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ABSTRACT

Expressions are derived that bound from above the Helmholtz
free energy of a classical Lennard-Jones system. At any temnerature
they provide a finite upper bound on the free energy at all finite

densities.
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The purpose of this note is to call attentien to some upper

w-

bounds on thé Helmholtz free energy of a system with a Lennard-Jones pair
potential. The bounds follow from the simple application of a familiar in-
equality of the sort discussed by Gibbs, Peierls, Bogoliubov, and othersl.

Let £ be the Helmholtw free energy per particle, p the num-
ber density, and g(r) the pair (radial) distribution function of a clas-
sical single-species system, the enerpgy of which is a sum of one-body and
two-body contributions. If the pair potential v(g) is arbitrarily decom-

posed into the sum of two terms V(E) = VD(£)+AW(E), and a superscript

zero is used to denote quantities asscciated with the system in which

v(r) = vO(r) the basic inequality we shall use can be written asl
: 5
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Although (1) is widely known, the following observation, which consitutes

our point of departure, does not seem to have been systematically exploited:
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If v(r) = 4el(a/r)""~(a/r)"] (where r=i{pr|), vo(r) =« for r < d (where
. s O - .
d is an arbitrary length) and 0 elsewhere, and w = v-v , then decpite
the highly singular nature of w(r) for r < d, the integrand appearing
Ay
: : G ; o
in (1) is finite for all r and any 0 < d < =, since for r < d, g (r)
v
"vanishes much more strongly" than w(r) diverges. We can give a two-step
argument for the same conclusion that does not involve the product of sin-
3 PR < > <
gular functions by writing v'= v +lv vhere v =v for r&d and zero
) LLT . o > i
elsewvhere, Then f (f for v) 1is less than f for v +lv  at any
given B[= 1/kT] and p, since we are clearly decreasing the value of the
. . . hd ( o T
configuration integral by replacing v by v . We can then use (1) on f

Gl . > . ..
for v +Av  with w = v . Thus we arrive at the inequality
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Expressi (2) can be used in two way Firstly, to the extent
o o . . R . A
that £ and ¢ are known quantities, the right-hand side (rhs) of (2)

that is of first order in A and
is also an upper bound. By choosing d +to minimize the rhs of (2), one
obtains the least such upper bound and consequently the best such first-or-

der approximation. Numerical assessments of this approximation can be

: p 3 . Ne o :
based on either the highly accurate estimates of f and g~ available

M

from ¥Monte Carlo, molecular dynamical, and density-expansicn studies, or

the scmewhat simpler but less accurate Percus-Yevick values of these gquan-

s 0t : = : : : 2
tities. We shall report on this first-order theory elsewhere™,

.

The remainder of this note is devoted to the second use of Eq. (2);
vhich is te facilitate the derivation of rigorously exact bounds through
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the use of rigorous bounds en £ and g . The simplest of such bounds,

thousgh mnot the best, are those obtained from setting d=o so that only
= 3 = Ed A,

L] i
lower bounds on g  nezd be considered. For high densities, near and less

than the close-packing density Py of a system of hard spheres of diameter

) o . : ; ; i
d, a reasonable upper bound for f  is given in D dimensions by
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where in writing (3) and elsewhere in this note we take the thermal wave-

9 iz .
length A =(h /?ﬂka) to be unity. 'For p close to the lower bound

Y

given by go > 0 can be used and the rhs of (3) (with D=3) provides
reasonable bound on BfLJ as well as on Bf°. The rhs of (3) becomes infi-
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nite when POy however and is therefore useless Ffor @#F g when p > Py

For a finite bound at higher densities, one can choose d to be smaller
than o and break up the integral in (2) inte a sum of two terms, the first
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a positive term involving integration over the domain in which r £ o and
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the second a necative term involving the domain over which r > 0. An up-

per bound on

ative term is zero while the evaluation of an upper
bound on the first term necessitates the use of an upper bound omn go in
the interval d € r £ ¢. An example of a crude but simple upper bound on

. i A o o] ; 3
g that can be employved here is given by g (z/p) , where =z is the

A

= gD o 5 . e
fugacity™. An upper bound on (z/p)  that remains finite for all »p < p,
can in turn be found by means of the following prescription suggested by
6 \ . = o] ;

Penrcse : If a chord is drawn tangent te an upper bound of pf at The

P 5 ) o .
density p' and if the chord crosses a lower bound of pf  at a density
p less than p', then the slope of the chord gives an upper bound at p on
u = d(pf)/do and hence on z = exp Py. An upper bound on ef° is given by

o E ! . 7

a lower bound can be cobtained by integrating Penrose's result

.

T Rnp~£nfl”(ofow)3. From these observations it follows that
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Denoting the rhs of (3) as [Bf ]U and the rhs of (4) as [g° (r)] we have

finally
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For all B this is a bound that fi;;;;‘ finite for all finite p, no mat-
ter how large, if @ is chosen to minimize the rhs of (5), subject to the
restrictions that d < o and Py > p. [Note that we can guarantee a finite
bound for any finite p, simply by making d sufficiently small, since
this will guarantee that p < p. This insures the existence of a d that
will minimize the rhs of (5)].

We turn next to the problem of getting a good bound from (2) at

low, rather than high, densities. For simplicity we return to d=c. For
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O
very small p we can easily find a better lower bound on g  than zero,
For example -a straightforward application of the Kirkwood- Salsburg equa-

tions8 yieldsg, for »>d and 1 > 2bp,
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where 2b = (um/B)d and ©(r) = (v#/12)(r ~12d2r+16d‘) for 0 ¢ r g 24
while ©(r) = 0 for r 3> 24.

A correspondingly appropriate bound for f° at low densities
comes from the integration of the lower bounds, (p/2)° » 1-2bp, when

12> 2bp. Use of this bound yields an expression for p < (?b)hl.
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If we let [go(r)]L = min[0, rhs of (8)] and [p£°] RPE g of (7),

then (2) yields, when d=o,

o i "0 LJZ o "["’ ;
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which is appropriate for p < (Qb)_l. Taken together, (5) and (8) provide
a reasonably good upper bound over all densities, especially if use is made
of the fact that the convex envelope of the curves for the two expressions
plotted against p_l is also an upper bound. Detailed numerical results
will appear elsewhepe’
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