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*
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Abstract

In order to analyze a semiconductor device accurately and realisti-

cally, we need to study the two-dimensional behavior of the electrical pro-

perties of the device. There are methods available now which solve the current

transport equations of the device using finite-difference or finite-element

approximations. These consume much computer time. In a bipolar transistor

it is the minority carriers in the base that determine the behaviour of the

device. In this report, we present a method to solve for the two-dimensional

di.stribution of the electron density in the base region of an n-p-n transistor.

The current density and current continuity equations are reduced at steady

state to a partial-differential equation by assuming low injection levels and

neglecting carrier generation. The base region is divided into a square mesh

and the partial-differential equation discretized on this mesh by using finite

differences. The resulting problem is converted into one of finding the

voltages in an infinite electrical network. The characteristic resistance

approach is used to arrive at the solution with a considerable saving in com-

puter time.

*
This work was supported by the Air Force Office of Scientific Research under
Grant F49620-79-C-0172, AFOSR-80-020S
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1. Introduction

A currently active area of research in semiconductor devices is the

numerical computation of the electrical behavior of the device for various

geometries and doping configurations. Methods of exhaustive two-dimensional

analysis of the device are available which use finite-difference approximations

of the basic semiconductor equations. [5] Other methods exist which use the

finite element approach. [1] However there are no methods which provide for a

simplified two-dimensional analysis. In this report we present a method of

analysis for a specific geometry of a bipolar transistor as shown in Figure 1.

In a bipolar transistor it is the minority carriers in the base region that

determine the behavior of the device. A two-dimensional analysis of these

carriers in the base would be useful in the understanding of the properties

of the device. Our method solves for the two-dimensional minority-carrier

density in the base with a considerable saving in computer time. In Section 2,

we discuss the basic equations that govern the transistor. We make certain

assumptions to simplify the equations and finally reduce the problem to one of

solving a partial-differential equation with given boundary conditions. We

then divide the base region into a fine square mesh and discretize this equa-

tion on this mesh using a finite-difference approximation. In Section 3 we

discuss the characteristic resistance method for semi-infinite grids and

see how we can exploit this method to solve our problem with a substantial

reduction in computer time. In Section 4 we discuss the numerical aspects

involved in the computation of the minority-carrier densities. In Section 5

we discuss a numerical example with typical values for the doping parameters.

2. Basic Semiconductor Device Equations

The geometric configuration of the device under consideration is

shown in Figure 1. B1 and B2 denote the two edges of the depletion regions
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bordering the p-type base region of the transistor. In the present exposition

we have taken Bl and B2 with square corners; nevertheless our method allows

rounded corners or more generally curvilinear BI and B2' We use the simple

theory of p-n junctions [2]. This includes a number of approximations chief

among them being (a) The junction is abrupt and the doping is uniform in each

region of the transistor. This assumption helps in simplifying the calcula-

tions needed to obtain the location of the depletion-layer edge. (b) The

Boltzman boundary condition is used to calculate the carrier den~ities at the

depletion layer edge. (c) The effects due to carrier generation and high-

level injection are neglected.

Then assuming that all the potential drops occur across the junction

depletion region, the current density and continuity equations are given by

J = - q~ n E + qD 7nn n p n p (1)

where J is the electron-current densityn

q the electronic charge

0 the electron-diffusion constantn

an 1
Also ~ = G - U + - 7.J

, at n n q n (2)

where G is the electron-generation rate, andn

U the electron-recombination rate.n

Under low-injection conditions, U can be approximated by the expressionn

n -n
E-££

l'
n

the mobility of the electronn

n the electron density in the basep

E the electric field, and
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where n is the electron ,'etlsi ty in the base at thermal equilibrium and T 1Spo n

the electron lifetime in the base. Equation (2) now reduces to

an
-E. = Gat n

n -n
p po + n ~ V.S + ~ s.Vn + D V2n

Tn p n n p n p
(3)

Under low-injection levels the term n~~ V.s can be neglected.p n By neglecting

the generation rate and taking the steady-state condition, we get

n -~a = p 0 + ~ s. Vn + D V2n
T n p n pn

(4)

In the neutral base region there is no electric field. Hence, only the

diffusion term remains, yielding [6]

. n -n
V2n = p po

pDT n n
(5)

Let n = n -n represent the excess carriers.p po Then (5) can be rewritten as

? nV- n= -
D T

n n

In general, n varies with the spatial coordinates.

(6)

With known biases applied

to the emitter and collector the boundary values of n at the emitter and

collector depletion layer edge denoted by nand n respectively are given bye c

and ne = npo(exp(VBE/VTi-l)

nc = npo(exp(VCB/VT)-l)

(7)

where VBE is the base-emitter forward voltage

VCB is the collector-base reverse voltage, and

VT is the Boltzmann voltage ) given by

v - kT
T -- q

where k is the Boltzmann constant, and

T is the absolute temperature.

The position of the depletion layer is obtained by solving the charge-

neutrality equations of the device. If the doping is NDE' NA' and NDC in the
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emitter, base, and collector respectively and if WEB and WCB are the depletion

layer widths at the emitter-base junction and at the collector base junction

respectively, we have [2;p.126]

1
21::S NA+NDE

W = - ( ) V
EB tl q NANDE BE (8)

and
WCB=

2E:S NA+NDC
) V( CBq NANDC

If WE and WB are the depletion layer widths in the emitter and base respectively,

making up the emitter-base depletion layer we can solve for WE and WB individual-

ly by using the following simultaneous equations.

WEB = WE + WB (9)

and the charge neutrality equation

NAWB = NDEWE
(10)

Combining (9) and (10), we get

w =
E

NA
N-W
DE+NA EB

(11)

Thus, we know the location of the edge of the emitter-base depletion layer

in the base region. Similarly, we can find the edge of the collector-base

depletion layer in the base region. Now, we are all set to solve equation (6)

since we have the boundary values and the location of the boundaries where

these values hold.

A closed-form solution to equation (6) is practically impossible to

obtain due to the nature of the boundary. However, approximate numerical

solutions can be obtained. We divide the base region of the n-p-n transistor

into a fine square mesh and discretize (6) on this mesh by means of a finite

difference approximation. We get the following equation
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h2
(4 + -0 ) n. . - n. . I - n. . I - n.

I . - n.
I . = 0

'[ 1.,) 1.,)- 1.,)+ 1.+,J 1.-,)n n
(12)

where h is the distance between adjacent nodes of the mesh, and n. . is the
1.,J

excess-carrer density evaluated at the node (i,j) of the mesh.

Equation (12) can also be interpreted as Kirchoff's node equation at the

node (i,j) of an electrical network. as in Figure 2, where n. . is taken to be
1.,J

the voltage at the node (i,j). The values for the voltage sources along 81

and 82 are taken to be El and E2" These values represent the discrete boundary

values of the density of excess carriers, which is obtained from (7)" We now
2

have a resistive grounded grid network with a conductance y = oh connectingc. '[n n
every node to ground and unit conductance connecting every node to its adjacent

nodes, on the plane of the grid.

In the transistors of integrated circuitry, the bottom surface of the

semiconductor wafer has negligible effect on the variation of n in the region

near the top surface where transistor behavior is taking place. For all

practical purposes, we can assume that the bottom edge is effectively at infinity..

However, ordinary circuit analysis does not permit us to compute the node voltage

in a grid that extends infinitely downward. On the other hand, truncating

the grid at some finite distance downwards leads us to analyses requiring

impractically long computer times if the truncation occurs at realistic distances

from the top surface. Truncations that are sufficiently close to the top sur-

face to allow practicable computer times are two close to be representative of

the actual configuration. This close proximity of the truncation distorts the

variations in n from their actual values.
p

assume that the semiconductor does extend infinitely downward and exploit a

Our solution to this dilemma is to

method for analysing an infinite uniform resistive grounded grid that occupies

the half-plane [8]. This method is based on an extension of the characteristic

resistance concept to uniform ladder networks of Hilbert ports. Since we have
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assumed that doping is constant the diffusion constantand minority-carrier

lifetime, which depend on the doping, may also be assumed to be constant. This

leads us to a uniform grid structure. In a later report we will allow varia-

tions in these quantities.

3. The Characteristic Resistance Method for Infinite Grids

The characteristic impedance concept of analysing a uniform ladder

network can be extended to infinite half-plane resistive grids to obtain a

unique solution for the voltage and currents with a finite total power dissipa-

tion [8]. Normally there are infinite possible solutions to such a network

since power can be fed in from infinity [7]. However, for practical purposes

we are interested in the solution that obtains power only from sources within

the network. It can be proved that the characteristic resistance method does

indeed give this solution [8].

The first step in the analysis is to formulate an operator-valued ladder

network representation of the grid of Figure 2. To this end, we modify that

grid by converting the voltage sources into current sources. We start by

shifting all the voltage sources at the boundary into voltage sources in

adjacent branches in a standard fashion [3; p.131]. This is shown in Figure 3.

In the process we delete all self-loops that arise under these alterations.

We then convert the voltage sources to current sources by Norton's theorem.

This gives us the network in Figure 4. Our objective at this point is to con-

vert the network of Figure 4 into one that can be decomposed into a ladder

network whose voltages and currents are members of Hilbert's space ~2T of two-

sided infinite vectors of quadratically summable real-valued elements, i.e.,

vectors,

T
x = [ x-I Xo xl"'" ]

(13)

such that the x. are real numbers and
J
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I x~ < co

j =-co J .

8.

(14)

Here, the superscript T represents matrix trffilspose. The admittances and

impedances in the ladder network will be bounded linear operators on Q,2r

To obtain such a decomposition we augment the network of Figure 4 with series

connections of unit resistances as is indicated in Figure 5. Since the added

circuitry does not introduce additional loops into the network, this augmenta-

tion does not alter the electrical properties of the network. The result is a

rectangular pattern of nodes that fully occupies the half-plane.

We now treat each horizontal row of nodes with the branches between them

as well as their branches to ground as a Hilbert port. Connecting every hori-

zontal row of nodes to its succeeding horizontal row of nodes are vertical

branches of unit resistance. Each such horizontal row of vertical branches is

taken to comprise another Hilbert port. The resulting ladder network of Hilbert

ports is shown in Figure 6. H, J, K and L are all members of as follows.Q,2r

We denote the entries of H, J, K and L by h , j\! V k and Q, respectively, where
\! >J

\! = -1,0,1.. .Then

h =
\!

II

12

0

j =\!

II

12

0

k =
')

12

0

Q,
\!

I
\!=
0

\! = 1

\! = a

otherwise

\! = 0, -1, -2...

\! = a (15)

otherwise

\! = a

otherwise

\!= a+l, a+2,....

otherwise
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have intries as follows.

W, X, P and Q are admittance operators whose infinite matrix representations

We denote the entries of these matrices by w ,pv~ v~

and q respectively where v,~ =v~

2+y c

w =
v~

-1

-1

°

3+yc

2+yc

x =v~ -1

1

°

2+yc

Pv~=
-1

-1
°

2+y c

3+yc

q ~
v~

-1

-1

°

-1,0,1 . Then,

v=~= 1,2... a

~=v+l; v=1,2 a-I.

~=v-1; v=2,3 a

otherwise.

v=~= . "'" -2, -1,0.

v=~= 1,2 a

~=v+1; v= "" -1,0,1 a-I.

~=v-l; v= -1,0,1 a (16)

otherwise.

v=~= . "'" -1,0,1 a

~=v+l; v= -1,0,1 . ... a-I.

~=v-l; v= "" -1,0,1 a
otherwise.

v=~= -1,0,1 ... a

v=~= a+l, a+2 .....

]..l=v+l; v= -1,0,1

~=v-l; v= "" -1,0,1 ...,

otherwise

Finally, the impedance operator 2 is the identity operator on £~ J l.e.,~r

Y is defined as a Laurent matrix with elements y given byv~
2=1.

y +2c

Yv~=
-1

-1

°

v=j..l= "'" -1,0,1 ....

\.l=v-1; v= , -1, ° ,1. . . . (17)

~=v+1; v= -1, ° ,1. . .

Otherwise.
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The ladder network beyond the node (A+B+l) can be replaced by its charac-

teristic impedance Z , since we make the 'assumption that the repetitive struc-0

tures that follow continue indefinitely. We evaluate this characteristic im-

pedance by pursuing the method adapted in [8]. The operators Z,W,X,P,Q and Y

represent the Hilbert ports, and, since the interconnection of the ports

preserves the port conditions, the solution of the ladder network of Figure 6

is the same as that of the grid of Figure 2. A formal mathematical proof is

provided in. [8].

4. Computational Aspects

In order to be able to compute the voltages and currents of the grid

network of Figure 2 on a computer, certain modifications have to be made. It

is no longer possible to work with Hilbert ports since computers have only a

finite memory. Moreover the transistor we are modelling is anyway only finite.

We thus truncate all operators into finite matrices in such a way that the

grid encompasses the entire region of the transistor. Thus all matrices are

finite and of order N where N is number of interior points on the grid of

Figure 2. The characteristic impedance ~ is now a truncated version of the

Hilbert operator Z .0

Next, we write down Kirchoff's node equations at nodes I through (A+B+I)

of the multiport ladder network.

vectors in RN .and \./, Xy Yy p~ Q 1 Z

where I'kJ Vr:. H, T, I<

d
.. R

N
an ~are matr:I.ceS:I.n .

and L are now

The current equa-

tions are
H;: WVI

H = WV2,

H ;: """V~

+ ri

+ 1'~ -Ii

+ I3 - I2 (18)

. , . . . . ,
H -:: WVA +- TA - III-.

J = XVA~' -+- I,HI - TA

r< = PVM4 + IA'+,z - TA..I

. . ,t , , " r , ., . .
K ~ PVMS + rAte - IA-+6-t
L. ;: 'l VMet'1+- IA+IHt - 'It.U
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The voltage equations are:

Vi - V2

Yo).- V~

~ ZIj

-= ZIz

------------

VA1S1-I

VA.t6 - YAI8.,::: Z TAt 8

"" (z. + 2<))TAHH I

(19)

These equations can be combined into the following matrix equations in

partitioned form:

\oJ

w

and

- ~

w
p

p.

.-,

p

cy

v,

V2.

-i

VAt8~'

V,

V2.

+

VAtl3+1

:=

-;

-j

z

z
\

'\

-I

\

z

(z + Zo)

-I

I,

~L2

Ilhii'l"l

Ii

I2.

T A..13+,

(21)

11.

H

H

H

- I J" I (20)

i<

K

L
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where 1 represents the identity matrix of order N. In this formulation

and are the vectors that represent the voltage and current of the multiport

ladder network. Equation (20) and (21) can be written as

Av + BI : C
(22)

and
B V :. DE

w here V, I and C are vectors of dimension N(A+B+l) and A I B and 0

are matrices of the same dimension. The voltage V whose elements yield the

minority-carrier densities along the interior nodes of Figure 2 can b2 ob-

tained by

(A + B'O-i B) \I -=

(.
(23)

Z and Zv are truncations of positive Hilbert operators. D is hence

(

. - j

invertible, and A + B'O- 8) is also nonsingular, being a positive-definite

symmetric of the form

W + z - i - Z .j

I _I'
-z- W+2Z -z-

- - - - - - - - -

-z~' 'Nt-2 Z_I -Z-'

-Z.I x + 2 Z_' - Z .' (24)

-Z_I P+2Z-' -Z-'

_Z_I f'+ 2Z-' -z-'

,..z-' ~ ~ Z-'+(Zt.wr'
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All the components of (At" B'p-Ia) can be evaluated easily except for (z.+Zofi

A simple method of evaluating (z + z" r' is by truncating the Hilbert operator

(Z+Z )-10
To do this, we exploit the natural jsomorphism that exists between

the Hilbert coordinate space £2r and the space of functions quadratically

integrable on the unit circle. We can then show that the Laurent operators

y and Z correspond to multiplication by

y(x) = 2+y - 2cosxc
(25)

z (x) = 1.

The characteristic impedance Z is then mapped under the isomorphism into0

multiplication by

1 4
Z (x) = - [(1 + -::-

0 2 Y(x)

The Hilbert operator (Z+Z )-1 is thus mapped under the isomorphism into multi-0

1/2
-) -1 ] (26)

plication by

A(x) = 2 { (1+
4

y(x)

1/2 -1
-) + 1 } (27)

If a are elements of the main row of the Laurent matrix (Z+Zo)-l with a =
m m

a we have-m

co

A(x) = L a cosmxm
m=O

and 1T

a = ~ f A(x) cosrnx dxm 1T

0

m = 0,1,2.... (28)

Now we need to compute only as many a as are needed for the desired accuracy.m

The truncated matrix (~+Zo)-i is of orderN and has 2M+1non-zerodiagonal

elements, M+l being the number of a that are to be evaluated.m
We set a =0m

for M+l<m<N.
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In order to solve equation (23) more efficiently, we can reduce the

order of-the equation. Since many of the components of the and

for k<A+B fall outside the base region of the transistor, they have no physi-

cal significance as far as the base minority-carrier density is considered.

T~ey were earlier introduced merely to facilitate the mathematical theory

of the Hilbert-space operators, of which they formed a part. As far as compu-

tational purposes are concerned, they can be eliminated by truncating the

matrices appropriately. This leaves us with a matrix
(

1'"_I \
A+B D B" of much

smaller dimension. It is still of the same form, but the individual blocks

are no longer of the same dimension N. The first A blocks are of dimension

NL where NL is the number of grid points at the top edge of the base region.

The next B blocks are of dimension NTL which is the number of grid points

along the horizontal line passing through the boundary Bl'
The last block is

of dimension N. Thus, the order of the system has been considerably reduced.

Every component of the voltage vector now represents a node in the base

region of the transistor.

Since the matrix (A+ BTp-'B) is synunetric , positive-definite, and block

tridiagonal, it is easier to solve (23) iteratively rather than by a direct

inversion. A direct inversion would be expensive on the computer both in terms

of computer time and memory. All the elements of the matrix would have to be

stored and despite the fact that the matrix is synunetric and contains many

nonzero elements, the size of storage required for reasonable values of A, B

and N is large. A direct-inversion process does not take advantage of the

small number of non-zero elements, since the inverse is rarely a sparse matrix.

For a large system the number of computations involved to obtain the components

of the inverse matrix and then calculate the solution is of the order of the

cube of the system dimension. On the other hand, an iterative method requires

minimal storage. There are only a handful of distinct elements in the matrix
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which have to be stored. . Convergence of most iteration methods is guaranteed

due to the positive-definite nature of the system. [4. p.SO]

The successive overrelaxation method was used to solve equation (23).

A problem arises in the choice of the optimum relaxation factor. Before

we proceed any further, let us define a few preliminaries.

Definition 1. A matrix M is said to be diagonally block tridiagonal if it

is of the following form

Al

C2

Bl

A2 B2
(29)

M =

Cn An

where A. are square diagonal matrices and C. and B. are rectangular matrices.III

Definition 2. A matrix M is said to have property A if there exists a

linear transformation T such that T-IMTis diagonally block tridiagonal.

The successive overrelaxation method has been studied in detail for

matrices that possess property A and the optimum overrelaxation factor for

such matrices is given by [4; p.S6]

2

I + i/l-Af

where Al is the largest eigenvalue of the iteration matrix which can be ob-

w =
opt

(30)

tained by decomposition of the system matrix M. Now, most system matrices

that arise out of finite-difference approximations of boundary-value problems

do possess the property A. The matrix in question (At B.O-IS) however does not

possess this property. The anamoly is due to the presence of the character-

istic impedance terms Za in the last block. However, it is reasonable to

assume that the matrix (A+ B'£)"8) almost has the property A since the last

block forms only a small portion of the matrix and the matrix is mainly dominated
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by the other blocks. Thus (30) would give a near-optimum choice for the para-

meter w.
We now need to get an approximate estimation of AI' We start the

iteration with an initial value of w = 1. After a few iterations, the quotients

of the solution norms converge to At. We can save some computer time by

choosing some arbitrary component of the solution vector and taking the

quotient of two such successive components to arrive at At. In our method the

first component vI was used. Thus

2w =

/ 1 k+l k
1+ ~-vl Iv 1

was chosen, where v~ is the value of vI after the kth iteration.

(31)

This approx-

imation is justified since it is expected that individual components would vary

in the same fashion as the norm.

In order to simplify computations, the whole system was scaled down by a

factor of n . Furthermore , since the boundary conditions were incom patible,po '

E1 being of the order of l~ and E2 being of the. order of 1, two different

sets of solutions were obtained, one with the second boundary condition set

equal to zero, the other~th the first boundary condition set equal to zero.

Then two solutions were superposed. This procedure is valid since we are

dealing with a linear system where the principle of superposition holds good.

The solution was then appropriately scaled by the factor n .
po

5. Example.

As an example, we will consider a transistor with a uniformly doped

base, collector, and emitter. The base doping is NA= 4.428851xlO13/cm3, the

emitter doping is NDE= lO16/cm3, and the collector doping is NDC=1015/cm3. We

assume that all impurities are ionized. Let the collector-base reverse-bias

voltage be VCB=500mV and base-emitter forward bias voltage be VBE=560mV. The

dimensions of the transistor are indicated in Figure 1. The depletion widths
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at the collector and emitter junctions are evaluated. The location of the

depletion layer edge is found to be approximately 0.1 ~ from the junction edge.

The base region is then divided into a mesh with h = O.l~.
This gives us NL=39

points at the top edge of the base, NTL = 120 points along the horizontal line

through the boundarY Bl' and finally N = 241 points. The value of Yc is calcu-

lated to be 3.0959752xlO-E The scaled boundary values along Bl and B2 are then

evaluated to be El = 2.2596l78xl09 and E2 = -1 in units of npo' The other

parameters are A = 11 and B =5 which are dictated by the geometry. 0 and Tn n

are assumed to be constants with values of 32.3 cm3jsec and l~sec respectively.

w was chosen to be 1 for the first 50 iterations. At the end of 50 iterations

an approximate value of w was calculated from (31). w's of 1.93 and 1.74 were

obtained for the two solutions which were then superposed and scaled. The

iterations took 273 and 320 steps respectively to converge. The total computer

time on the UNIVAC 1100 multiprocessing system was about 1 minute for the

entire computation. Figure 7 gives a two-dimensional profile of the electron

minority-carrier distribution as obtained by this method.

6. Conclusion

In this report a new method has been presented to solve for the

two-dimensional variation of the minority-carrier densities in the base region

of a bipolar transistor. The charaGteristic resistance approach reduces the

size of the linear system to be solved and hence saves considerable computa-

tion. Further research is presently being carried out with non-uniform doping

densities and hence variable diffusion constant and carrier lifetime.
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