
Microscopic Theory of Intrinsic

Shear and Bulk Viscosities

Wokyung Sung

'. Departmentof Physics
State University of New York at Stony Brook

Long Island, New York 11794

John Karkheck

Department of Mechanical Engineering

State University of New York at Stony Brook

Long Island, New York 11794

G. Stell

- -

Departments of Mechanical Engineering and Chemistry

State University of New York at Stony Brook

Long Island, New York 11794

Report #349

August 1980



ABSTRACT

A microscopic theory of intrinsic shear and bulk viscosities

is given for a model of particles that interact with hard-sphere

cores and weak long-range attraction. The approximation considered

(the velocity chaos assumption of the Enskog theory) can be expected

to yield quantitatively useful values for viscosities of the model

solute-solvent system when the solute particles are not much

larger than the solvent particles. Under solute-solvent mixing

conditions of constant pressure and temperature we find that the

intrinsic viscosities of a hard-sphere solute in a hard-sphere

solvent ~an be positive or negative, depending upon size and mass

ratios; for solute and solvent particles whose mass ratio equals

their volume ratio, the intrinsic shear and bulk viscosities are

always positive for solute size larger than solvent size, and

negative for smaller solute size. For smaller solute size, this

result is sensitive to change in mass ratio. The addition of

solvent-solvent attraction is found to lower the intrinsic viscosities

substantially; the addition of solute-solvent attraction raises it.

Detailed quantitative analysis of these effects is given.
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1. INTRODUCTION

In 1906, Einstein derived an expressionfor the shear

viscosity of a dilute suspension of spherical particles in an

incompressible f1uid.1 The derivation assumes the suspended par-

ticles to be large enough compared to the fluid particles so that the

latter can be regarded as a homogeneous structureless continuum

rather than a molecular solvent. The Einstein result can be

expressed as

11=1110(1+~ t;2) (1-1)

where 11 is the shear viscosity of suspension, 1110is the pure-fluid

viscosity, t;2the volume fraction of the suspended particles,

i.e. the ratio of the total volume of the suspended particles to

the total volume of the suspension.

This important result has been generalized to higher

particle concentration and to nonspherical shapes.2 To our know-

ledge, however, very little has been done toward generalizing the

Einstein result to the case of a bona-fide molecular solvent of

particles into which solute particles of molecular size have been

3
introduced. It is this case that we considerhere.

We take as our Hamiltonian model a binary fluid of

particles interacting pairwise with hard-sphere repulsion plus

wea~ long-range attraction. Our results are developed on the basis

of the revised Enskog theory (RET) of hard-sphere mixtures4 suitably

extended to accommodate the attractive tail of the intermolecular

potential. The relevant extension has recently been put on a firm
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conceptual foundation by Karkheck and

5
Stell.. The standard Chapman-Enskog procedure6 is used to

obtain the transport coefficients. In comparing the pure-solvent

transport properties to those in the presence of solute, we are

mainly interested in our system under the thermodynamic conditions

that are usually easiest to handle in the laboratory--fixed

temperature and external pressure. The key thermodynamic input

needed in our calculation is provided by the equation of state for

a binary mixture of hard spheres, which is modified in a simple way

by the presence of the attractive tail. We use the equation of

state of Mansoori et al.7 (for hard spheres), which is known to be an

extremely accurate approximation.

Although by no means exact, the resulting theory can be

expected to yield with reasonable accuracy ail the trends of the

intrinsic shear and bulk viscosities for monoatomic fluids that we

wish to study as long as the size and mass disparities are not too

large. However, we cannot expect the Enskog result to remain

meaningful in the hydrodynamic limit, i.e. the limit q + 0 with

solvent density fixed, where q is the ratio of the diameter of the

solvent particle to that of solute. The Enskog theory assumes

the "velocity chaos," i.e. the lack of dynamic correlation between

two particles about to collide, and this assumption prevents an

adequate description of certain collective effects involving

repeated collisions that appear to be fundamental to the hydrodynamic

description. As a result, the Enskog theory yields intrinsic
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viscosities that become spuriously singular as q + 0, as we shall

see. In this paper we therefore focus mainly on the values of q not

too much less than unity, for which Enskog theory can be expected to

be most useful. We also restrict our attention to values of a.",
1J

the integrated strength of the attractive potential, that corresponds

to values for simple mixtures that have been determined from the

available thermodynamic data.

The presentation of our work is as follows: In sec. II, we

give a brief sketch of our calculation of the intrinsic shear and

bulk viscosities from the (revised) Enskog theory of hard spheres.

A mixing rule for fixed temperature and pressure is derived. In

sec. III we discuss how the inclusion of an infinitely weak, long-

ranged attraction between pairs of molecules perturbs the results of

pure hard-core repulsion. This is found to yield a nonnegligible

contribution to the intrinsic quantities under our thermodynamic

mixing condition. In sec. IV we give quantitative results and a

discussion.
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II. ENSKOGTHEORYOF THE INTRINSIC SHEAR AND BULK VISCOSITIES FOR

HARD-SPHEREFLUID

For the case of a dense fluid consisting of hard-spheres,

the most successful microscopic theory capable of yielding useful

analytic expressions for the transport coefficients is the kinetic

6
theory of Enskog. Since the collision time in this impulsive model

is vanishingly small, the ternary and higher order collisions can be

completely neglected, simplifying the collision kinematics

considerably. While taking into account the static correlation

existing from the finite dimension of the molecule, this theory

neglects all the correlated collision events in its assumption of

"velocity chaos." This assumption is expressed by the condition

F(2) C:1' ~I' :2' ~2; t) = g12 C:1 ' :2) f 1(: 1' ~1 ' t) f 2 (: 2' ~2 ' t)
(2-1)

which relates the two-particle distribution function (DF)

F(2) Crl ,VI ,r 2,V2 ;t) to the one-particle DF f. Cr. ,V. ,t).- - - - 1 -1 -1 In the

standard (original) Enskog theory6,8 (SET) g12 is the contact

equilibrium pair DF which depends on the local density evaluated

midway between the centers of the two molecules located at :1' :2'

When applied to a mixture of disparate sizes, however, this prescrip-

tion for g12 was found to lead to an inconsistency with the Onsager

reciprocal relations? Subsequently it was noted4 that if one

regards gl2 as the local equilibrium DF which depends functionally

on local density fields (just as it does at equilibrium in a system
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made nonuniform by the presence of external fields), this treatment

yields results that appear to be fully consistent with the

reciprocal relations and are fundamentally more self-consistent and

useful even for a pure fluid.4,5,lO We shall use this new treatment

[referred as the revised Enskog theory (RET)] as the starting point

of our microscopic theory of transport in binary fluids. With

regard to our final expressions for the shear and bulk viscosities,

however, we note that there would be no differences had we used

instead the SET as our starting point.

The kinetic equation given by the RET is

[.

",dt +V.'V!f.(r,v.,t) = I J E (f.f.)
0 -1 -) 1 - -1 j=1,2 1 J

J-
E (f.f.) = a~.rdV.rda(a.v..)e(a'v,,)

1 J 1J) -J) - - -J1 - -J1

{g.. (r,r+a. .a)f. (r,V! ,t)f. (r+a. .a,V~ ,t)
1J - - 1J- 1 - _1 J - 1J--J

-g.. (r,r-a. .a)f. (r,V. ,t)f. (r-a. .a,V. ,t)}.1J - - 1J- 1 - _1 J - 1J--J (2-2)

Here, a.. is the contact distance between the centers of the particles
1J

i and j, V.. = V. - V., the primes on the velocities denote the-]1 -J -1

post collisional values, ~ is unit vector along the apse line in such

a direction that Heaviside step function G(a-V..) imposes the.,. -J1

condition of the collision.

The hydrodynamic equation for change of masS,momentum,

energy can be constructed from (2-2) by multiplying by ml' mi~i' ~i~i,

respectively, integrating with respect to V. and summing over i = 1,2.-1
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Since our interest here lies in the viscosities, only the equation

for the change of momentum is considered:

p
[
~ + uo\lu! = -\lop
at - -)

(2-3)

where the hydrodynamic variables p, ~, ~ (mass density, velocity,

pressure tensor, respectively) are defined through the relations

p =
I
f.m.dV.
1 1 -1 (2-4)l.

i=1,2

pu = I jf.m.v.dv.- .= 1 2
1 1-1 -1

1 , .
(2-5)

p = p + P
~ ~K ""C

P =
:::K I

f.m. (V.-u)(V.-u)dV.
1 1 -1 - -1 - -1 (2-6)I

i=1,2

P
c = I cr~.~..

I
dV.dv.dcr0(aov..) (aoV. .)2aaz . '- 1 2 1J 1J -J -1 - - -J1 - -J1 --

1,J- ,
rl

1 da g12(r-aa. .a, r-aa. .a+a. .a)~ - 1J- - 1J- 1J-

f. (r-aa. .a, V., t)f.(r-aa. .a-+a. .a,V. ,t)
1 - 1J- -1 J - 1J- 1J--J

In (2-7) ~C 11 is identified as the collisional momentum transfer

(2-7)

not included in the Boltzman-equation description. To evaluate ~,

one should solve for f..
1 The Chapman-Enskog procedure of normal

solution for f. is known to provide an adequate means of yielding1

the hydrodynamic transport coefficients. We shall not elaborate

here this standard procedure in detail but quote the results developed

elsewhere. 8, 12
For ~, we find up through linear order in

gradient in the hydrodynamicvelocity u
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( +:2
E = P!-11 Vu+ (Vu) - -V.Un-KV.U.- - - - 3 -- - (2 -8)

Thus, with this constitutive relation, (2-3) becomes the Navier-

Stokes equation with 11, K the shear and bulk viscosities, now

given microscopically. The 11, K are given by

11 = 11
1

+ 11 + 11
2 3

111= ~kT In. b (i)
i=1,2 1 0

(2-9)

11 = 4TIkT l ~ij S~~)b(i)2 15. ..
1 2 m. 1J 0

1,J:=, 1

~
11 = 4kT l p. .S~~)3 15. '- 1 2 1J 1J

1,J- ,

K = Kl + K2

K = 4TIkT I ~ii S~~)h(i)1 3.. _1 2. mi 1J 11,J- ,

(2-10)

K = 4kT L S~~)p. .2 9..
1 2 1J 1J

1,J= ,

Here b(i) h(i)
0 ' 1 '

the coefficients of the lowest order Sonine po1y-

nomial that is used in our approximation, are to be obtained from the

conditions:

~
r

(i) (j)

8 I S~:)P..ii.~+~-
j=1,2 1J 1J mi \ mi mj

8TI ( 3)
~..

= 5n. + - 1. s...2l
1 3 '- 1

'
2 1J m.

. J- , 1

b (j) b (i),
~ 0 - 0 .13 m. J

J .

(2-11)
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8 I B~~)P..(h(j)-h(i))M~~
j=i,2 1.J 1.J 1 1 1J

ni p 4;r (3) mi= -no +
kT

+ -
3 8.. -M .

1 n 1.J. .
1.J

(2-12)

The Y.. is the contact value of the equilibrium pair distribution function, n.
1.J 1.

is the number density of the species i, n = n l
+ n

2 ' 11.. = m.m./m. + m.,
1.J 1. J 1. J

(~) ~ k
M.. = m. +m., cr.. = ~(cr.. +cr..), 8.. = cr..n.n.Y.., p.. = (27TkTl1..)2.

1.J 1. J 1.J J.1. J J 1.J 1.J 1. J 1.J 1.J 1.J

For the pressure, we have

P = kT[n + 2; L 8 ~~)] .i,j=1,2 1.J)

(2-13)

The calculations for the explicit n and K are very tedious

but straightforward. Since we shall concern ourselves with a

suspension of dilute solute particles in which ~l » ~2 where

~. = ~ n.cr~. is the volume fraction of the particle i, we expand1 0 1. 1.1

n, K up to the first order in ~2:

n = (n)O + ~2(n)1

{
I. 8 0 2 768 2 0

}

B

(n)O = Y~1 (1 + 5" ~lYl1) + 25;r ~lY11 II

( {

0

}
1 8 0 2 3 1112 0 Yl..L2 8 0

(1l)1 = ya(l + 5" ~lYl1) s(1+q) (1 +m)Y12 --:yO -+5" ~lYll 211 1 11 '

+ [768 ~2yO +.2i..r21112\~(1+)4 -1~ yO
}1257T 1 11,2 257T\. ml ~I q q 1 12

+ ~-1
[
1 + ~ 1112~ -1 d=--(l + ~ ~ yO ) (~q3 f.l12

1. 3 ml) Y11 5 1 11 \ 3 ml

- 2- q(l+q)2
[
21112j~

12 ml ")

(2-14 )

x 1 (
8 0 0 2

(
1112 \ 3 O

}Y~1 1+S~lYl1)Y12+sIii1-1.l(1+q) ~lY12
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+ ~-1
[

1 +~ ]112r:-1
{
~

[
]l12l~(1 +~ ~ yO )

1 3 ml) 3 ml) Y11 5 1 11

[
2 2 ~ '\ -1 0-1 3 2 3]1 a

) 1

+ 4 (l+q) (~~2) pq) Y12(q +S(l+q) p ~12 ~lY12 J

( 3 2 3 ]112 C" a
)J

B
x q+s(1+q)PffilslY12 T'l1

K = (K)O + ~2(K)1 (2-15)

256 2 a B
(K)O = 5~ ~lY11T'l1

(K) = f256 ~2yO +gr2]112J~ -I(1+q)4~ yO
1 t 5~ 1 11,2 5~t ml ) q 1 12

[ )

-3/ 2 1 0 2,\412 ]112 ( ( 1+ )
2
) - yO fq3 Yll _l(l+ q)3 ]112\ IT'lB.

+ 5 ml pq q 12l Y~2 4 P ml) ) 1
kB 5

(mlkT)
2 1

In (2-15) p = m1/m2' q = 0'11/0'22' T'l1= 16 -:n:- O'il

a
l

ad I

Yij = Yij ~2=O' Yij,k = d~l Yij 1~2=0 .

For the pressure, we find

P = (P)o + ~2(P)1 (2-16)

a
(P)o = n1kT(l+4~lY11)

a 3 a
(P)l = n1kT{4~lY11,2+ (l+q) Y12}.

The viscosities and pressure in the pure solvent are obtained by

substituting ~~, n~, relevant to the pure solvent for ~, Dl in (T'l)0'

(K) a and (P) 0:

f
1

{
8 a a a

}
2 768 02 a a '\ B

T'l10= yO ( C"O) 1+5~lYll(~1) +257T~ l Yl1(~1)1T'l1t 11 1,,1 ' )

-
[
256 02 a 0 '\ B

KIa - 57T ~l Y11 (~l) )T'l1

(2-17)

(2-18)
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0 { .00 0
PlO = nlkT 1 + 4~lYll (~l)L (2-19')

In order to compare the viscosities of the suspension with

those of the pure solvent, the thermodynamic conditions of both

systems should be specified. We shall assume, in mixing, fixed con-

ditions of temperature, total solvent mass, and external pressure,

which represents the most common experimental situation. To show how

this condition differentiates ~l from ~~, Z = P/kT is expanded up

through the deviation.linear in ~2:

[

azl 0
[

dZ\

Z = Zo+ a~ljo(~l - ~1) + -a~2Jo ~2
(2-20)

where 0 refers to the pure solvent, i.e. the point (~1 = ~~, ~2 = 0).

By substituting the mixing rule in the form

0
~l = ~l (1 - M~2) (2-21)

and by noting that Z = ZO' we find

M -
(

az I ~o
[
azI

- a~2Jo/cl a~do

=
[
~I {O

[
~I.

a~2J0/" 1 a~1J

(2-22)

Substituting (2-16), (2-19), we find for

3 3 0 02 0
~- - 1 q +(l+q) ~lY12+4~1 Y11 ,2
-~ - ~ 1+8~OyO +4~0~YO

1 '->111 '->1 11,1

the hard-spheres

(2-23)

This also can be expressed as

0

[

ap I

M = S 1 a~2J 0 .

where S~ is the isothermal compressibility of pure solvent defined

(2- 24)

as
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sa = -1 (l~1 = fno ap\o)-l.
I Va apI0)T ~ I anI)T

For the fluid of general intermolecular interaction, (2- 24) wi 11 provide

(2- 25)

a means of determining M through thermodynamic measurements.

The simplest and most illuminating expression for M in the

operational sense is simply given as follows: Consider a sample

volume Vo of the pure solvent. By adding an infinitesimally small

amount of the solute particles, the overall volume also will

generally increase infinitesimally (6V). The volume fraction of

the solvent particles would be affected according to the relati<)TI

~ = NIVI = ~O
(
l- 6Vj

1 Vn+6V 1 Va)
(2-26)

where v I ,Nl are the molecular volume and the total number of the

solvent particle. By comparing this with (2-21), we find

M = 6V
V2

(2-27)

where V2 = N2v2 is the total volume of the solute mixed. Thus,

determination of M requires only a simple experiment of measuring

the volume overflow ~V.

Let us imagine the case in which the solute particles are

macroscopically large. Our macroscopic experience immediately tells

us that ~ = 1 in this limit, since in hard-sphere repulsion there

is no solvation effect, i.e. V2 = ~V. In fact, when the Mansoori-

Carnahan-Star ling-Leland (MCSL)7 approximation for Yij (see appendix)

is used, (2-23) gives in this limit a value ranging from 0.98 to 1.

This remarkable slight deviation from unity suggests strongly
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the possibility that the MCSL remains a good approximation in the

q -+- 0 limit.

With the mixing rule (2-Zl), (Z-Z3), we are now in a

13
position to evaluate the intrinsic viscosities defined by

{TI} :: lim TI-TllO
t,:2+ot,:2T1l0

{ }
- 1° K-K1OK=J.m-

t,:2+o t,:211l0

We find from (Z-14) and (Z-15)

(Z-Z8)

(2-Z9)

0 1 d(TI)O + (TI)l
!{TI} = -~~l TllO d~~ TllO ~l=t,:~

0
0 1 dTilo + (TI) 1 (~d

= -~~ 1 Tll 0 ~ Tll 0
(2-30)

{K} = -~~o ~ dK10 . (K)2(~~)1 TllO d~~' TllO
(2-31)

Figures 1 and Z show trends in {TI} and {K} for the case

-1 - a 0
p = mZ/ml = (0ZZ/0ll) (a = 0,2,3,4) for ~l = 0.4, the volume

fraction of the typical dense liquid. A remarkable feature, first

of all, is the divergence that goes as q-l = 0Z2/0ll where

q = 011/0Z2 -+- o. Since in this limit the size of the solute particle

is infinitely larger than the mean free path of the solvent mole-

cules, we naturally expect the hydrodynamic description (in which

the solvent is regarded as a structureless continuum on the length

scale of the size of solute particle) to yield the exact result.

Since the intermolecular force between the solute and solvent

particles is a hard-sphere repulsion which lacks a tangential

component, the macroscopic collective manifestation of the solute-
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solvent interaction results in the form of slip boundary condition

for the hydrodynamic variables on the surface of the solute particle.

Hydrodynamic calculation with this boundary calculation yields

{n} = 1, {K} = 4/3 + K/n.14 (The famous Einstein formula {rj} = 5/2

will only result from an anisotropic molecular interaction that

allows transfer of angular momentum at collision, permitting the

usual stick boundary condition.)

The reason for this pathological divergence in our kinetic

theory calculation is due to the velocity chaos assumption that breaks

down badly in this limit, in which the solvent particles near to the

large solute particle are likely to make repeated (correlated)

collisions with it. The resulting singularity (q-l) in {n}, {K}

is similar to that which appears in the Enskog binary diffusivity,

in comparison with the hydrodynamic (Stokes-Einstein) result.

However, in the region of very large q, in which the average

spacing between the solvent particles is far larger than the size of

the solute particle (and thus the solute-solvent collision tends to

be uncorrelated) one might expect the velocity-chaos assumption for

the solute-solvent collision to better retain its validity. This

tendency has been verified in the case of binary diffusion through

molecular dynamics studies. IS This tendency and the fact that the

Enskog results satisfy the exact symmetry conditions that force {n}

and {K} to vanish at q = 1 = P strongly suggest that Fig, 1 and Fig. 2

represent the trends of {n}, {K} for hard-spheres with reasonable

accuracy in the region q-1 $ 1, i.e. the region where the
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aforementioned singularity (q-l) is not appreciable. In addition to

the Enskog approximation embedded in Eqs. (2-14), (2-15), and Figs.

1 and 2 one has the approximations introduced in getting the transport

coefficients from the Enskog equation. The Chapman-Enskog method of

normal solution that we use seems to be appropriate in our study of

transport coefficients ~s long as the mixture can be regarded as

homogeneous in the local temperature and hydrodynamic velocity. It

remains only to show how our results (2-14), (2-15) based on the

lowest Sonine polynomial approximation can remain acceptable in this

limit; this is presently under our investi~tion.

In the intermediate region of q, {n} and {K} must vanish at

the point q = 1 = ~which is no more than a statement of identity

of two species. Inclusion of molecules identical to those of the

solvent under constant pressure and temperature does not affect the

property of the initial system.

Finally we note from Figs. 1 and 2 that our way of classifying

the mixture via p = qa, albeit somewhat artificial, shows how the

intrinsic viscosities are sensitive to the mass ratio. As one might

expect, the result is more insensitive to the mass ratio (i.e. the

solute-solvent collisional detail) for the larger solute particle;

we find for all values a in the domain 1 < a < 5 the results approach

a single asymptote in the limit q ~ o. In the opposite limit,

however, the result is very sensitive to the mass ratio.
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III. INCLUSION OF THE INFINITELY WEAKAND LONG-RANGEDATTRACTION

It is well-known that the hard-sphere model, though crude,

represents the main features of the dense fluid structure and is

successful in correlating the data of the transport coefficients of

real dense fluids in various ways.17 These facts lend support to

the view that a workable perturbation theory of the transport can

be developed with hard-sphere fluid taken as a reference system.

This scheme has already produced fruitful results in regard to

thermodynamic properties.

We shall consider here the perturbation in the form of the

weak and long-ranged attraction (van der Waal's attraction) added

to the hard-core repulsion. The intermoiecular potential is written

as

3
~(r) = ~H + y ~L(yr)

(3-1)

where the smallness parameter y is the inverse of the range of the

attractive force.

Resibois et al.IS discovered that the leading effect of the

perturbation on the shear and bulk viscosities is only in the order

of y:

X(y) = ~ + oCy). (3-2)

Thus, the transport coefficients are those of the hard-sphere

reference system in the limit y ~ o. However, as is well known,

the thermodynamic properties are different in a significant way:19

For the free energy and pressure we have
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2
A = ~ + an /kT

2
P = PH - an

(3-3)

(3-4 )

where

-2a = 1im y3
[ ~L(Yr)d:

y+O 11

=r ~L(x)~

(3-5)

but for the radial distribution functions at its contact value, we

get

Y12(G12) = Y{2(G12) + O(y3). (3-6)

With the hard-sphere pressure PH given by the Percus-Yevick

compressibility expression or by the more exact form of Carnahan and

Star1ing20 (see appendix), (3-4) is a modifiedvan der Waals

equation of state which yields reasonable thermodynamics for the

. f1 .
d

21
monatom1C U1 s.

The generalization Qf (3-5) to binary mixtures is achieved

by the van der Waals
. . 22

prescr1pt1on

2 - \ n.n.a;J
'

n a - l.. 1 J ...
i,j=1,2

(3-7)

where

3

[
"

-2a.. = 1im y ~~J(Yr)dr
1J ~ 1 -y~ G..

1J

=
[ ~ij (x)dx
0 L -

(3-8)

and by (2-13)

21T \ 3PH/kT = n + -3 l.. n. n. G. .Y. . .. . 1 J 1J 1J1, J
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In our calculation of the excess transport properties, the

inclusion of the perturbation is expected to give a significant

contribution, via our thermodynamic mixing function M (2-21). From

(2-22), (2-16), (2-19) we find

M=J1+~

3 3 0 02 0
- ~ q +(l+q) ~(Y12-b12)+4~1 Yll'2

- ~~ 1+8~~(Y~1-bll)+4~~2Y~1 1,
(3-9)

h b 3 -3
jkT Th . . . . ..

b
.

dwere.. = --
2 a.. cr.. . e 1ntr1nS1CV1Scos1t1esare 0 ta1ne

1J 'IT1J 1J
, ,

by replacing ~ by this M in the expression (2-30), (2-31). In the

case that two components are identical, i.e. q = 1, bll = b12 = b22'

we find

M=J1=~
~~ .

However, if the two species are identical in mass and size but

internally dissimilar in such a way that all ~ a12' 6M does not

vanish.
Specifically when all> a12' we have 6M > 0, and the mixing

results in a decrease of the viscosities by -6M ~~ f- aaX~V. In the10 '" 1

opposite case, the opposite result will be found. These results

are intuitively obvious--the increase of the attraction by mixing

(all < a12) increases the viscosities.

Determination of a. ..
iJ-

The expressions(3-3) - (3-8)do not yield a unique means

of finding a.. and cr.. that are appropriate to the study of real1J 1J

fluids, since real fluids do not have thermodynamics precisely given

by these equations. Procedures to find a.. and cr.. that yield
1J 1J
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reasonable approximations to the true thermodynamics are well known,

however. We shall use the values of a.. and cr.. that were deter-
1J 1J

mined by Snider and Herrington23 from thermodynamic data for simple

binary mixtures composed of the almost spherical molecules. They

made their determination first for pure fluids by comparing thermo-

dynamic data (PVT) and the latent heat of vaporization, with the

equation (3-4) and the expressions for the molar entropy or enthalpy

of vaporization that they obtained. In order to obtain a12' they

matched their expressions for the excess Gibbs free energy with the

measured data. With these semi-empirical values of a.., cr.., they
1J 1J

predicted the excess enthalpy and entropy of mixtures with successful

agreement with the measured data.

Snider and Herrington used the Percus-Yevick hard sphere

equation of state to evaluate the hard sphere term PH in (3-4), rather

than the slightly more accurate MCSL result7 used by us, but this can

be expected to make a negligible difference in the values of a.. and
-. - 1J

cr... Such fine points are inconsequential to our goal of determining
1J

the general trends that will result from the inclusion of attractive

potentials that are of the same order of integrated strength as those

found in typical fluid mixtures.
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v. RESULTS AND DISCUSSION

Summing up the contributions from the Enskog result for

hard-spheres and from the weak and long-range attraction, we have

{x} = {XE} + 6{X}a

=--L
f

dXl O

)
Mt;O + (X) 1

XIO ~ 1 XIO
(4-1)

where X is either ~ or K.

In table I and II we list the parameters a. .,0.. determined
1J 1J

by Sneider and Herrington. In general the diameters 0.. given here11

are a little smaller than the effective diameters determined by

24
other means.

Our results at t;~ = 0.4 are given in table III for

the various mixtures considered by Sneider and Herrington. As is

shown, 6{~} , 6{K} are appreciable and in many cases predominatea a

over the {~}E' {K}E'

Figure 3 shows the trends in 6{~} and 6{K} (6{~} =a a a

0.7794 6{K} ) for mixing of the solute Particles of various sizesa.

and strength a12 into the reference fluid of argon at T = 100 K.

For simplicity, we consider the case m2/m1 = (°22/°11)3, i.e. the

case in which the molecular mass density of the solute and solvent

are the same, with the trends plotted for various values of fixed

attractive solute-solvent (argon) strength a12' Figures 4 and 5

represent the general trends of {X}E + 6{X}a'

controllable physical process corresponding to changing the size of

We know of no

the solute particle while holding its attractive solute-solvent

interaction strength fixed. Presumably one might be able to
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experimentally locate a family of solute molecule of different sizes

but with roughly the same attractive solute-solvent strength; without

such a family with which to compare, Figs. 3, 4 and 5 remain somewhat

physically artificial. Nevertheless they are conceptually extremely

illuminating. Since the effect of dynamic correlation that Enskog

theory neglects is not considered here, the reliability of the

results of Figs. 4 and 5 is limited to the case of small solute

particles, i.e. °22/°11 $ 1. However, as far as the 6{X} themselvesa

are concerned Fig. 3-.can be regarded as representing with reasonable

accuracy the effect of the attraction, since the inclusion of the

infinitively wea~ long-range attractive tails does not change the

nature of the hard sphere collision dynamics. As is shown in

Figs. 3, 4 and 5, the presence of the attractive tails perturbs the

general trends of {X} drastically. If we add only solvent-solvent

attraction (all> 0) of strength typical of simple molecules but no

solute-solvent attraction [a12 = 0 the graphs labelled by (0)] to

the pure hard-sphere case (shown by the dashed lines), then the

intrinsic shear and bulk viscosities are substantially lowered by

values that are essentially independent of °22/°11 once this ratio

exceeds three or so; they respectively approach 4.27 and 5.49

asymptotically as cr22/0l1 + 00.

attraction in addition (a12 > 0) with a12 comparable to all'

When we turn on the solute-solvent

appreciable change occurs only for cr22/crllless than 3, where the

solute-solvent attraction keeps the intrinsic viscosities from

becoming extremely negative [as they become when cr22/crlldecreases
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below unity in the absence of the solute-solvent interaction; graphs

labelled by (0)]. For al2/all ~ 1, in fact, {~}, {K} rapidly

increase as cr22/cr11decreases past unity, while higher solute-solvent

attraction (e.g. al2/all ~ 15) is enough to keep {~}, {K} positive

for all cr22/crl1' This feature is expected to remain unchanged even

if we were to include the effect of the dynamic correlation left out

of the Enskog theory and thus eliminate the singular linear rise

proportional to cr22/crl1as cr22/cr11goes to infinity.

is approached with al2 fixed, we observe that the effect of the

As this limit

solute-solvent attraction disappears and thus {X} approaches its

value for the case al2 = O. This is not surprising, since al2 would

have to grow along with crl2 in order to maintain a nonvanishing

effect on the transport as cr2Z/cr11+ 00.

of determining M via direct measurement of ~V/V2 (2-27) may be the

We note that the method

best way of gaining experimental mixing-rule information in finding

~{X} when the values of a.. for mixture under consideration have
a 1J

not already been inferred from other studies.

Since they do not include the effect of dynamic correlation,

the Enskog results for {X} can be expected to depart from the true

results at high values of cr22/cr11and at high solvent density.

shall come back to this problem of correcting the Enskog theory in

We

the following paper. 14
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APPENDIX

Mansoori-Carnahan-Starling-Leland (MCSL) approximation for Y. ..7
1J

Yll =

Y12 =

Y22 =

(1-0 -1 + ~(l-O -2 (~1 + q';2) + ~ (1-';) -3 C~l + q~2) 2

C1-~)-1+3(1+q)-1(1_~)-2C';1 +q~2) + 2(1+q)-2C~1 +q~2)2

(1-,;)-1 + ~ q-l(1-~)-2(~1 + q';2) +; q-2C';1 + q~2)2

where

,; = ~ + ~1 2

'IT 3 "

~. =-6 n.cr..
1 1 11

q = crll/cr22

At q = 1, Yij is reduced to the Carnahan-Starling Yl1 of one-

component fluid, which yields the exact equation of state. When

the last terms of the above expressions are truncated, they are

reduced to the Percus-Yevick Y...
1J

- -
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Table I. The Snider-Herrington parameters for a pure component.

Table II.
The Snider-Herrington a1Z ClO-36cm3erg)

-

mass (atomic units) diameters (IO-sem) all (10- 36cm3 erg)

Ar 39.94 3.356 4.58

Kr 83.80 3.583 7.69

N2 28.02 3.560 4.74

02 32.00 3.338 4.69

CO 28.01 3.597 5.Z4

CH4 16.04 3.701 7.72

Ar+KZ
5.876

Ar+NZ
4.662

Ar+OZ
4.85Z Ar-+CO 4.8Z1

NZ+OZ
4.74

NZ+CO
4.840

CO+CH4
6.23

Kr+CH4
7.271
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Table III. Intrinsic shear and bulk viscosities of simple mixtures

at the solvent (species 1) volume fraction ~~ =0.4 and
at temperatures a) 100 K b) 150 K c) 200 K

~{~} and ~{K} are the contributions from the attractivea a
tails of the interparticle potentials

Species
, q =0"11 P =ml {}E M}

{K}E MK}
1 2 0"22 ID2 a a

Ar Kr 0.937 0.477 0.898 a 1. 179 1.138 1. 513
,

b 0.540 0.693

c 0.350 0.449

Kr Ar 1.068 2.098 -1. 201 b -1. 202 -1. 705 -1. 542

c-O.703 -0.902

Ar N2 0.943 1.426 -0.314 a-1.061 -0.118 -1. 361

c-0.315 -0.404

N2
Ar 1. 061 0.701 0.319 a 0.942 0.418 1.209

c 0.314 0.403

Ar °2 1.005 1.248 -0.297 a 0.125 -0.283 0.160

c 0.037
0.047 I

°2 Ar 0.995 0.801 0.278 a-0.410 0.305 -0.526

c-O.117 -0.150

Ar CO 0.993 1.426 -0.290 a-0.948 -0.369 -1.216

c-0.281 -0.361

CO Ar 1.072 0.701 0.300 a 0.612 0.411 0.785

c 0.194 0.249

Ar
CH4 0.907 2.490 -0.919 a 0.299 -0.239 0.384

c 0.089 0.114

CH4
Ar 1. 103 0.402 0.875 b_0.635 1.853 -0.815

.
c-0.386 -0.495 I
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Table III (continued)

Species
q=O"ll p= {r]}E MT")} {K}E Md

1 2 0"22 m2 a a

N2 02
1. 067 0.876 0.030 a 1. 225 0.013 1. 572

c 0.408 0.523

02 N2
0.938 1.142 -0.028 a -1. 337 0.100 -1.715

c-O.381 -0.489

N2 CO 0.990 , 1.000 0.021 a O.160 0.034 0.205

c 0.053 0.068

CO
N2

1. 010 1.000 -0.021 a-O.336 -0.033 -0.431

c-0.106 -0.136

CO
CH4

0.972 1.746 -0.655 a 1.062 -0.441 1.363

I

c 0.336 0.431

CH4
CO 1. 029 0.573 0.596 b -1.105 0.808 -1.418

c-0.672 -0.862

Kr
CH4

0.968 5.224 -2.026 b_1.036 -0.917 -1.329

c-0.605 -0.776

CH4
Kr 1. 033 0.191 1.528 b 0.052 4.201 0.067

c 0.032 0.041



FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure s.

Intrinsic shear viscosity vs. a22/all at solvent volume

fraction ~~ = 0.4. The case m2/ml = (a22/all)3 is

denoted by a solid line, the case ml

line, the case m2/ml = (a22/all)2 by
4

case m2/ml = (a22/all) by crosses.

= m2 by a dashed

open circles, and the

Intrinsic bulk viscosity vs. a22/all at solvent volume

fraction i~ = 0.4. Conditions and notations as in

Fig. 1.

Contribution of intermolecular attraction to {n} and {K}

expressed in terms of 6{n} = 0.78 6{K} for the casea a

m2/ml = (a22/all)3, ~~ = 0.4. The numbers in parentheses

indicate the ratio a12/all.

{n}E + 6{n}a vs. a22/all. Co~ditions and notations as in

Fig. 3. The dashed line represents {n}E.

{K}E + 6{K}a vs. a22/all.
Conditions and notations as in

Fig. 3. The dashed line represents {K}E.
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