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Abstract

Means to calculate the spatial intensity of network traffic in one and two dimensional net-
works under shortest path routing are presented. Both uniformly geographically distributed
traffic and traffic exhibiting geographic preference are considered. A surprising res»glt is tl.lat'
traffic intensity in a network covering a circular area under geographic traffic uniformity and
shortest path routing is a simple sbat.ial quadratic function.
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I. INTRODUCTION

Network traffic intensity can vary as a function of time and space. The statistical char-
acterization of variations in time has received an increasing amount of attention in recent
vears [2]. In this paper a different aspect of traffic intensity variation, spatial variation, is
examined. We think this is important as there are, to our knowledge, no baseline analytical
studies of this topic. It has implications for our understanding of sizing and dimensioning
networks. Using generic and canonical assumptions of topology, traffic uniformity and lo-
cality, and shortest path routing, we describe means to calculate network traffic intensity
as a function of space. Because of the generic nature of the assumptions, this work is
applicable to both circuit switched and packet switched networks.

A surprising result of this work is that in spite of a fairly involved derivation, traffic in-
tensity in a network covering a circular area under assumptions of uniformity and shortest
path routing, is a quadratic function of spatial position.

This article is organized as follows. Under a traffic uniformity assumption, one dimen-
sional linear network are discussed in section II and two dimensional circular networks are
discussed in section III. Calculating spatial traffic intensity for discrete and continuous
network models with geographic traffic locality and preference is considered in section IV. -
A specific case study of the effect of geographic locality on a linear, discrete network is

presented in section V. The conclusion appears in section V1.

[N}



II. LINEAR NETWORK CASE
A. Discrete Case

It is assumed that the distances between adjacent nodes are identical and traffic follows
a uniform distribution. That is, every pair of nodes has the same amount of traffic flowing

between the two nodes. Then:

Traf fic intensity in link z
= 2(# of nodes to the left of z)(# of nodes tothe right of ) (1)

Here bidirectional traffic is assumed (accounting for the “two” in (1)).

B. Continuous Case

Similarly, if a linear network is defined on the interval (0,L), then:
Traffic intensity at point t =z - (L ~ z) = Lz — 2° (2)

This quadratic function is maximized at:

d 2
—d;(L.’I?—.Z) =

r =

ol o

(3)
I11. Two DIMENSIONAL CIRCULAR NETWORK CASE

It 1s assumed that the network covers a circular region with radius R. There are two
equations for calculation of network traffic density which are the line y = az + b and the
circular network boundary equation z2+4y? = R?. Traffic is uniformly distributed between
all pairs of points in the circular region. Traffic always follows a shortest path (straight
line) route. To calculate the traffic “intensity” at an arbitrary point, Z, in the circular
region, one can place a line through the point. Then there is an one dimensional problem
involving traffic generated between pairs of points on either side of Z on the line and
passing through Z. The line is rotated 180° about Z and the intensity at Z is integrated.
Fig. 1 can be referred to for the following steps.

As already mentioned, for calculating the amount of traffic at an arbitrary point (z,y),

the distances of d; and d; must be found. By multiplying these two distances, one obtains
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Rotated Line :
y#tan(arctan(a)+ o) + b

y=ax+b

Fig. 1. Network topology

an amount of traffic intensity along the linear network passing through Z. This varies
depending on the line position. Without loss of generality, it is assumed that Z = (0,b) is

on the line segment from (0,0) to (0,R).

! !
4, = |z7] dy = A (4)

cos(a + arctan(a))’ cos(a + arctan(a))

The rotated line which has a rotational angle « is found as (see Fig. 1),

y = tan(arctana + a)z + b (5)
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Fig. 2. Rotated lines on the circular network

In order to get the crossing points between the rotated line and the circle, substitute (5)

into z2 4+ y? = R%. Then,

—btan(arctana + o) % \/b2 tan?(arctan a + a) — (1 + tan®(arctan a + a))(4? — R?)
1 + tan®(arctan a + @)

—btan(arctana + o) % \/R2 tan?(arctan a + a) + R? — b? )

1 + tan?(arctan a + @)

Ty =

Note that Z is assumed to be at (0,b). Then the traffic intensity Ijine.r at (0,b) along

the linear component of the network 1is,

]linear = 2X dl X d2 (
1

— 2 ,l !
cos?(arctan a + «) 22l

-1
~——




) 1 b? tan*(arctan a + a) — R? tan*(arctana + a) + b* — R?
~ “cos?(arctana + a) [1 + tan%(arctan a + a)]?
5 1 (b — R*)tan*(arctan a + a) + b* — R?
~ “cos?(arctana + a) [1 4+ tan?(arctana + «))?
_ 1 b2 — R?
- “cosg(a‘rctan a—+ Q) m
= 2 \b? - R
= 2(R*-V*) ,since R>b (8)

This implies that the traffic intensity along the line is independent of its rotational angle.
The total traffic intensity i, at Z = (0,b) is the integration of the above equation by «

which is varying from 0 to = centered at (0, b), that is,

I AR - B)da
i |
= 2(R*-b") -7 (9)

The deunsity of traffic inside the circular network is a quadratic function with a maximum
of #R* at b=0 (network center) and zero intensity at the boundary.

Fig. 3 shows the quadratic traffic intensity as one moves from the boundary through the
center of the circular network and out toward the opposite boundary. Also, the simulated

result from [1] is consistent with the traffic distribution of (9).
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Fig. 3. Traffic distribution along the y-axis

IV. LOCALITY AND PREFERENCE

Traffic intensity may vary spatially because of various reasons. A basic model is that
a node has a higher probability of communication with nearby nodes than with nodes
far from that node. We call this “locality”. However the analytical machinery developed
model below can model any type of traffic preference (or attractivity) as well as basic

geographic traffic locality.

A. Linear Network Case

We will start with the simple linear network case.



A.1 Discrete Case

There are N nodes in the linear network. Then,

Total amount of traf fic at link x
= amount of traffic from node 1 + amount of iraf fic from node 2

4 -+ amount of traf fic from node N (10)

Let’s define the preference probability mass function (p.m.f.) for node j, p;(z), which

indicates the probabilities of communication from node j to all other node 1’s and,

N
ij(i) =1 (11)

Also, P;(7) indicates the amount of traffic from node j to node i instead of probability. If

node j generates a total of N; units of traffic, then its preference vector P; = N; p; or
P;(1) = N,p;(7) for node i and,
N N
> Bii) = 3 Ninii) = K, (12)
If K; = N —1, then all nodes generate traffic uniformly and there is no self traffic.
Let’s define T(z) to be the traffic intensity in link z with preference. Also, Tj(z)/! is
the amount of traffic from the nodes located to the left of the link z, and calculated by

summing the traffic from each node to the left of link z that is going to nodes to the right

of link z (see Fig. 4). That is,

N N N
Tl(z)left - Pi(z) + E Py(i) 4+ Z Prﬂ—l(i)
1=z i=[z] i=[r]
[z]-1

= Z[ (13)

where node ([z] — 1) is the node located to the left of the link z and [z] is the node
located to the right of the link x. This equation yields the amount of traffic at link z.

Also, traffic passing through link z from node j’s which are located to the right of link z.

T[(.T)Tight7 is,

N [z]-1
'rzght Z Z P (14)
i= ['x] =1
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Link x
Fig. 4. Traffic passing through the link x from the nodes located to the left
Thus, total amount of traffic in link z, T'(z),
T(I) - T((I)leﬂ + Tl(x)right

[z]1-1 N ‘ N [z]-1 .

= > X B+ 3 > PR
i=1 i=[x] j=[z] =1
[zZ]1-1 N _ N

= X (X P+ X Fi(m)
m=1  i=[z] i=[z]
[z]-1 N

= Y Y (Pu(n) + Pu(m)) | (15)
m=1 n={z)

If P.(n) = P.(m) (i.e. traffic flows from node m to node n is equal to the traffic from

node n to node m), then:

T(z)=

o

[z]-1 N
> D Puln) (16)
m=1 n=[z]|



A.2 Continuous case

If a linear network is defined on the interval (0,L), then the preference probability density

function (pdf) for point z is p, and,
[ pea=1 T
Similar to the discrete case, the preference function for point z has the following property,
/OL P.()dl = L(z) (18)

If each node generates uniform traffic, L(z) = L. The amount of traffic at link z (or point

1) from the nodes to the left of link x (from 0 to x-€) of the link z, Ti(z)'*/%, is,
z—e L
left __ , !
Ty(z )t = /O / Po(l)dldz', ¢>0 (19)

where € i1s an extremely small distance. The amount of traffic at link  from the nodes to

the right of the link z, T)(z)"™, is
. L z
Ty(z)ieh = / / Po()dlde', >0 (20)
z+e JO
The total amount of traffic passing thru link z, Ti(z), s,
Tz(x) — TI(I)left+Tl(x)right
r—¢ L L T
- / / Po(1)dldz’ +/ / P (1)dldz’ (21)
0 4 T4e JO
B. Two Dimensional Case
B.1 Discrete case
If there are a total of M x N nodes, then the preference probability mass function or
locality matrix pj; for node (7,7) is
M N
> > pii(m,n) =1 (22)
m=1 n=1

Here p;;(m,n) is the probability of communication from node (,7) to node (m,n). For

example, the preference matrix showing the distribution of locality for node (1,1) is

0 mi(1,2)  pu(L,3) -+ pu(l,N)
P11(271) P11(2:2) P11(2»3) P11(2,N) .
P11 = . . : (23)
pu(M, 1) pu(M,2) pn(M,3) - pu(M,N)

10



Fig. 5. Traffic to link (x,y) along the linear paths in a discrete network

Here it is assumed that there is no self-traffic. The preference function, P;;(m,n), indicates

the amount of traffic from node (z.j) to node (m,n).
M N
> > Piy(m,n) = Ky (24)

m=1n=1

where K;; is the total amount of traffic generated by node (i,j). It is assumed that the

routing algorithm uses shortest paths. To find the amount of traffic at link (z,y) from

11



node (p, q), a line equation from (p, ¢) to (z,y) is required, that is,

- rq— o=
T—p T—p
Y — zq — ,
= yz'+ where, v = y—4 and § = —i——y—z—) . - (26)
T—p z—p - :

According to Fig. 5, the amount of traffic from (p1,¢;) to link (z,y), Tp, o, (2, ), along
the line (y' = ma’'+ i , where vy = =& and f, = $=21) consists of the traffic passing

through (z,y) from node (p1,¢1) to node (zy,y;) and the traffic passing through (,y)

from (p1,¢1) to (x2,y2) and so on.

Tm,ql(xv y) = Pplm(mlvyl) + PPl,ql(‘T‘%y?) + PP1,q1(x37y3) +
o+ + Pp g (the end of line) (:

S
3
~—

Here ‘the end of line’ means a crossing point with the network boundary and the line. All
of the nodes along the line follow the line equation y' = vz’ + 1, so a point (p1,¢1) can
be written as (p1,y1p1 + f1) and also (z1,y1) can be written as (zy, 7121 + f1). Then (27)

can be written as

TleQl(‘r’ y) = Ppl,‘YlPH—ﬁl (‘T'l”ylxl + /31) + PP1,71P1+[3(‘T2771$2 + ﬂl) + -
ot Pyipits (23,123 + B1) + Py 46, (the end of line)

the end of line

E PP] Mp1+H (xi’ TN + 181) (

=1

o
oD
—

The traffic to link (z,y) from (p2, ¢2) which is on the same line will be,

the end of line

Tszqz(xv y) = Z PP2=71P2+51 (xia TN+ Bl) (29)

=1
Then, we have to sum each P, , which affects the link (z,y) along the line y = 1z + 5
to obtain the amount of traffic on link (z,y), T(z.y),

(The other end of line) (The end of line)

T(xay) = Z Z PP]:’YIP]"‘ﬁl(:Ci”)/lxi_*_ﬁl) (30)

7=1 =1
Finally, in order to calculate the total traffic amount, Ty,.(z, y), rotate the line by a from

0 up to 27 while repeating the above procedure. Here the reason for using 27 instead of

12



= is to consider bi-directional traffic. The traffic intensity at link (z,y) can be determined

as,
2r (The other end of line) (The end of line)

Tota(z,y) = Z Z Z P, rvapy+6a (Tis YaTi + 3a) (31)
= . .

a=0 =1

Here the first summation is approximate in an angular sense.

B.2 Continuous case

The continuous two-dimensional preference probability density function for node (p, q)
15

h

[ fula)dedy =1 (32)
If the network is a circular network and the amount of traffic from a node (p,q) to the

all other nodes (z,y)'s is mR?, then the preference function, F,,, for node (p, ¢) has the
following property:
R (R
[ Pule.y)dedy = Ly, (33)
If the preference is uniform, then F, (z,y) = 1, or fye(z,y) = ;—}E{f (only defined within
2 + y* < R?). Then:
R (R
/_ i /_  Fla,y)dady = nR? (34)
The traffic intensity of an arbitrary node (u,v) of this circular network, Tioiai(u,v), will

be the integration of the preference function F,,(z,y) along a line passing through (u,v),

while rotating the line and integrating again. The line equation is (also see (26)),

v-—

9 andp=29""2 (35)
u—p u—p

y=vz+ 08 , where vy =

The circular network is divided into two parts, one part is east of the point (u,v) and the
other part is west of (u,v).
First, in order to obtain the total traffic intensity, the crossing point between the line

y = vz + 3 and the circle z? + y? = R? is needed,

2+ (yz + 8)* = R

B+ /(1 +~2)R2 — 32
then, © = - \/<(1 +772)) (36)

13



p<u p>u

A
\

Fig. 6. Locality calculation for continuous 2-dimensional network

From Fig. 6, traffic from the node (p, ¢) which passes through point (u,v) along the line

if (p. q) is located to the west of (u,v) (i.e. p < u), T's1,p<u, 18,

y’ 1:/
TSl,p(u = /v /u qu(:c,y)dxdy

—'75+\/(1+122)R2—ﬂ2
. / e Fypnpislz, y2 + B)dz (37)

u

Here the equation is in terms of the x coordinate (not the y coordinate) by replacing =

14



with 7z + 8 and (z',y') is the crossing point between the line and the circle. The traffic
from all other nodes (p,q)’s located along the line which are also located to the west of
(u,v) in Fig. 6 1s,

u —1'6+\/(1+-722)H2-—6§ : ; :
(1+9%)
Tglz,p<u = /_,s_m ! Fypnprs(z, vz + B)dzdp (38)

(1++°)

Up to now, only the linear network is considered and ~ is fixed since only one line is
considered (i.e. v is independent of (p,q)’s value on the line). In order to cover the

circular network, the linear network has to be rotated starting v from —oo to co.

0o ru —76+\/((1+122))R2-[32
N - ‘ 14 7
TS . rotation = /_ ] /_W_ — /u Fyrig(, vz + 8)dzdpdy (39)

a+7?)

Here the first integration involves slope. Since F,, is only defined in z? + y? < R?, thus

the equation (39) can be simplified as:

o0 ru R
T§1%p<u,rotation = / /R/ Fypa(z, vz + B)dzdpdy (40)

Here, it is assumed that the integral is zero if 22 + y* > R*.

If (p,q) is located on the east of (u,v), p > u, then:

o R ru
Tssﬁpn,rotation = /_oo./u /—R Fynpis(z, vz + B)dzdpdy (41)

Here, again, the first integration involves slope from co to —oo. Finally, the total traffic

intensity at point (u,v) is
o0 pu R
Torar(u,v) = / /R/ Fynpta(z, vz + B)dxdpdry
pu
o R ru )
+[_ / /—R Fopts(z, vz + B)dzdpdy (42)

p>u

Again, the preference equation is general enough that it can be used not only for the
traffic with locality but also for the traffic with preference if one knows the communication
attractivity of the traffic between nodes. As a necessary but not sufficient use of this

equation, let the preference function be uniform, that is F, (z,y) = 1. Without loss of
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generality, let u=0, then one can obtain the traffic density along the y-axis.

Let’s start from the equation (39).
—v8+V/ (142 K2~ 52

(14~2)

(=) 0 )
T$12,p<u, rotation = / /_w_\/m /0 FP,’YP+§(xa YT + ,H)d:l?_dpd‘)’

(
(14+%)

—'vB+\/(1+'1;)H2—ﬁ2 .
(4% 1 dzdpdy

oo 0 /
= SOOI RICEE
-/-oo _/—-‘vﬁ (1472 )R8 0

(1++%)
_ [—7ﬁ+\/(1+72)32_/32]d ]
- [ e
/°° [’75 +/(L+ )R - ﬂz] [—75 +/(1+2)R? — g2]d
—oo (1+9?) (1472 7
_ /oo (1+72)R2—'ﬂ2_7252d
[ (1472) 7
, 1
= (R2_ﬂ2)[-ool+72d’y ’let ‘y:tang
= (R*- 5% id9 ,where —g <9<-?)E
= (R2 ﬁz)ﬂ' (43)
And, also Tps, s,
oo —75+W 0
(1++2
To>w = /_oo/o /—w—\/ﬁ;-,;)T_af 1 dzdpdy
(1++2)
R2 2 0 1 d
= (BF )/_w1+72 7
= (B-5")[" a8

First of all, 3 = %lmo = v. Then total traffic intensity, T40:(0, v), along the y-axis
is.
Ttotal(oa ’U) = Tp<u + Tp>u
= 2AR* -7 (45)
This equation is the same as (9) since the preference is assumed to be uniform. Thus (45)

represents an alternate derivation of (9) and confirmation of the utility of the preference

equation (42).
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V. CASE STUDY : LOCALITY EFFECT FOR LINEAR DISCRETE NETWORK

In this section, we examine a linear discrete network exhibiting locality in terms of
distance, a particular type of preference function. According to [3], a certain mobility
model (in our case, the traffic moving can be assumed to be mobile objects) can be based
on a gravity like function. Such models have been used in transportation research to model
movement. The gravity model is examined below, along with a number of other possible
locality functions.

Assumptions:
1) Distances between adjacent nodes are identical, d.

Each node generates N traffic units per unit time.

2)
3) Pr {communication from node i to j } = p:(j) = pi;
)

4
1

distance between node t and j

pij (46)
le. pi; = a; - N(|¢ —j|-d) = a; - K(md) where K(-) is a function of distance and m is the
number of hops and «; is a proportionality coefficient of probability for node i so that the
sum of the probabilities equals to one.

If there are total N nodes along the linear network, then node 1 which is located at the

leftmost end has the following associated probabilities,

_ 1
P12 = 1d
B 1
D1z = 0133
- al
P14 = 013d
= a—-————l (47)
PN = I(N—l)d
Then:
1 = po+pis+puat-+nn
= (1 + ! + — ! + -t ! ) 43
- d " 2d  3d (N -1)d (48)
= «a S (49)
iy = =
MR



length of the linear network

where d = number of nodes—1
For node 2,
pn = Qs P = Qzy P24 = Q25,7 Pan = Ql(N —2)d ‘ (50)
1 1 1 1
— o — — R PPN e :—]‘
b= ag+gtgt T HE=ad o
1
= Qy = _
Lyynt L
1 =
_ — (52)

1 1
Zk:l kd + m=1 md

Then, for node i,
1
= - — (53)
Zk:ll ﬁ + z:l :rﬁ
Thus the locality (preference) probability mass function (p.m.f) for the linear network will

be,

o

0 pi2 pi3 o0 PN
P21 0 pa -+ pan
P = |[pan p2 0 - pan (54)
LPN1 PN2 0 |
_ CYQ% 0 Q’Q% QQ% (55)
, 1
_O.Nm 0

The amount of traffic in the link 1, T}, which is between node 1 and node 2 is

T

N-(prz+ps+--+pnN)+N-pau+N-psi+---+N-pm

N N
= N> pi+ N> pa (56)
1=2 J=2

18



The amount of traffic in link 2 is,

T, = N-(pia+pa+---+pn)+N-(p2s+pa+--+pan)
+N - (ps1 +ps2) + N - (pa + paz) +--- + N - (pnv1 + pwv2)
N N N : ’
= N ZPH + N szj + N Z(pkl + Pr2)
=3 =3 k=3
2 N
= N(3_ D pmi) +NZ > )
m=1 1=3 k=3 n=1
2 N
= Z Z (Prn + Prm) ‘ (57)

Here P, = Npmn. The amount of traflic in link 3 1s,

T3 = N-(pra+ps+---+pn)+N-(paa+p2s+ -+ pan)
+N - (pag+pss+ - +psn)+ N (pa1 + paz + paz)
+---+ N-(pn1 + pn2 + prs)

3 N
= E Z(Pmn+PnM) (58)

m=1n=4

Fig. 7 illustrates the spatial distribution with an uniform locality function and the
distribution without locality which is given by (1). As we can see, these two graphs are
same. The next graph, Fig. 8, shows the locality distributions for each node when the
preference function is proportional to 1/distance.

Fig. 9 provides a comparison for the cases when the locality is proportional to 1/d,
1/d** | and 1/d?. Here 1/d? is the case of a gravity model. According to this graph,
locality can have a significant effect on the spatial traffic distribution. As the power of
distance becomes larger (i.e. becoming more localized), the traffic distribution becomes

decentralized and the load in the center is reduced.

V1. CONCLUSION

We have found it to be possible to analytically model and solve for geographic traffic
mntensity with assumptions of either linear or circular network topology, shortest path

routing and traffic preference. It 1s surprising that the spatial intensity for a network in a

circular area with uniform loading and shortest path routing is a simple quadratic function
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of position. This work is of interest because it establishes a number of baseline analytical
results for the spatial variation of traffic intensity. It is generic enough to be relevant for
both circuit switched and packet switched networks in terms of questions of sizing and

dimensioning networks .
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