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On the Behavior of Passive Scalars |
in a Turbulent Fluid \

Edward E. O'Brien
State University of New York at Stony Brook

The formal description of the evolution of n-point scalar
correlations in a turbulent field is presented subject only to
the requirement of dynamic passivity of the scalar quantity.
Detailed examination is carried out for the following situations:
Inhomogenecous scalars in homogeneous turbulence, anisotropic
scalars in an isotropic turbulent field and the first order (in
time) effect df'molecular diffusion on an isotropic two point
scalar correlation in an isotropic turbulent field. 1In isotropic
turbulence the asymptotic state of an initially anisoiropic two
.point scalar correlation is deduced to be, in the strictest sense,
anisotropic although the time scales for effective isotropy are
derived. The initial tendency of molecular conduction to enhance
the growth of the scalar correlation between distant spatial
regions 1is indicated as is its initial tendency to diminish the .
correlation between neighboring points. For the case of a point
source tag the effect of a correlation between the scalar and
the Eulerian field at the tagging point is established for both

the initial wake and asymptotic wake.
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Introduction

Transport of a dynamically passive scalar contaminant by tur-
bulence has received a great deal of attention from a variety of

(l)7

authors. Notable among them are the papers of Batchelor

(2) (3) (4)

Corrsin , Roberts s and Lumley . Batchelorgs interest was
principly in the turbulent dispersion of finite clouds and he
demonstrated the significance of certain Lagrangian probability
density functions, defined on the‘turbulence field, in determin-
ing motions of the mass center of the cloud and the evolution of -
some measures of the cloud shape.

| Corrsin considered the interesting special case, later general-
ized by O?Brien<5), of thé uniform mean scalar gradient in a tur-
bulence with a-non-zero.mean veiocity. Using a "backward Lagran-

gian analysis! and the statistical properties of single point

diffusion he was able to investigate the evolution of the mean pro-

file, the growth of scalar fluctuations from an assumed initial
value of zero and the flux of the scalar normal to the mean motion.
A further contribution has been the application by Roberts of a
statistical approximation technique, due tovKraichnan<6), to the

turbulent diffusion problem. He is able to make predictions about

1. G. XK. Batchelor, Proc. Camb. Phil. Soc. 48, 345, 1952.
. Corrsin, J. Appl. Phys. 23, 113, 1952.
. H. Roberts, J. Fluid Mechs. 11, 2, 257, 1961.

. Lumley, Ph.D. Thesis, The Johns Hopkins University, 1957.
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L
E. O'Brien, Phys. Fluids, 5, 6, 656, 1962.
H. Kraichnan, J. Fluid Mechs. 5, 497, 1959.



the same sort of quantities as Batchelor discussed.

The essential problem iﬁ\the»contaminant convection arena is
to obtain more information about the Lagrangian probability func-
tions that Batchelor has shown are important. Lumley<7), among
others, has investigated the possibilities of relating Eulerian
averages to Lagrangian but despite some progress and a very clear
formulation of the difficulties there scems fo be no immediate
hope of success. Experiments on cloud distortion and convection
in laboratory and atmospheric conditions have been used to obtain
statistical information about one and two point motions in the
spirit of Batchelor. With well defined turbulence single particle
motions have been successfully investigated but the experimental
difficulties in studying the joint motion of two points are numer-
ous and information about the joint probability density fung#ion |
is meager.

In the present report we explore'an alternative approach to
the problem. If one postulates an initial statistical‘distribu—
tion of the scalar field instead of a deterministic distribution
it will be shown that the subsequent Eulerian y-point moment of
the scalar field can be directly related to the initial Eulerian
W-point scalar moment and furthermore that the quantity relating
these two moments, for the passive scalar with no diffusion, is
just thét which arises in Batchelor's analysis of cloud shapes.
This gives rise to two hopes. In those circumstances in which the
velocity field Lagrangian statistics can be considered well
established the evolution éf Eulerian moments of the scalar field
become determinate. Secondly, there may be a means for obtaining

some information about Lagrangian statistical quantities of the

7. J. L. Lumley, J. Math. Phys., 3, 2, 309, 1062.
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turbulence in more complicated situations froﬁ the relatively well
established process of correlation measurements of the scalar field.
in this report we limit ourselves to an investigation of the first
of these two notions.

It is quite possible to include, formally, molecular diffusion
in the statement of the problem. It is well known that the very
small time effect of molecular diffusion is as a phenomena uncoupled
from the turbulence. To this order there is no increase in diffi-
culty in including molecular effects and some detailed considera=-
tions of its effect on scalar spectra can be made. To include
molecular diffusion in general we shall see that we need a great
deal of Lagrangian statistical information of such a variety
that it seems to be unreasonable to expect this formulation to be
a practical one for situations in which the molecular contributions

are crucial.
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A Formulation in the Absence of Molecular Diffusion

Let P(&,t)' define a nondiffusi\}e scalar field which has no
dynamical influence on the turbulent field which convects i% and
let 7&(%){) be the posi'tion of particle 4« at time €t .
Suppose further that the probability density of p is known at

some time origin t=0 . over the whole spatial field.
Define 7{: (‘\A—;O) = @

then we presume knowledge of the probability density function of

F(g ,0)  which will be indicated by the shorthand notation

Pl £}>(€L,o) = g,*g

and which is assumed independent of the turbulent field.

From a physical point of view we are concerned with two random
processes. First the tagging is random and described to some extent
by the probability density of ]O(O,\Jos and secondly we consider
X'\(Q“t) as a random path whose statistics will depend only Jon
the turbulence and not on the initial tag.

It is important to notice here the inherent simplicity of the
problem we have set as compared to the vasfly more complicated

) e

problem of relating Eulerian and Lagrangian velocity field statis-
tics. In: fthe classifaction of ‘Lumleycg), we are concerned with the
P H : ! 1
task of obtaining the statistics of jQCZ.@)Jt\ on EOJT] where
Z{(t) is a random path with a prescribed. distribution statisti-

cally independent of p .

8. J. L. Lumley, Colloques Internationaux Du Centre National de
la Recherche Scientifique, No. 108, 17, 1961.



A convenient statement of this fact is, in our notation,

‘lowe{PC«g“f):E’F%E; Pw&{p(@,oﬁ’#’*} f’w@f{ﬁ’ )*’-*”4 44 (2.1

a

~

That this is valid can easily be seen as follows: in general we

may write

A (P09 F F] - ( Pt |{ e = 6] e 2 }] 1 @

o
~

But from the nondiffuse assumption

_C)______ibcg fv.b) = @
A&

and

ot g!oé RS } wa@{ (0)33“}-@ wj:z,:gj%j

from which (2. 1) follows in view of the assumptions of dynanic
passivity and the statistical independence of the initial tag
and the particle path.

The usefulness of the formulation of the problem presented
as equation (2.2) is evident from the fact that the first proba-
bility density under the integralvsign is in fact Eulerian as is
the left hand side and we expect to be able to transform fhis‘inﬁo
a relation between experimentally accessible quantities such as
Bulerian moments of various orders.

Before preceeding in that manner it is evident that (2.1)

can be extended to the analysis of joint distributions. We obtain
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oo (P{;iuﬂi‘bf"'}g #&M’féi - - - [FCW\:ES J

ﬂ[ /Fmo-@ IDC%O) #Hb{a“o) p} {}G(Q\JO)Z—I&E]. (2.3)

a & @y
I

'\_O’e—[ JUfae)= xf}‘L?ﬁ@:.;t) Ll {W ‘ﬂm}j

A’i"[ ‘{f&z ’._“ 0(-%&.

in terms of scalar field moments we can obtain formulations which
are suitable for particular situations. For example, to examine
the single point properties of écalars we noté that if we are
interested in the statistics of some suitable function of b(x,t)
say 5:<PCK,f)) we can, by\éarrying out the appropriate integra-

tion of '(2.1), obtain

L) > = §<3C(P(ﬁ,0)\)> ?%@P,é/zrr) %“f,a} 49 2.9)

where <: ->> " indicates an ensemble average. There arxre

several remarks to be made concerning single boint statistics as
represented by (2.4). If <i,§ (?ﬁq”CﬂJJB is a homogeneous function,
that is, independent of <& , then <: /’P(x t) :> is independent

of t no matter what the velocity field properties are. Also if

we are interested in the behavior of the mean, <if>Cﬁ,*3§>, the
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existence of initial fluctuations about the mean givesno contzi-
rution. They seem to have been generally ignored on the basis of
peing second order effects if the turbulence level is 1ou’?,

rurthermore if we concede detailed knowledge of Fwﬂ{&{ﬁyﬂ: :’3%

in certain circumstances,as for example in isotropic turbulence

J
or free shear flowsjspecific predictions, within the limitations
of the non-diffusive assumption, about the evolution of single
point scalar functions can be made.

In the following section we apply the single point diffusion
theory with statistical initial conditions and without molecular
é;ffusion to the problem of transport of a variable mean gradient
tag by a homogeneous turbulence with a uniform‘mean velocity.

Single Point Properties in the Variable Mean Gradient Problem

\

The problem of heat transport across a homogeneous étaﬁionary
turbulent field with a non-zero mean velocity has beeﬁ eﬁgminediz)ﬁs)
under the assumptions of a known determinate tag at some %ixed
Bulerian plane and a sufficiently low turbulence level th%t the
displacement of a particle in the direction of the mean f%ow
direction at time t is Just U ¢t where TJ is the meangvelocity
of the turbulent field. The lattier assumption is simply for con-
venience and can easily be removed. . We retain it here for the
advantage it offers of being able to replace the time variable by
an Bulerian spatial coordinate - a kind of visual aid. We are

interested however in determining what role the statistics of the

temperature field with which the particles are tagged plays in

9. H. K. Wiskind, J. Geophys. Res., 67, 8, 3033, 1962.




setermining the evolution of the mean profile, the growth of
fiuctuations and the mean rate of transport of temperature.

It is well to point out that in the usual experimental teche
nique for examining a model such as the above(g) heated grids ar
placed in the wind stream and the temperature tagging is accomp-
1ished by suitabie control of grid dimensions and temperatures.
There is then the added complication that the initial scalar field
statistics will be to some extent correlated with the velocity
field. Attempts to include this possibility, except in a purely
formal sense, have been largely unsuccessful and we here retain
the assumption that the statistics of the scalar tagging are
independent of the turbulence. However in section (2.3) we derive
some simple properties of point source tag which is correlated
with the Bulerian field at the source.

Under the assumptions mentioned above it has already been
pointed out in paragraph 2.1 that the mean profile evolution is
independent of the initial fluctuations and is a function only
of the initial mean'pgofile and the turbulence statistics. More-
over the detailed evolution of certain classes of determinate pro-

file has been discussed elsewhere<5) and is therefore still

relevant.
i

To examine the heat transport properties we notice from the

Eulerian energy equation that \

2 . 3T o
5. lu, T 3_t< L (2.3




<o that only the mean profile is relevant. And again the details

(5)

tnat have been discussed elsewhere '~  remain valid,

Finally the fluctuation equation becomes in the ierminology

<o

of 2.4
Lred = [ <Teyyy Tk {2 (e )5 | 44
where P‘wﬁ,— {XL (%o 5%}) = Lg,g is the probability

that a particle with initial Y coordinate position Y at time
zero will be at position Y at time ;)‘:- . |
' (2

If we define the displacement X = j,qﬁ,‘b then

STl > = [ ) f0ax @

where *5—()() is the probability distribution of )( and homo-
geneity has been assumed. ‘
To calculate the behavior of fluctuations we are interested

in the quantity

<{T(m 4 )~ <T(x, Lgr)>'§2 > = <‘f‘?}fx,~&)>m (T(x,%,Bg (2.7

And evidently only the first term on the right hand side of

(2.4) can reflect the role of initial fluctuations

Writing . T‘(D_J %‘X) = Q‘(G.;‘}"X)>+ T (OJ “&,"X>




e obtain

<TRCX;L%.S> B {<T{D <bb ?é Y~/ >> “f‘fx a?;‘{
<A

from which we infer the not too surprising result that as far as
nean square fluctuations are concerned the initial mean square
fluctuation contribute in the same fashion as does the square of
the mean profile.

Again the previously deduced behavior of fluctuations remains
valid if the contribution of the initial mean profile is incorporated.
In the circumstance that

< T’(%i?o %G) >
ﬁi\T‘(O) %o)>¢

the initial fluctuations can be ignored. Furthermore since the

LL 4 for all ¥

asymptotic result has been shown to be spacial uniformity of the
fluctuations for X large it will be sufficient in some circum-
stances to require only the averages over ggg to satisfy the

requirement
<T'?v>%o‘>>w[ <L LT, %e\iu.

Further extensions of this problem, for example the consicderation
of n-point correlations are evident, but we will not pursue the

matter further.

A Point Source with a Dependence of the Scalar Tag on the Velocity
Field

The simplest situation in which to investigate the effect of
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some correlation between the value of the scalar with which a
particle is tagged and the par“ticle' velocity at the point of
tagging is that of a point source. We avoid all other complexi-
ties by assuming that any fluctuation in the scalar about its
nean is due only to fluctuations in the velocity fieid.

The appropriate formulation with which to replace equation

(2.2) is easily seen to be

P@Q&EF({,{)%’ F&Z = ?m&{f)@o)éf;ﬁ X (o, ﬁ):"‘t%P {Z("?), ;} (2.8)

)
\
\l

where the first term on the right hand side is just the proba-
bility that the particle at the origin at zero time will f;e tagged

P »'a:‘ - « g ) \\.
with a value p given that the subsequent position or the same
: \
particle at tzme t is X . _ z

i
!

Let us restrlct our 1nteres’c to the mean square scalar field

>

S |
3-SR

i
Flye)d= ’Pw&{j\(o@ =] B pw,,{wo)m 2l (2.9)

-0

The classical result implied by Taylor*suo)

work concerns situa-
tions in which the probability density under the integral sign is

independent of the particle path and one obtains

pilxery = < plao))y Pt {}é(@;ﬁ) = a% (2.10)

To this we add that equation (2.10) is evidently the asymptotic
form of (2.9) even with dependence of P on the particle path,

since for times very much greater than the Lagrangian time scale

’-.&

10. G. I. Taylor, Proc. London Math. Soc., 4, 192



it i1s unreasonable tQ GXPEC? _
Prote {plopya §¥| Rlod =1
to be significantly dependent on the instantaneous particle
position.
For short times we follow Taylor and assign the Eulerian
velocity %:qu> to the particle so that (2.9) becomes
+0
N —:{-1 % x) ¥
LPers = Pl (Lo 2] | P M{w/o>£;>2w>=f§4z> (2.11)
T e

Knowledge of the joint probability density that occuzs in
(2.11) is then sufficient to establish the behavior of scalax
fiuctuations subsequently. As a particular class of phenomena
suppose we know F(O,o) as a definite function of qr(OJé) only;
say

b(o0) = f{%(@o)) ‘

then ‘ .
?w«@./g plo,6) = p*,] %CDJO)w%g = g("ﬂ“f&{é - %3'))

and (2.11) can be seen to become

| .
Py~ Pblyloryz x) £ () (2.12)

As a specific example consider the case of temperature tagging
by a constant temperature point. With increased velocity one can

¢xpect a decrease in the actual tagged temperature of the air.

13



Let us for simplicity consider a flow with a mean velocity U in
the x-direction and idealize the tagging physics such that F(QO)

depends only on the magnitude of the '2, velocity component UV,

Suppose p(0/0> = A - % [o-{o,0)|

where A, B, are positive constants.

Then <1L320&,t)> = (f\~%r I%’ )\ Prct {z)_(ojt) 2 L&l& (2.13)

If we further assume a Gaussian Eulerian velocity field we

(1D

. 2 : 2
2 . _ 4 i—ﬂ . I eijl} % J
< p (L&"%‘J)> (A B(%( Lg'>yz'> LZ ]ijZL‘§.>VL Z(\éf) (2.. 14)

obtain

where ' is the root mean square velocity in the y direction

and <ﬁf.> = ujztz, for € small. From which we can conclude
that the negative correlation between y velocity and temperature
fluctuations produces a wake that is slightly more peaked than é
Gaussian. In this sense the wake can be said to be narrowed

under the conditions examined here. Quite evidently the wake
becomes broader at its base if a positive scalar fluctuation is

produced by a y velocity fluctuation.

11. G. K. Batchelor and A. A. Townsend, Surveys in Mechanics®,
Cambridge University Press, New York, 1956, p. 358.
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Asymptotic Isotropy of Anisotropic Scalars in Isotropic furbuience
- \
it has been common practice(123(13) to investigate jointly

isotropic scalar and turbulent fields but there seems to be no
clear basis for estimating how or if the isotropy of the t#rbulence
tends to produce isotropy of the scalar field it convects. | There

is an intuitive feeling motivated by the apparently successful pre-

dictions of Kolmogoroff's similarity theory<l4) that the sm%ll
|

‘scale structure probably tends to isofrbpy more rapidliy than the

large scale, and there seems to be a general expectation that in
isotropic turbulence asymptotic scalar isotropy is to be expected
of all scales. 1In the present formulation these expectatioans, if
interpreted correctly, are shown to be very plausible. A time
scale for the approach to effective isotropy of the large scale
motions is deduced and it is argued that this is the longest time
scale that will arise in determining the approach to isotropy.
For convenience we will comnsider two point correlations and
examine anisotropy in terms of the dependence of the scalar correla-
tion on the orientation of the vector separation between the two
points. The generalization to w-point correlations is immediate

and does not seem to introduce any significant new features.

12. E. E. O'Brien and G. C. Francis, J: Fluid Mech., , 3, 369,

1
1062, : T

13. S. Corrsin, J. Aero. Sci., 18, 6, 417, 1951.

14. A. N. Kolmogoroff, C. R. Acad. Sci., U.R.S.S. 30, 301,
1941.
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From (2.3)
st
(Fu/@-[{o 4,0 {;)(]o{c%% Jp)} Pw{(’ﬁ@ t)e 4,)(?{5’ €)= XL}} da de,

o
zr‘f‘

and hence <}>C %, ) Bt >

M'i'-o

) f) FL f‘Pis»@u F{mpB“ >( ( 0)2 Fi}ms%’:(:%);ﬁ Ve t)= x\7 J.OLP%/‘&%&{C};‘

d d G,Q--Q
Assumlnd homogeneity of both fields and denoting

{play Pt > = (& ) R S PS

we can integrate (2.15) to obtain

j((frﬂ? g {(r5,0) 9(Ct1,0) JU:; (2.16)

The turbulent f:_eld two particie displacement probabilioy
Z(f)'f"ffo_ﬁ) which appears in (2.16) is the probability that two
particles separated by f(; at time zero will be separated by |~
-at time + . The notation is here consistent with that of Batchelorc‘)
who has carefully summarized the situations in which some informa-
tion about (1t |r,,0 ) or related quantities‘®3) may be
deduced.

Turbulent isotropy is equivalent to 'd_emanding that
%(P:)-ﬁ- IC‘J)D) = é(?’, o, I )‘b)

where Yy~ and 7, are the magnitudes of [~ and {7 respectively.
~~

15. G. K. Batchelor, Quart. J. Roy. Met. Soc. 76, 133, 1950.
| \
|
\

3
1
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Since :§(Q,t') as given by (2.8) is a linear function of

;(@)o> it is appropriate to investigate the condition

{0y = (&) S(E-1z)

where g(§-g\§is the Dirac delta function.

Then §@U;)t) = o (8) Z@)@@;,@

2

. f ey =(8) 5(08. 5 8%) (2.17) .

Isotropy.of '9 (E,'t} is the requirement that it can be
written éf(}”;t> and it is evident from (2.17) that the depend-

ence of % on (.0

is the source of anisotropy of the scalar
S~ .

field.

There are several regions of H%} to be considered. If \EJ is
small compared to the Kolmogoroff microscale then the particles
can be considered to be undergoing a uniform straining motion over
the time scale characteristic of the small eddies. If l@} is of
the order of the smaill eddies an immensely complicated situation
arises in which the material line joining the two particles be-
comes significantly convoluted during relative motion of the par-
ticles in the time scale of the a@propriate Fourier components of
the velocity field. Finally when the fhitﬁal separ;ﬁion l@illis
larger than say the integral length scale of the turbulence the
particles may be able to be considered as wandering separately aﬁd

the problem becomes one of following the independent statistics of




rwo fluid points. The latter operation can be satisfactorily accomp-.

tished since asymptotic single point behavior in isotropic turbulence

(¢4}

i3 reasonably well documented.

Promk(z.lé) we have

§se) - g&(to‘OS 9 (se10,0) A1,
r

~0 : .
Suppose we consider -{zm“@ defined over two regions of (7o !

)C(f.,,o) = sCZCQo,o) v 0Ll Y

and \
. \
§lwoy =% (roy 5 7 4lel,
Mmre‘z is meant to represent a n.ighborhood around the o%igin
|

of the order of the Kolmogoroff micioscale.

For all pairs of points described by Z 4 ]Qﬁ‘we expect an
i

. . . < . \ ‘s
assumption of independent wandering after finite time to be| legiti-
. I

mate whereas for nearer neighbors, that is those within the Kol-
mogoroff micfoscale, jointly dependent motion is assumed to exist
for times which may approach infinity. In particular coincident
points and infinitesimally separated particles effectively remain

bound together statistically for all time.

Then we may write

L(rt) = f%(%ﬁ) g('::f: It9,0) dip + {M(v;a,o} i(&lf/[@@dg' (2.18)
¢

M

|
A
|
|
1
f
1
13
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For the second integral the assumption of separate wanderings

for € large implies(l)
ZC{:)'CICD)O) = (Q(\é)ﬁ‘go) @«C},{‘,+E“Q )'t:)(.))ﬁ!)i | (2.19}
X

whére )i is the vector displacement of either of the two particles
and Q(?Safjoj is the single particle displacement probability
density.

Thus Z(v:)-t }f:gJo) can be written 20;-1:%7‘:\ and the last

term in (2.10) reads

Furthermore from (2.11) ‘Z(‘f‘.-ﬁo)t\ is a convolution

Qta-1,) 2 Q(r- 1, ) | with @Q(x ,¢) almost

certainly asymptotically Gaussian.

In fact defining

§M<g,o) -0 IhIE 7

and taking the Fourier transform of the final term of (2.18) we

obtain |
¥ (&%) =&, (ko) Mhe] e
where BTM (;03) \ (% 3 - are the transforms of -f.M[ ~\ and 72(r).

The remarkable feature of (2.20) i%s the permanence of anisotropy
- - - o PR ) a _if 0 . -
in gm CJ}_%)-(-;\ due to initial anisotropy im i (1,5,:: 0) and inde
pendent of isotropy of the velocity field quantity (e

I+ is to be noted however that this is the kind of permanent
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anisotropy typical of diffusion problems. For exampie Bacheloz

(1

has shown a similar consequence for asymptotic probability

density of marked fluid at a point after a finite cloud of marked
|
nzrticles is relessed. \

T~ 2~ b e I 3 o ' EalN o~ s - - . -
IT is just the sort of anisotropy that remains for infinite

tines when thermal diffusion from a non-isotropic heated region

-y

axes place in an isotropic media. One might better ask fér a
measure, in terms of the initial cloud geometry, of the tiﬁ; until
the cloud appears spherical when viewed from a suitably defgned
‘distance. N a
For our purposes we would in this sense expect approxiﬁafe
isotropy when thé mean square motion of a particle is very much
greater than the initial separation between the most widely
separated correlated points. If the scalar correlation extends |

a distance . initially where L >:> % then effective isotropy

at least for the larger scale motions might be expected when

L

<%?> > L} , where <:XZ> is the mean square particle displace-
ment in some direction. Asymptotically <5§ > = U Tt where

“T" is a Lagrangian time scale. Hence as an estimate for effective

large scale isotropy we obtain

Ll

€>> L

The small scale motion in homogeneous turbulence has been the

subject of numerous investigations. BatchelorClé) in his work on
material lines has made use of the model of two particles initially
so close that they may be considered to experience a uniform rate

of strain over the whole time history of interest. This of course

16. G. K. Batcheior, Proc. Roy. Soc. A 213, 349, 1952.
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is relevant to the situation !r6,‘<4—ﬁa and we may seek from his
~

results some estimate of the time to effective isotropy of near

neighbors. 1In fact he introduces an assumption which requires

fairly rapid loss of influence of the initial orientation of (v for
P

Q_ small enough. By fairly rapid we mean in a time less than a
characteristic time of elongation of the material line spannihg the
separation t? . N d}:fﬁfl |
Following Batchelor if i&'lcl) AT l is defined to be
such a time scale it can by dimensional reasoning be related to
(:gfy&the Kolmogoroff time scale characteristic of the small eddies.
Y is the kinematic viscosity and & the dissipation rate.
It is reasonable to expect then that isotropy of the regions
of the scalar spectrum associated with the small scale motion of
the turbulence will become rapidly isotropic in a time scale .
Such ‘a result agrees nicely with the expectatioﬁs of the universal
similarity theory and in that sense is not unekpected. It may also
be remarked that even in nonisotropic turbulence for high enough
Reynolds numbers small scale isotropy is predicted by Kolmogorovian
rea§pning and thus the above analysis has wider wvalidity than that

done on the larger scale motions which are unlikely to exhibit

isotropy in aﬂy practical situation.
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Formulation With Molecular Diffusion

The difficulties of including diffusion phenomena in a Lagrang-

ian framework are widely recognized. A formal statement of the

evolution of a diffusing scalar P in terms of the field variables

& and -+ can easily be shown to be described by

i
i

@) 4 98 3 (3% dplaty) _ 1
ot axg 34y IN, 34 g \\ .
. ' \\’

where X (q_)t> is the Lagrangian position field for'which an

inverse is assumed and which allows an Eulerian description of the

initial position of a particle.

That is
a=q(xt) , a=ga(x0)

An expansion of (3.1) in a power series in time indicates that

FC@,%:) = }3(@,0)4- 4 °4y 2 gi& E P(‘&)f) + 4 O;Céa)

t-0
Now
LIK = <.,
ax‘/ v
L 't=0

and we obtain

FC@:‘L’) = ’O{{{)O) + 99\"& aL pig-‘@) b Oé'ﬁl)

(3.2)




An explicit calculation of the term prk) indicates a signifi-
cant complexity in the coefficients. The difficuity for our purposes
is that the coefficients)unlike those in the term of Oy, are de-
pendent upon the statistics of the Lagrangian velocity field, It may -
be argued that we are alfeady seriously compromised by the necessity
of having to prescribe Lagrangian velocity field information; how-
ever to include terms of high order in time we will need to prescribe
joint'probability densities for the Légrangian displacement and all

the higher order spatial derivatives of the particle path|at the

|
|

initial instant.

If we comsider (3.2) of finité order Equation (3.1) can be

'

.\.
|

interpreted as a linear stochastic operation.

L pl&, o) - bla,t)

\

\

\

|
x

. e | .
with fDCa, O) given statistically and independent of the velocity

field but with the coefficients of | stocastic and not statisti-

1
|
h

cally independent of the path. ‘ | %

Formally then we can state
- .;}_» . RN "
P’L"'Q'EPO‘M*) =p g = |Pret [FC@.;‘C)-‘- $Kle ) = gg} da (2.1

as

A certain amount of progress has beenm made in the problem of handl-

ing stochastic linear operators<17).but both the complexity of the

17. G. Adomian; Revs. Mod. Phys. 35, 1, 185, 1963.
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opera%or L for terms of  5%€f> or higher and its statistical
coupling with the Lagrangian displacement field are discouraging.

The situation for terms of ({t) is not so depressing. From
(3.2) we can note that the operator /[ is now entirely defined on
the scalar field initial statistics and we are required therxefore
to prescribe not only the initial statistics of the pertinent sto-
castic measure (mean, 2 point correlation,'etc.) but also certain
second order derivatives of it.

For example assuming homogeneity of both the turbulence and
the scalar field, no dependenbe of ~the initial tagging on the tuz-
bulénce, and including molecular diffusion only to C]@;}, we find

for the two point correlation

(le) = | [(Hz,&tv“‘}-}(-(f:p,o\l_\[ 7 (5 .0 an
‘ ) 'V |

~~

or

%Ct,‘t) :_3(. (\:)‘63 + 2@\1:{\71—?(20,0) 1 (e 10,05 410
T

fe

where the first term is the scalar evolution without molecular

diffusion and in the second term

2
2 PR £(rs o)
— ~ )

N §('\/:O’DS BQ‘BFD"

v X
2

As a general expectation N f(ff@) O) will be negative in
the region near the origin and positive for larger scale \E@‘ s0

that, noting Z nytlt3)0> for 2all {~ and té and for small times

sy
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the contribution to a fixed T will be primarily from regions of'[p
approximately equal to v , the initial effect of molecular diffus-
ion will be to accentuate the aciion of turbulent mixing in the

sense that the correlation at small scale motions will be decreased

and that at larger scales will be accentuated.

i
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