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ABSTRACT

Expr:essions are derived that bound from above the Helmholtz

free energy of a classical Lennard-Jones system. At any temperature

they provide a finite upper bound on the free energy at all finite

densities.
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The pur'pose of this note 1S to call attention to some UDper

bounds on the Helmholtz free energy of a system \<~itha Lennal"'d-Jones pail'"

potential. The hounds fol10\-1from the simple application of a familiC1r in-
..

equality of. the sort discussed by Gibbs~ Peierls, Bogoliubov, and othersl.

Let f be the Helmho1t/~free enerf,yper particle. p the nurn-

her density, and g(r) the pair (radial) distribution function of a clas-

sical single-speciessystem,the ener~:,y of \-1hich is a sum of one-body and

tHo-body contributions. If the pair. potential v(r) is ax-bi tral"'ily decom-

posed into the sum of two terms,
o

v(r) = v (r)+Aw(r),
"" ...,

and a superscript

zero is used to denote quanti ties associated ,.;ith the system in \'lhich

v(r) : vO(r) the basic inequality He shall use can be \..;rittenas1

f ~ fo ,
"r

-i ?1;:;f j C(;; ) -f-~t--0:) cqr . (1)

Although (1) is widely known. the following observation, which consitutes

our point of departure, does not seem to have been systematically exploited:

12 6
I IIf v(r) = 4£[(0/1"') -(oil"') ] (where 1"'= 1'" )~- - o

v (1"') = ~ for 1'" < d (Vihel"e

d is an arbitrary length) and 0 elsei.,here,and w = v-v 0, then despite

argument for the same conclusion that does not involve the product of sin-

gular functions by \'witing
< >

v : V +Xv uhere
<

v : V for 1'" ~ d and zel"'O

e1sCHhere. Then fL,1 (f for v) is less than f for o >v +~.v at any

given B[: l/kT] and p, since we are clearly decreasing the value of the

configuration intee;ra1 by replacing
<

v by
o
v . We can then use (1) on f

for o >v +AV with
>

W :. V . Thus He ar'pive at the inequality

f
LJ ,

~
f 0 -;- :f:-/~o //1 () (:) tI'f;.:) <;0

(2)
4

the highly singular nature of H(r) for r < d, the integrand aPDering
..\

in (1) is finite for all and any o < d < "', since for 1'"< d, 0, )1'" g tr
.......

'Ivanishesmuch more strongly" than w(r) diverges. We can give a two-steD
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Expression (2) can be used in tHO ways. Fir[.;tlv, to the extent

is also an upper bound. By choosing d to miniJ:lize the rhs of (2), one

obtains the least such upper bound and consequentlythe best such first-or-

der approximation. Numerical assessments of this approximation can be

based on either the highly accurateestimatesof fO and gO available

from Honte Carlo,molecular dynamical,and densi ty-e?:pansion studies, or

the sc/mewhat simplerbut less accuratePercus-Yevick values of these quan-

tities. He shall report on this first-order theol~Yels8Hhere 2.

The remainder of this note is devoted to the second use of Eq. (2)~

which is to facilitatethe derivationof rigoT'ously exact bounds tlypough

the use of rigorous bounds on
o

f and
o

g . The simplest of such bounds,

though not the best, are those obtainedfrom setting d=a, so that only

10',.;er bounds on gO need be considered. For high densities,near and less

than the close-packing density PM
o

d, a reasonableupper bound for f

of a system of hard sphares of diame"ter'

is given in D d . . 1 4
lmenSlons JY

L c.'
./3 I ~ - ~~ (/;N:1 [0A1 /r» //~ / ],1)}

(3)

length

writing (3) and

2 I/;:-
II = (h /21rmkT) to

elseiolhere in this note '-Ietake the thermal wave-where in

be unity. for P close to
Pr-,

the lower bound

given by
o
g > 0 can be used and the rhs of (3) (with D=3) provides a

reasonable bound on I3fLJ as well as on 8fo. The rhs of (3) becomes infi-

BfLJnite Hhen P=PH
however and is therefore useless for "Then

P > PH'

For a finite bound at higher densities, one can choose d to be smaller

than 0 and break up the integral in (2) intoa sum of t,,!O terms, the first

a positive term involving integratio,) over the domain in "hieh r.:s 0 and

that fO and
0

are known quantities, the right...hand side (l'hs) of (2)(1
'?

gives an explicit approximation to fLJ that is of first order in :\ and
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the second a nef,e..tive term jnvolvingthe domain over i>lhich 1"' > cr. An up-

per bound on the negative term is zero while the evaluation of an upper

bound on the first term necessitates the use of an uppeT' bound on
o
g il1

..

Penrose6: If a chord is dra,mtangent to an upper bound of pfo at the

density pI and if the chord crosses a lower bound of pfo at a density

811~ £np-£.n[l-(p/p~])J.From these observations it folloHs that

~
/,1"" J~ - /:?U -

J
'

I/.)' ~ '4' J-£!.'-/--

i) . , () . __2_ /'.IN\ ::'" -( <,' '- ~
q (:) $ (;E1<J) ~

.

/1;>U7Z. ~OM ~'/':.) -1 1
P} /1- r---}I'. ,

17 ~<;"-o/<I'M\.\( - ~7 _ / r'/I! (I.f)
. 0 U 0 U

Denotmg the rhs of (3) as [8f J and the rh8 of (4) CJ.S[g (r)J we have

finally

f
/..7 . ! i t

)
(,/ " ( . i/ <

P ~ ,18' .f- ; i3fjICjl(!)] 4(7:JJ!::"it.<<r<v
For all 8 this is a bound that remains finite for>all finite p~

(5)

no mat-

ter hO\-1large, if d is chosen to minimize the 1'hs of (5), subject to the

restrictions that d < cr and PM > p. [Note that we can guarantee a finite

bound for any finite p, simply by making d sufficiently small, since

this will guarantee that p < PM. This insures the existence of a d that

will minimize the rhs of (5)J.

We turn next to the problem of getting a good bound from (2) at

low~ rather than high~ densities. For simplicityHe return to d=cr. For

the interyal dr-:::o. An example of a crude but simple upper bound on

0
that can be employed here is given by

0 0
is the.g g ,< (zip) , \-there z

f . 5 An upper bound on (z/p)o that remains finite for allugacl ty .
o < p
. M

can in turn be found by means of the follmling prescription sU2:gested by

p less than p I then the sloT)e of the ChOl'd gives an upper bound at r on.

}J = d (p f) Idp and hence on z = exp f3V. An upper bound on efo is Fiven by (5)

a 10",er bound can be obtained by integl'ating Penrose I s result 7
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S

very small p we can easily find a better lo'trer bound on
o

g than Zero.

For example 'a straightforHard application of the KirkHood-Salsbu!'? equa-

tions8 yields9, for r > d and 1 ~ 2bp,

/i Or ) " 1- 4"'// -I-e(r)/.) ___ __._
a 1: ~ I r. Z- _ -I ] )(6)

tf (/-.:z£.~ )!/-cZA):J -I- (;7/G~)(CZ.~) (/-.z~)
332 3

where 2b = (4~/3)d and S(r) = (li/l2)(r -12d r+16d) for 0 ~ r ~ 2d

while a(r) = 0 for r ~ 2d.

A correspondingly appropriate bound for

comes from the integration of the lower boundS,

1 ~ 2bp. I Use of this bound yields an expression

,//8 f () ~ ~yo7- (;<.j;?y-I (/ -2~)£n- (/-- ?v~/o) . (7)

If we let [go(r)JL = minEO, rhs of (6)] and [8foJU2 = the rhs of (7),

then (2) yields, when d=a,

f . L.T r I " 0 7 UZ I ;;. ) 7 h. /J ( 8 )
;:J ~f:<3 J +:2 /k~ JIf O(~ J d./' >(..;:-) ~C::t' )

which is appropriate for p < (21)-1. Taken together, (5) and (8) p1"'ovide

a reasonably good upper bound over all densities, especially if use is made

of the fact that the convex envelope of the curves for the two expressions

plotted against
-1

p is also an upper bound. Detailed numerical results

will appear elsewhere9.

We gratefully acknowledge many fruitful discussions with O. Pen-

rose concerning the subject of this note. We are also indebted to S.M.

Chang and J. Rasaiah for their aid in checking and nlli~erically assessing
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fO at lov: densities

a
i'ihen(p/z) rl-2bp,

-1for p < ( 21 ) :


