with quantitative accuracy.

The general features of the phase diagram shown in this figure persist

for weaker and stronger surfactants as well, with modulated phases occupy-

ing much of the phase diagram in the later case. Among the various sets of

pa:rameters we have done calculations for, we have not observed coexistence

between the disordered and lamellar phases. The transition there seems to be

always of the second order. (Such a coexistence of phases is actually expected

theoretically [29] and have been found in the Monte Carlo simulation of the

CHS model performed by Laradji et. al. [15].) Another point to notice is the

fact that the range in surfactant chemical potential over which the disordered

phase orders itd into a lamella.r structure -seems to be rather narrow, that

is, a two dimensional ordered structure is thermodynamically more stable over

larger portions of the phase diagram. At this point we are not able to an-

swer if this scenario is peculiar of a two dimensional system or not. At any

rate, a simple refinement on the model can be envisaged to probe t~ nature

and relative range of existence of the lamellar-to-disordered transitions. It is

easy to see that a second-nea:rest neighbor interaction between. structureless

amphiphiles of the form -]{2 2: [1 - S2(r)][1- S2(r')) tends to stabi-
«r,r'»

lize lamellar structures and hence could be used profitably for the purposes

above.In this respect the mean-field phase diagram for the two-dimensional

effective Hamiltonian is different from the one obtained in the Schick model.

In this model the lamellar phase is very robust in the phase diagram given
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the fOIm of the interactions between surfactant and ordinary particles found

in the model. However, we are not aware of the existence of other modulated

phases in Schick's model.

6 Scattering Functions For The Disordered Phase

When microemulsion models were first proposed some years ago [7,20,30]

it was initially thought that what the experimentalists called the microemul-

sion phase could be identified with the many lyotropic modulated phases en-

countered in the model calculations. It was soon realized [31], however, that

the real microemulsion phase has an existence of its own, apart from the

spatially ordered phases, which are also present in the experimental systems.

Isotropy of the real microemulsion indicated that if the proposed models were

to explain the existence of such a phase at all, it should be located within the

disordered phase of these models. This view is also corroborated by the results

of an earlier experimental work, which concluded that only a disordered fluid

could explain the observed surfactant film scattering spectra {32J. What dis-

tinguishes then the microemulsion from an ordinarily disordered fluid 1 The

current view holds that the heart of the matter lies in the structural proper-

ties of the disordered phase [1,2]. Small angle x-ray and neutron diffraction

experiments 132,33,34,35]show that the microemulsion exhibits a characteris-

tic signature in its scattering functions. Unlike an ordinary disordered fluid,

the microemulsion shows a maximum of the water-water scattering amplitude,

which is located at non-zero values of the momentum transfer k.
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In this section we calculate tire pertinent scattmng functions in the disor-

dered phase of the model in order to make some comparison with experimental

results. In the spirit of section 3 we expand the free-energy functional (31)

through second order in the Fourier components. However, we shall not re-

-strict ourselves here to -equal concentrations of water and oil, i.e. '10is not

necessarily zero. In this way we may study the evolution of the structural

properties &ong other thermodynamic paths, within the disordered phas~ be-

sides the one for which only the surfactant concentration is varied at a fixed

temperature. The result of the expansion is

N-1 pMF = N-1 FDMF+ L [Qk '1(-k) 17(k)+ PIcp(-k) p(k)
k

+ik (17(k)p( -k) + 17(-k) p(k) )] , (38)

-mth coefficients given by

Qk = 2( ~~o 2) - J A}(k)- (1 - Po) [J1 + 2Po J5Po 170

+ p~J7 + '1~J8] A2(k) - 2 (1 - Po)'1~J8 A(k) , (39)

,Bk =
T (Po- 17;) [}'/' J 2 J J 2 2 J

2 ( ) ( 2 2)
- 1.- 2 - po 3 - 4 po 4 - TJo 5

1 - Po Po - TJo

-6p~J6- 2Po'1~J7- 2p~J9]A1(k)- (1- Po)[J3+ 2poJ6 (40)

+TJ~J7 + p~ J9] A2(k) - 2 (1 - Po)[J4 + 2Po J6 + p~ J9] A(k) ,

- T'1o [J 2 2 ]Ik - - 2 (p~- TJ;) + '10 1 + 2PoJ5 + PoJ7 + TJoJ8 Al(k)

-2 (1 - Po)TJo[J5 + poJ7] A(k) , (41)
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where

An(k) = cos(n~) + cos(nky) ;A(k) = 2 cos(kx) cos(ky) . (42)

The experimentally important quantities are the water-water, the surfactant-

surfactant and the water-surfactant scattering functions, which are respec-

tively defined by

(43)

(44)

(45)

where pW{k) and pS(k) are the kth Fourier amplitudes of the fluctuations

in the conrentrations of water and surfactant around their respective average

values. From the definitions pW(r) = [1J(r)+ p(r)]/2 and pS(r) = 1- p(r), and

by means of a standard diagonalization of the bilinear form (38), we obtain

1
Sww(k) = 4 [(1- Ak) S-(k) + (1+ Ak) S+(k)] , (4£)

1
Sss(k) = 2 [(1- Bk) S-(k) + (1+ Bk) S+(k)] (47)

1
Sws(k) = -4[(1 - Ak - Bk) S-(k) + (1+ Ak + Bk) S+(k)], (48)

where

Ak = 2fk/Rk ; Bk = (,Bk-ok)/Rk

S:!:(k)= T(ok+l3k::l:Rk)-l ; Rk = [(ok-Pk)2+4'Yk]1/2. (49)
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Sww(k) = < pW(- k) pW (k) > ,

Sss(k) = < pS(-k) pS(k) > ,

Sws(k) = < pW(-k)ps(k) > ,



The quantities S:J:(k) come from the fad that once the bilinear fann is diag-

onalized, the ensemble distribution is just a simple multivariate Gaussian.

Let us turn our attention to the behavior of the scattering functions along

two different thermodynamic paths. First let us consider the case where the

mixture is perfectly balanced, that is when 710= o. In this case we have

Sww = ~[S-(k)+S+(k)] = ~(Okl +,Bk1) , (50)

+ T 1 1
Sss = S (k) = "2,Bk and Sws == -2Sss . (51)

Although the function Sww is a linear combination of S-(k) and S+(k) it

is not difficult to see that the contributions from S+(k) to the water-water

scattering intensities are much smaller than those from S- (k) in the low sur-

factant conc~tration regime, willch is the regime of interest. This stems from

the factor pS = 1 - Po in the denominator of the first term in the expression

for ,Bk (equation 40). Because of the temperature dependence of the couplings

Ji it is not simple to extract much information on the behavior of S+ and S-

as functions of T and pS in an analytical way. However, a stTaightforward

numerical procedure shows that S+ is a monotonically decreasing function of

k (inside the Brilloin zone) for aJmost the entire portion of the phase diagram

where the $ystem is disordered. (For high surfactant concentrations S+ may

increase with k.) This implies that the surfactant-surfactant scattering func-

tion has a maximum at zero wavevector and decreases monotonically with k

in that phase. Similar procedure for the function S- shows that it mayor

may not d€crease monotonically with its argument. Therefore, depending on

25



---
-- -------

the values af T and pS, the water-water functian can either have a maximum

at k = 0 ar at same ather nan-zerO'value af k. The locatian of its maximum

is given by the equatian

[J + 4ps (J1 + 2 (1 - pS) Js + (1- pS)2 J7 ) cos(k)] sin(k) = 0 . (52)

Here k has been taken alang directian (1,1). At a fixed temperature the

maximum is lacated at km = 0 pravided the surfactant concentratian is smaller

th4Jl Ps given by the solution of

J7Ps(I-PS)2+2JsPs(1-Ps)+J1Ps+J/4 = 0 (53)

When r > Ps the maximum appears .at km :f O. -As we increase pS the

pasitian km af the maximum maves tawards larger values of k accarding to'

km = arceO's{-J [4pS (J1 + 2(1 - pS) Js + (1 - pS)2J7)r1} . (54)

Equation (53) defines then a line in the disordered phase acrass which Sww

change its behaviar with respect to' the wavevectar. This line is denated Lif-

shitz line II]. In the phase diagram we have shown in Figure 3 the Lifshitz

line is the datted ane. TO'the left af it the fluid is 'Ordinarily disardered with

manatanically decreasing scattering functians. TO'the right af the Lifshitz line

the fluid is still disardered, but nat structure/ess. The water-water scattering

functian indicates the presence af structure at a length scale af the arder af

k;;/. It is this fluid that many authars have recently identified with the mi-

craemulsian. There is nO'thermadynamic phase transitian acrass this line; the

free energy and the scatteriDg fnnctiansare all mnooth .across it.
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In Figures 4 and 5 we show the scattering functjol1SSww and Sss., in

arbitrary units, for the same balanced system of Figure 3 At a temperature

T /J = 2.8. The curves are labeled by their surfactant concentration pS, which

are all located to the right of the Lifshitz line. The wavevector k, in units of

inverse lattice spacing, is Along the direction (1,1). Each function Sww shown

in Figure 4 exhibits a peak at non-zero values of wavevector. Its position moves

away from zero and its intensity decreases as the B11If'actant concentration in-

creases along the isotherm T/J = 2.8. The intensity of the peak, however,

may increase as we get closer to the transition to the lamellar phase, where it

actually diverges. The surfactant-surfactant scattering functions Sss are all

monotonically decreasing functions with maximum at km = O. Their ampli-

tudes axe about one order of magnitude smaller than those of Sww. These

results a.re in qualitative agreement with well-known experimental data 132,35].

Figures 4 and 5 are to be qualitative compared with results from references

such as [32,35]. Notice, however, that we have to use somewhat larger values

of pS in order to be on the right of the Lifshitz line, and hence, to reproduce

~ d~ired features. This is consequence of the fact that om calculations were

done for a two dimensional system. The values of the peak position km can be

estimated using the length of the surfactant molecule (typically of the order of

25..4) as the unit of our lattice spacing, which is, of course, a molecular length

for the model. The peaks are located Mound the value km ~ 1.0, which gives a

very reasonable physical value of 4.0 x 10-2A-I. This corresponds to domains

of water (and oil) of the order of 150..4.

Next we consider the same system, but we take the microemulsion phase
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out of balance by allowing for values of 170different from zero. The thermody-

namic path taken is the one for which the temperature js fixed at T IJ =2.8,

the surfactant concentration is held constant at pS = 0.2,and tne only pa-

rameter allowed to change is the oil fraction 4>,defined as the ratio of oil to

oil plus water. Now, because of the contributions of both S- and S+, all

scattering functions, including Sss, may present a peak at k =f o. The most

interesting behavjor, however, is ex1libited by the water-surfactant scattering

function Sws, which is shown in Figure 6. The cunes are now labeled by the

oil fraction 4>. One observes that Sws is positive when there is an excess of oil

in the system and it is negative when water is in excess. Following ideas first

set forth by Widom 136],it is argued in ReI. (32Jthai Sws(O) is proportional

to the average mean curvature of the microemulsion interfacial surfactant film.

The argument, which we shall repeat here, is based on the fact that the sur-

factant tends to be located at the water-oil internal interfaces, such that in a

first approximation, a surfactant concentration fluctuation i~ proportional to

an area fluctuation of the interfacial film. As a water concentration variation

is introduced in a volume V the surfactant film must move in order to ac-

commodate such a concentration variation. The resulting area variation in V

depends on the film mean curvature. For water-in-oil microemulsion, a water

excess means a droplet excess, hence a surIa.ctant excess, therefore Sws(O)

(whicn measures cross correlations between water and surfactant) must be

positive. Similarly, for oil-in-water microemulsions Sws(O) must be negative.

For bicontinuous microemulsions, which have an average mean curvature equal

zero, Sws(O) must be very small. This is expected to occur at an oil fraction
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t/> = 0.5, ie. a.t equal w4ter aJld oil concentrations. (It follows fTom the rela-

tion Sws = -0.5Sss at tP= 0.5 that Sws(O) is actually negative for balanced

microemulsions, but nevertheless, close to zero due to the small amplitudes of

Sss. In Ref. [1] it is suggested that a better indicator of the average mean

curvature would beSws - Sos which is klentically zero when the system is

balanced. )

l,From the results presented ill this section it seems that the CRS model,

like Schick's model, is able to explain, inter alia, the experimentally observed

structural evolution of the microemulsion phase as the ratio of water to oil is

driven away from unity in both directions. Finally, the scaled quantity k4SWS

is plotted against k2 in Figure 7, where the curves a.re labeled according to

their oil fractions cPoThis figUTe shows once again a reassuring resemblance

with the experimental data. presented in Ref. 132].

7 Site-Correlated Percolation in Ternary Mixtures

In this section we focus on the study of some percolation phenomena ill

lattice models for microemulsions. In particular, we are interested in the clus- '

tering properties of the disordered phase, of which the microemulsion phase is

a part. In the last section we saw that, like in Schick's model, the disordered

phase of our model is divided by the Lifshitz lIDeinto two regions according to

the behavior of the water-water scattering function. Both regions, of course,

present no long-range order in the thermodynamic sense. Their structures,

however, are distinct from each other. In the higher surfactant concentration

29



u_-- --- --
--_u u---

- u- _u. ---

side of the Lifshitz line the oscillatory, non-uniform component of the corre-

lation functions dominate the structure factors (the scattering functions have

maxima at non-zero wavevector). At surfactant ~oncentrations lower than

the ones defining the Lifshitz line, the non-oscillatory, uniform components

come to dominate the structure functions. Furthermore, the calcuJa.ted water-

surfactant structure functions, whose values at zero wavevector are associated

with the surfactant film expected mean curvature, indicates a structural inver-

sion from water-in-oil to oil-in-water microemulsions as the relative amount

of oil to water is varied in the system. A microemulsion with a bicontinuous

structure (zero average mean curvature) is then predicted for equal concentra-

tions of water and oil Here we would like to mvestiga.te clustering of particles

in the symmetric (pW = pO) subspaceof the disordered phase of our effective

Hamiltonian as well as of Schick's Hamiltonian and learn about percolative

properties of the disoIdered phases of these models.

Percolation is a critical phenomenum characterized by the onset of for-

mation of macroscopic (infinite) clusters of particles in a many-body system.

A cluster is defined as a ma.xima.lset of particles connected to ea.ch other ac-

~ording to a prescribed definition of connectivity between pa.irs of particles. A

single particle is a cluster of size one by definition. The notion of connectivity

is a crucial ingredient in the description of the percolative process one wants

to study. It defines how the clusters are formed by specifying when a parti-

cle belongs to a given cluster or not. It is convenient to classify connectivity

that one defines in a model as being of two types [37]. Connectivity with cer-

tainty: two particles are automatically connected if they lie within a. certain
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distance apart (this dista.nre can he, for instance, the lattice spacing). Con-

nectivity in probability: two particles, a certain distance apart, are connected

with probability p. The notion of connectivity leads naturally to the concept

of an "active bond" between two particles. If they are connected we say there

is an active bond between them and vice-versa. Furthermore, one can das-

sify percolation as random or correlated depending whether the particles, or

bonds, are randomly distributed over the space or are correlated with each

other via some interparticle interaction. In what follows we present briefly

a mean-field like approximation to determine density thresholds for each of

the species in a ternary mixture of particles. Details of the derivation will be

published elsewhere [22].

7.1 Equations for the Percolation Thresholds

In order to find the density threshold for a given molecular species I (I =
W,0, S) we notice that the particles are distributed over the lattice according

to a given microemulsion Hamiltonian, from which the thermodynamics and

the correlations between particles are assumed to be known. In particular, in

the disordered phase of our model the three species of particles are mixed in a

homogeneous, isotropic state whose structure functions are known in the mean-

field approxima.tion. Connectivity for ~ch molecular species will be defined in

a geometrical way, i.e., two particles of the same species are connected if they

occupy nearest-neighbor sites on the lattice. There will be many clusters of a

given species I. To each of these clusters we randomly associate a + or a - tag.
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From our definition of connectivity, it follows that clusters with different tags

are not in contact with each other, otherwise both would be forming a single,

larger cluster, having a single tag. (This implies that configurations of nearest-

neighbor pairs 1+-1- are not allowed.) Kikuchi's original approach [38]for the

lattice-gas can be easily -extended to multicomponent mixtures[22,39] and it is

based on the following two theorems[38]: i) Uniqueness of the infinite cluster,

which says that in a homogeneous, isotropic mixture of particles for which

connectivity of a wven moleculaT species is defined, there cannot exits more

than one infinite cluster of that particular species; and ii) Symmetry of Tags,

which says that in the most probable distribution of clusters of a given species

the number of + and - clusters of any given finite size are equal to each other.

In view of these two theorems, it is clear how to define a percolation order

parameter. We divide the particles of species 1 into three categories. Those

belonging to finite + clusters, those belonging to finite - clusters, and those

belonging to an infinite, + cluster, with fractions P] , pj and Pto,xespeciively.

The total number densities of ::i::-tagged1particles are

p+ = Pl + P:'

P- = Pj' (55)

By the symmetry theorem pj =pi, therefore

~ = p+ - P- = P'to (56)

is the concentration of particles 1belonging to an infinitely extending (isotropic)

cluster. That is, ~is the percolation order parameter for species 1,it is non-zero

when the species 1 percolates and zero otherwise.
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The thermal distribution of the three species of (untagged) particles is

assumed to be known according to the Hamiltonian of the mixture. The most

probable distribution of + and - tags among a certain species I is found

by maximizing the entropy of the tagged system since neighboring I-particles

are connected withprobabHity one. Furthermore, configurations of nea.rest-

neighbor pairs z+ - r are not allowed since allI's in a cluster have the same

tag. Percola.tion occurs when the concentrations of 1+and 1- are not equal.

The entropy of the system, with the 1 species tagged, is approximated in the,

pair approximation of the Kikuchi's Cluster Variational Method [40J,which is

given by

S = (2d - 1) L£(pi) - dL~~.c(Yi),
i i

(57)

where .c(x) = x lnx. The quantities ~b are the fractions of nearest-neighbor

pairs of particles a and b;lJ)idenotes the multiplicity of a.given configuration i.

Let us investigate clustering of the surfactant species, so that the S-molecules

are tagged with either a + or a - tag. Single site and pair configurations are

summarized in Table 1. The concentrations ar~ ~oted p, with pS = p++ p- ,

and are subject to the constraint pW+ pO+ ~ = 1. From Table 1, we obtaiD

S = (2d -1) [pWInpw + pOIn pO+ p+ lnp+ + p- lnp-]

-d[Yww InYww + Yoo InYoo + 2Ywo InYwo

+2Y~s In Y~s + 2Yds InYds

+2Yws In Yws + 2Yos In Yos

+y++ InY+++ Y-- InY--] . (58)

The fractions p and Y are geometrically related to each other. The fractions
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of water and oil molecules are respectively given by

pw = Yww+ Ywo+ Y~s + Yws ,

pO = Yoo+ Ywo + Yds + Yos . (59)

Similarly, the total fraction of tagged surfactant molecules are

p+ = Y~s + Yds + y++ ,

p- = Yws+ Yos+ Y-- . (60)

We also have

Yws = Y~s+ Yws

Yos = Yd"s+Yos, (fn)

where the quantities Yww, Yoo, Yss, Ywo, Yws and Yos are all obtained from

the ensemble distribution dictated by the Hamiltonian model. The percolation

order parameter is obtained by subtracting equations (60)

~ = p+ - p- = ~w+ ~o+ Y++- y-- , (62)

where

~w= Y~s - Yws and ~o= Yds- Yos. (63)

The natural independent variables for the percolation transition are ~,~w and

~o. The entropy of the tagged system is then maximized with respect to these

variables. The line of percolation threshold for the surfactant species is then

given by the solution of

5 2d-l
p = n J n(YWS + Yos) . (64)
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.similarly, ~ obtains the threshold lines for water and oil

pW = 2d -l(ywo + Yws) ,
u-~

2d - 1(Ywo + Yos) . (65)pO =

Now we are left with the evaluation of the thermal distribution of the

moleculM species over the lattice, i.e. we need to evaluate the quantities

Ywo, Yws and Yos as functions of temperature and composition in the dis-

ordered phase of the microemulsion model. The quantity Iij is defined as

the fraction of nearest-neighbor pairs of molecules i and j. In a lattice of

coordination number z, it is given by

1,,~ . .Yij = lim N L-L- < p'(T)1"(1'+ 6) > ,
N-oo z r 6

(£6)

wbere the sum in [jgoes over a.ll nearest neighbors of site r AIld < ... > mea.ns

thermodynamic average. Fourier expanding the local densities pi (r) around

their respective average values in the disordered phase,

pi(r) = p~+ I: pi(k)eik . r ,
k#o

(67)

d
. h el . I' 1" l ddk

h
.

AIl usmg t e r a.tlOn lID - ~.. ..= - ... we 0 tam
N-oo N k B.Z (27r)d '

. . 1 r dak
}'ij = p~r:, + d JB.Z (27r)d Al(k) Si;(k) .

(68)

(B.Z stands for Brillouin Zone,) Here, as in section 6, Sij is the structure

function given by

Sij(k) =< /(k) pi(-k) > , (69)
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and An(k) = l: cos(nkj). Using equation (£7) and the relations
i=l

in equations (63) and (64), we obtain the following equation for the percolation

density threshold of a given species 1

[p']2 - n ,1 1 p'+ Gll(T,pi) = 0, 1= W,0, S , (71)

where
1
j

w ddk

Gll(T, p') = d -w (211")d Al (k) SII(k) .
(72)

At finite temperatures, equation (71) must be solved numerically. Further-

more, this equation yields meaningful approximated values for the thresholds

for any temperature as long as the system is in a disordered, isotropic ther-

modynamic state.

7..2 Results for Two Lattice Models of Microemulsion

In this section we present results for the spin-1 effective Hamiltonian for-

mulation of the CHS model on a two dimensional square lattice, and for the

Schick model on a cubic lattice. [One must bear in mind that.we are con-

cerned here with a mean-field description of percolation in lattice systems.

In more rigorous theories [41,42,43] the nature of two dimensional lattices im-

peses serious restrictions on the clustering properties.) The structure functions
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for the effective Hamiltonian were calculated in section 6 within a mean-oold

approximation. For the Schick model they can be calcu.Ia.tedexa.ctly in the

same way and can be found in reference [3]. (Our 1-leffreduces to t~ Schick

Hamiltonian if one keeps only the couplings J, K and J3, setting J3 equal to

B.temperature-independent L,and disregarding all the others.)

As one can see from equation (70), water and oil percolate simultaneously

when both f;pec~ have same concentration since ,in this case, Sww(k) =

Soo(k). The results for the 2-d symmetric (H = 0) effective Hamiltonian

with cl J = 6.0and K IJ = 3.0 are shown in Figure 8, where we have used

equation (37) in order to obtain the threshold lines in the (T, A)-plane. The

line lAbeled S is the percola.tion locus for the surfactant species. To the left of

this line the surIadant particles do not percolate, to its right there is an infinite,

isotropic cluster of neighboring surfactant molecules (i.e. the surfactant species

is percolating). The line labeled WI 0 is the simultaneous percolation locus

for water and oil molecules. Infinite, isotropic clusters of water and oil exist

only to the left of this line. This suggests that the bicontinuous microemulsion

should be identified as the region of the disordered phase bounded by th5e'two

lines. In this region the system presents three infinite, isotropic ,intertwined

dusters of water, oil and surfactant molecules. As the temperature is lowered

the percolating network orders into a larne11arphase. There are evidently

many finite size clusters for each molecular species, however, their average

size distTibution and other properties of interest can not be obtained with the

treatment presented here. In Figure 9 we show the results for the symmetric

(H=C=O) Schick model with LIJ = -3.5 and KIJ = 0.5. Similar features
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are observed. In the Schick model its not difficult to obtain the asymptotic

behavior for the integral Gll (equation 71) in the limit of high temperatures

(13-+ 0). In first order in 13we obtain from (70) and (71) the followingcritical

values for the percolation transition temperatures. For the surfactant species

we have

TS = K pS(l - pS)2 Ps < 02. d = 3.
0.2 - pS' . ,

For water and oil species we have

(73)

1 S
TW/o = 2J S - P , pS > 0.6 ; d = 3 .p -0.6

(74)

Effects from the amphiphilic coupling L in TW/o are present only when second

and higher order terms in fJare included in the asymptotic expansion of (71).

Therefore, to first order in {3in the limit of high temperatures, the density

thresholds are the same for the Schick and BEG models.

In the next set of figures we display the behavior of the percolation thresh-

old lines with changes in the amphiphilic strength of the surfactant (c in our

model, L in Schick's model) as well as with the parameter 1<, which measures

interactions between surfactant molecules in both models (in our model, <how-

ever, there are other terms of interaction between surfactant particles as given

in Appendix A). For illustrative purposes we also include the Lifshitz line in

each figure. <Figure 10 shows the percolation a.nd the Lifshitz line for the 2-d

effective Hamiltonian on the (T, pS)-plane for K / J = 3.0 and two values of c

(solid and dashed lines correspond to the values c/ J = 6.0 and c/ J = 4.0 re-

spectively). The Lifshitzlines are labeled L, surfactant percolation lines are la-

beled S and the water and oil simultaneous percolation lines are labeled W/0.
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FOTweaker surlactallt£ (smaller values of c) the Lifshitz line moves tuwards

larger values of the surfactant concentration, indicating that it is necessary to

have larger amounts of surfactant to induce the usual peaks in the water-water

scattering functions, as discussed in section 6. Unlike the Lifshitz line, both

the surfactant and the water/oil percolation lines move towards smaller values

of their respective density thresholds as the amphiphilic strength c decreases.

At the point T IJ = 3.20, p' = 0.566for the solid W/0 percolation line, and

at T /J = 2.21, pS = 0.635 for the dashed W/0 percolation line, one observes

an abrupt change in the percolation curves indicating ordering of the percolat-

ing, disordered phase into a lamellar phase. Figure 11 shows the same physical

quantities calculated for the Schick model m three -dimensions with J(/J = 0.5

and two values of L. Solid and dashed lines correspond to L/J = -3.5 and

L /J = -1.0 respectively. The percolation lines are very dose to the values

given by equations (72) and (73) for the temperature range shown in this fig-

ure. iFrom Figures 10 and 11 one observes that the percolation thresholds

for our model are relatively more sensitive to the strength of the interactions

between surfactant and ordinary particles than they are lor the Schick model.

The difference in the results of these two models stems from the multi-particle

interactions in 1-leffwhich are not present in Schick's model. The multi-site

interactions hetween surla.ctants are mostly repulsive, which in turn, disfavor

configurations of neighboring surfactant molecules compared to configurations

where the surfactant particles are bounded by water and oil. (It is illustra-

tive to observe the coupling energies of the effective Hamiltonian as functions

of temperature, which are .given in Figure 14.) Hence, a cluster formed by
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cODDectedneighbors of surfactant particles percolates at higher thresholds for

larger values of the coupling c. These interactions also imply higher thresh-

olds for water or oil clusters for stronger surfactants. We aTe not aware of

any experimental evidence in this regard and it would be interesting to learn

how the experimental thresholds clw1ge by varying the .surfactant strength in

a systematic way. However, applying the same formalism to Schick's model,

we show, in a separate work [22], that the water percolation threshold for a

w.a.ter-in-oilmicroemulsion system, mcreases as a function of the coupling C

of that Hamiltonian [3]. That is, the water percolation threshold increases as

the surfactant becomes more lipophilic. This is in qualitative agreement with

experimental results 144]on water + AOT + undecane, where such a threshold

is round to increase with salinity. Recall that by increasing the value of Cone

can mimic [3] the addition of salt to a system with an ionic surfactant such as

AOT [16].

The behavior of the percolation lines for different values of K is shown

in Figure 12 for 1ieff with c/ J = 4.0. Solid and dashed lines correspond to

K/J =1.0 and [( /J =3.0 respectively. The curves are labeled as before. The

same ,<!uantities calculated for the Schick model in three dimensions are shown

in Figure 13, where the amphiphilic strength is fixed at L/J = -3.5. Solid

and dashed lines corresponds to K /J =0.5 and K /J = 1.5 respectively. Both

models show similar features, with higher density thresholds for smaller values

of K, as expected from our discussion above.

We end this section with a few remarks in connection with the fact that

our calculations are at a mean-field level and as such, they overlook several
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important aspects Tegaxding perco1a.tive transitions., specially m systems oI

low dimensionality. First we would like to emphasize that the percolation

lines shown in Figures 8, 10 and 12 (effective Hamiltonian on a square lattice)

are to be percieved as an example of the qualitative behavior one expects to

find .at d=3, since more rigorous .analyses show that on a square lattice no more

than one species can percolate [45]. In these figures we are mainly interested in

showing where these thTe.sholdsare located in the p.hBsediagram and how they

respond to changes in some of the interaction strengths. Second, we point out

that the infinite temperature limit of the thresholds we have calculated are not

accurate compared to rigorous results; again because the present treatment is

of the mean-ne1d type. The ~ame applies to the calculations performed by

IGkuchi and also by Murata [38] for the Ising model.
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Appendix A

In this Appendix we write the effective Hamiltonian for a two-dimensional

square lattice as a polynomial in four variables. In equation (28) we have

d

1ieff = -L [1- S2(r)] In L 2 cosh (Pc [S(r +~j) - S(r - ej)]) ,r j=l
(75)

where S(r) assume values 0, :i:l. Consider now the function

h(Xl,X2;Yl,Y.2) = In [2 cosh !3c(Xl- X2)+ 2 cosh PC(YI- Y2)] , (76)

which is to be evaluated only at the points Xj and Yj = O,~I, so that xj =
Xj and Y1 = Yj. Due to this property h can be written as a polynomial

in Xj and Yj, where the highest degree of any of the variables can not be

greater tha.n two. In order to find such a polynomial one must consider the

symmetry transformations under which h is invariant. These are trivially

obtained considering the parity of the function cosh. It is not difficult then to

see that the polynomial must be of the form

1

P(Xt,X2;Yt,Y2) = Jo + J1(XIX2+ YlY2)+ 2"J2(x~ + x~+ y~+ Y~)

+J3(~x~ + JiyD + J4(xi + x~) (y~+ y~)

+JS[XI X2(Y~+ y~) + Yl Y2(X~+ xD]

+J6[X~ x~(y~ + Y~)+ Y~y~(x~ + x~)]

+J7(XI X2Y~Y~ + x~ X~Yl Y2)

+J8 XIX2YIY2+ J9 ~x~ y~~ . (77)

In order to find the coefficients Ji we must solve a 9 x 9 linear system of

equa.tions which is obtained by equating the values of the polynomial P and
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the function h at the points ~i and Yj = O,::H. The solution of such a sysrem

gl

1 1
J1 = -- In -(1 + cosh 2f3c)2 2

1
J2 = 2 In 2"(1+ cosh f3c)

J3 = -J1-J2

J4 = J3

1 1 1
Js. = -J1 + - J2 -- 1n-(cosh f3c+ cosh 2fJc)4 2 2

J6 = -2J4 - Js

1
-J1 - 2 Js - - 1n cosh 2fJc4

1
J1 + - In cosh 2f3c4

-4J4 -4J6+ J8 . (78)

J7 =

Js =

J9 =

Therefore, the effective Hamiltonian for a square lattice is

1-leff = - L [1 - S2(r)] P[S(r + e:zJ,S(r - ex); S(r + ey), S(r - ey)]r
(79)

(In our calculation we have left out the term in Jo, since it merely renormal-

izes the surfactant chemical potential t:,. in the full Hainiltonian.) A similar

expression can be obtained also in three dimensions, in this case we have a

polynomial with

The couplings J2, Js and J6 are positive, while all the other are negative.

All of them tend to zero in the limit T /C -+ 00. In Figure 14 we show the

temperature dependence of the coupling energies.
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Table Captions

Table 1. Single site a.nd nearest-neighbor pair configurations with respective
fra.ctions and multiplicities. Clustering is sought for the surfa.ctant species.
Configurations S+ - S- are not allowed.
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Figm-e CaptiOJ1S

Figure 1. Boundary of stability of the disordered phase for a three dimen-
sional cubic lattice using the CHS model with oriented surfactant molecules.
To the left of the point kc = 0 the disordered phase undergoes second order
transitions into uniform water-rich and oil-rich phases. For higher values of ~
the disordered phase mak€S transitions into periodically ordered phases. We
have used c/ J = 5.5,K/J =1.0,9= 0 andH = o.

Figure 2. Critical valu€Sof the modulaiion wavevector as a function of the
surfactant concentration .along the line shown in Figure 1.

Figure 3. Phase diagram in the (T, A)-plane for a two dimensional square
lattice using the effective Hamiltonian in its polynomial form with c/ J =
6.0, K / J = 3.0 and H = o. First order and second order phase transitions are
shown by solid and dashed lines respectively. The tricritical point is marked
with a full dot. The dotted line indicates the locus of pomts where the water-
water scattering function changes its behavior (Lifshitz line). This is not
a line of thermal phase transitions. Coexistence between water/oil-rich and
lamellar phas€S, and between lamellaT and 2-d modulated phases are shown
schematicaly by solid-dashed lines.

Figure 4. Water-water scattering functions in arbitrary units for the system
of Figure 3 held at T /J =2.8 with equal concentrations of water and oil. The
curves are labeled by the surfactant concentrations which are allloca.ted tD the
right of the Lifshitz line. The wavevector, in units of mverse lattice spacing,
is varied .along the direction (1,1).

Figure 5. Surfactant-surfactant 5cattering functions in arbitrary units along
the same thermodynamic path of Figure 4. The curves are labeled by the
surfactant concentration. The wavevector, in units of inverse lattice spacing,
is varied along the direction (1,1).

Figure i). Water-surlartant scattering functions for the same system de-
scribed in Figure 3 held at T / J = 2.8 and pS = 0.2. The microemulsionis
taken out of balance by moving the water to oil concentration ratio away from
unity. The curves are labeled by the oil fraction tPdefined as the oil to oil plus
water concentration ratio. The wavevector, in units of inverse lattice spacing,
is varied along the direction (1,1).
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Figure 7. Scaled water-surfactant scattering functions for the same system
as in Figure 6. The curves'are a.gainla.beledby the oil fraction 4>.

Figure 8. Location of the percolation threshold lines on the phase diagram
for the effective Hamiltonian on a square lattice with cl J = 6.0,KIJ = 3.0
and H = o. The lines labeled S and WID refer to surfactant and to water
and oil thresholds respectively.

Figure 9. Location of the percolation thresholds on the phase diagram for
the Schick model in three dimensions with LIJ = -3.5, KIJ = 0.5 and
H = C = o. The surfactant percolation line is labeled S and the simultaneous
water and oil percolation line is labeled WIO. The solid-dashed line is the
Lifshitz li~. First order phase transitions are shown by solid lines.

Figure 10. Lifshitz lines and percolation thresholds for the symmetric (H =
0) effective Hamiltonian with KIJ = 3.0,elJ = 6.0(solidlines)and elJ =4.0
(dashed lines).

Figure 11. Lifshitz lines and percolation thresholds for the symmetric (H =
C = 0) 3-d Schick model with KIJ = 0.5, LjJ = -3.5 (solid lines) and
LIJ = -1.0 (dashed lines).

Figure 12. Lifshitz and percolation lines for the 2-d effective Hamiltonian
with cj J =4.0 and ]{ j J =1.0 for solid lines, and ]{IJ =3.0 for dashed lines.
Notice that the Lifsnit2 lines correponding to K j J = 1.0 and J{IJ = 3.0
coincide since the Lifshitz line is independent of K in this approximation.

Figure 13. Lifshitz and percolation lines for the Schick model with L IJ =
-3.5 and K /J = 0.5 for solid lines, a.nd K /J = 1.5 for dashed lines. Notice
that the Lifshitz lines correponding to J{ j J =- 1.0 and K j J = 3.0 coincide
since the Lifshitz line is independent of K in this approximation.

Figure 14. Temperature dependence of the 2-d effective Hamiltonian energy
couplings.
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Table 1

51

Configurations Fractions Multiplicities i.l)i

W pw 1

0 pO 1

s+ p+ 1

S- p- 1

W-W Yww 1

W-O Ywo 2

0-0 Yoo 1

W - s+ . W - s- Ys; Yws 2 ; 2,

0 - S+ ; 0 - S- Yds; Yis 2 ; 2

s+-s+ y++ 1

S- - S- Y-- 1
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