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ABSTRACT

A multiplicative interpolation scheme (MIS) for the cavity function of associating
hard-core particles is proposed and applied to the case of our shielded sticky-point model
in which the particles associate into fused hard-sphere diatbmic molecules (hard dumb-
bells). The results indicate that the MIS is a significant improvement over the simple
interpolation scheme (SIS) of our earlier paper when the bonding length is much less
than the hard-core diameter. The MIS is also applied to the case of a weak electrolyte
modelled by shielded sticky-point particles that are charged, which associate into hard
dipolar dumbbells. Using a near-exact hard-sphere cavity function along with the mean
spherical approximation (MSA) for the electrostatic part of the activity coefficient, we
find that the resulting version of the MIS is already in reasonable agreement with the
experimental data for monochloroacetic acid, despite the equal-diameter restriction of the

simple version of the model that we are using.



I. INTRODUCTION

In our previous paper! of this series, the chemical-association constant was found
to be directly proportional to the cavity function for particles associating via shielded
sticky shell or shielded sticky point interactions. In the zeroth-order approximation the
cavity function of the associating particles in the presence of both free and bound par-
ticles is approximated by the cavity functions of free particles. This approximation was
considered earlier by Chandler and Pratt,2 and it also follows from the Wertheim’s first-
order thermodynamic perturbation theory3 as well as our own simple interpolation scheme
(SIS).# We have found in previous work that the SIS is nearly exact when the bonding
length L is greater than or equal to the hard-core diameter o. We also found that the SIS
is quantitatively useful only if L/o is greater than about 0.8.

In a recent paper by Rasaiah and Zhu, a different approximation was given for
the cavity function.> However, we find here that the approximation they suggested is not
quantitatively useful since it yields inappropriate asymptotic behaviour of the association
constant K relative to the constant in the ideal limit, K. Amos and Jackson® have also
suggested an approximation to improve the cavity function when the bonding length L is
less than 0. However, their approximation is only applicable to the fully-associated case
such as a dumbbell fluid and we have not compared our new results with theirs.

Changing the reference density so that the cavity function approaches the correct
limits at L = 0 and L = o, is the bases of another approximation that was recently
suggested by Kalyuzhnyi, Holovko, and Duda (the KHD approximation).” In this pa-
per, we extend their approximation to the unequal-size case, in which the diameters of
the particles of the associating species A and B are different, as well as develop new

approximations.



In Section II of this paper, the exact limit of cavity function for the binary hard-
sphere association when L —0 is discussed. Two approximations which interpolate be-
tween the SIS and the exact limit are developed. One of them is an additive interpolation
scheme (AIS) and one of them is a multiplicative interpolation scheme (MIS). In Section
III, the two approximations are applied to the shielded sticky-point hard-sphere model.
While both approximations significantly improve the SIS, the multiplicative version is
found to be more accurate than the additive version. A comparison between these ap-
proximations and the KHD approximation’ indicates that the MIS is somewhat more
accurate than the latter, which in turn is a bit more accurate than the AIS. In Section
IV, the MIS is applied to ionic association of weak electrolytes. Theoretical results are

compared with experimental data for monochloroacetic acid.

II. BINARY CHEMICAL ASSOCIATION

There are two different ways to deal with binary chemical association for our model
particles. One way is to consider the system as a hypothetical three-component mixture of
nonassociating particles A, particles B, and molecules AB, in thermodynamic equilibrium.
Another way is to consider the system as a two-component mixture in which particle A
and particle B associate into rigid diatoms of species M consisting of pairs of particle A

and B rigidly held a distance L apart. In this paper, we will use the three-component

approach only.
For a chemical-association reaction, we have
A + B ¢ AB 2.1)
Pa Ps PaB

where p, and pg are the number densities of the unbound atoms A and B, respectively,
and p,g is the number density of the molecular AB.
At chemical equilibrium, we have the exact result!
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K/Kgy= yAB(L) (2.2)

where yap(L) is the cavity function of free particles A and B, K is the association constant

defined as

K = PaB (2.3)
PAPB

and Kj is the association constant at the infinite dilution of reacting species. We note
that the y77 of ref. [1] is the yp of this one, and is (1 — )2 times the y4p of ref. [4]. We
also note that the phrase “in the linear approximation” in footnote [18] of [1] referring to
the relation among the y’s is unnecessary.

For simplicity, we shall consider only equimolar association where we have p, =
ps = po(l — @) and pap = app. Here pg is the total number for particle A or B (both
free and bound particles) and « is the association degree. Then, we have [cf eq.(2.3) and
eq.(2.2)]

a
K= ol a2 Koyas(L) (24)

where y,p is evaluated for py = ps = po(1 — @) and pap = apg. The equation can be
exactly solved for a once the cavity function y,g and Ko are known.

The cavity function y,s(L) can be expanded in terms of molecular density pap at
the constant total number density pg

K/Ko = ha(D) = taDlpramo + (2| o)+ (28)

The zeroth-order approximation or the SIS is

K/Ko = yas(L) = yas(L)| pap=0 = ¥ae (L, p0: p0). (2.6)
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where ref denotes the reference system which contains only fully dissociated nonassociating
particles (a=0) and y:‘%f (L, pa, pg) is a function of L, the distance between particle A
and B, and number densities of particles A and B.

It has been shown! that the SIS is nearly exact even at the full association limit if
the bonding length L is equal to or greater than the hard-core diameter op of associating
particles. However, when the bonding length L approaches 0, it was found that the

pressure obtained from the SIS is exact only through the first order in number density

po-8

Rasaiah and Zhu have also proposed a new approximation®

yan(L) = 1+ [ya (L, po, o) — 1]/(1 — @)? 2.7)

However, this approximation approaches the erroneous limit of infinity as a goes to 1. As
we shall see in the next section, this approximation is far worse than the SIS.

In order to obtain a new approximation which can provide an accurate description
for a bonding length less than the hard-core diameter, we first consider the limit of L — 0.
As L — 0, the small-size particle becomes completely inside the hard core of the large-size
particle. Then, molecular AB can be accurately described as atom B (assuming the hard-
core diameter of atom B, o3, is larger or equal to the diameter of atom A, 0,). In other
words, the three-component mixture becomes a two component mixture with particle A

of density po(1 — a) and particle B of density pg + pap = po. Therefore,

uas(L) = o (L,po(1 - a),p0), L =0 (2.8)

Eq. (2.8) is exact for hard-sphere particles. For the hard-sphere with an attractive

tail, equation (2.8) is also exact if the tail is confined to be zero for r > op. It is obvious
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from eq.(2.8) that the cavity function becomes strongly association-degree dependent as
L — 0 while the SIS is association-degree independent.
Since we know that the SIS is accurate if L > o,p, it is natural for us to interpolate

between eq.(2.6) and eq.(2.8). Two simple forms of interpolation are, for Sxg < L < 043,

uan(L) = 12 (L, po(1 — ), p0) (1 = & S“

)+ Lo p)(CS22) (29)

and
yan(L) = e (L, po(1 — @), po)]t~(E=5a8)/oa e (L, pg, po))(E=SaB)/oa  (2.10)

where o, is the closed contact distance between particle A and B and Sxp = (0 —04)/2.
It is obvious that both equations satisfy the exact limiting condition when L — S, and
become the SIS when L = oap. They are also exact when the association is turned off
(e = 0). We call the first form the additive interpolation scheme (AIS) and the second
the multiplicative interpolation scheme (MIS).

Another way” to attain these same limits when L — Sap and L — o is to change

ref so that

P;ef = P0, L—ops (2.11)
ol - pl-a), L— S (2.12)

Let the packing fraction of atom A in the reference system be invariant so that

ALY R (2.13)

Then, we have

—Vs

ref =(1-a)po+ aPo(—"‘:—

) (2.14)
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where Vg, VA and V3 are the volumes, of dumbbell AB, and atom A and B, respectively,

S0

(VAB - VB) - (L - SAB)2(3023 - 2LSAB fod L2)
Va 2La3

(2.15)

Eq.(2.14) extends the KHD approximation’ to the unequal-size case. It is obvious
that eq.(2.14) satisfies eq.(2.11) and eq.(2.12). As a result, the KHD approximation can

be expressed as
yas(L) = v (L, P57 , po) (2.16)

Amos and Jackson® used o, and op as parameters to approximate the cavity
function for L < o,p by the cavity function for L = o} ; where o} and o} are obtained by
letting a nonsphericity parameter be a constant. However, this approximation is limited
to the fully associative case and will therefore not be discussed here further. (We observe,
moreover, that this approximation does not satisfy the exact limiting condition of eq.(2.8)
so that attempts to extend it to partial association may not be worthwhile.)

Once the cavity function is known, the excess Helmholtz free energy (over the

unassociated reference system) can be obtained from?

ez _ & _ 1 roa  dinyas(L)
BA=/N =2 +In(l- )+ /0 o o 2.17)

Eq.(2.17) was obtained by us in earlier work by considering the system as as a two-
component mixture. However, through the cavity function,! any approximation procedure
developed in two-component language can be expressed in the three-component language
we use here.

We recall that the cavity function can be calculated from either integral-equation
methods (which yield distribution functions as well as thermodynamics) or chemical po-

tentials (which involve a purely thermodynamic route). We shall use the latter route here.
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An exact equation for the cavity function at r = L obtained via the thermodynamic route

is!

Inyas(L) = B[us® + ug” — P, (D)) (2.18)
or
yas(L) = 1A%0 (2.19)
T™as

where 8 = 1/kgT with the temperature T and Boltzmann constant k. u§® and v; are

the excess chemical potential and the activity coefficient for particle i (i=A, B, Ms3).

III. RESULTS FOR STICKY-POINT HARD-SPHERE ASSOCIATION
INTO FUSED-SPHERE DIMERS

For association of shielded sticky-point or shielded-sticky shell particles into fused-
sphere dimers, very accurate activity coefficients can be obtained from the Boublik equa-
tion of state? from which y,g(L) can be calculated using eq.(2.19). As a result, K can be
attained from eq. (2.4) more-or-less exactly. This “exact” result is compared with the SIS
[ eq. (2.6)], the Rasaiah-Zhu approximation [(eq. (2.7)], our new approximations [Eq.(2.9)
and Eq.(2.10)], and the KHD approximation [eq.(2.16)] in Figure 1 and Figure 2. Since
our approximations are expected to be best at L < S,p and L = o,g, the comparison is
made for a system with L = ¢/2 with o, = 0p = oap = ¢ in order to provide a stringent
test. It turns out that both the AIS and the MIS significantly improve the accuracy of the
association constant K and association degree a. It is interesting that the MIS is some-
what better than the AIS in predicting both K and . It turns out that the MIS is even
better than the KHD approximation [eq. (2.16)], which is already satisfactory, so that

we restrict our attention in the remaining work here to the MIS. It should be mentioned
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here that the cavity function we have used for the reference hard-sphere system has been

obtained from the Boublik equation of state.’

IV. IONIC ASSOCIATION: A SIMPLE THEORY OF WEAK ELEC-
TROLYTES

Just as a fluid of charged hard spheres serves as a primitive model of a strong
electrolyte, a charged hard-sphere model to which an associating shielded sticky-point
(SSP) interaction is added can be used as a primitive model of a weak electrolyte. For
L < 0/2, ¢ = 04 + op, the charged shielded sticky-shell model has thermodynamic
behavior identical to the charged SSP model, as discussed in [4], and can also be used
as a weak-electrolyte model, as mentioned in [10]. Our MIS of Section II can be readily
extended to the charged case as follows. We represent y,p as the product of a term that
describes the nonelectrostatic (uncharged) system yYE times an electrostatic term y§5E(L)

that embodies the effect of turning on the charges of the system.

yas(L) = yxs(L)ys" (L) (4.1)
YESE(L) = WEE(po(1 — @), po(1 — a))7EE(p0(1 — @), po(1 — a))]! ~(E=Sar)/on

x [YEE(00, po)7EYE (0o, po)](L=5AB)/oA (4.2)

where eq.(2.19) was used and the electrostatic part of the activity coefficient for the
molecular AB has been approximated as 1. This approximation is based on the idea that
when a positive ion and negative ion are associated such that the smaller one is completely
within the larger, the electrostatic effect of the remaining dipole is negligible.

Analytical expressions for activity coefficients of free ions, ¥ and ELE can be
obtained from the Mean Spherical Approximation (MSA)!! or an improved MSA-based
result such as MSA + Bs.12 For simplicity, we use only the equal-size equations of the
MSA below:



InytE = Iny

B =—U[ Ko

] (4.3)
where z = |24| = | 2| is the absolute value of charge number of particle A or B, A = Be2/e
with the electron charge e and solvent dielectric constant ¢, ¢ = o4 = op is the charged
hard-sphere diameter, and k? = 87 Ap;z2, where « is the inverse Debye screening length
and p; is the number density of cations or anions.

Fig.3 shows yag(c) calculated from HNC approximation!3 in comparison with
yas(o) calculated from egs.(4.1-4.3). It indicates that the cavity function from the MSA
is quite accurate for low concentration. From Fig.3, one also sees that the approximation
that the molecular activity coefficient is 1 for L = o is very accurate up to concentrations
of 0.1M. Since the effect of the electrostatic contribution to our result becomes smaller as
the bonding length L decreases, the approximation of neglecting the molecular activity
coeflicient is even more accurate as L decreases. At the highest concentrations the MSA
tends to underestimate the cavity function.

It is noted that the electrostatic part of cavity function is dependent on the bonding
length only through the exponents, as a result of our neglecting the activity of the AB
molecule.

The conventional way of calculating the reduced association constant can be ex-
pressed as follows:

K/Ko= 1222 (4.4)
YaB

Neglecting the molecular activity, we have

K/Ko = va(po(1 — @), p0(1 — @))7s(po(1 — @), po(1 — )) (4.5)

Eq.(4.5) can also be decoupled into a nonelectrostatic part and an electrostatic part.

K/Ko = 7"(po(1 — @), po(1 — @))13"(po(1 - a), po(1 — @)
10



x7a % (po(1 — @), po(1 — @) “(po(1 — @), po(1 — @) (4.6)

It is obvious that eq.(4.6) is independent of the bonding length L. As L approaches 0, our
approximation (4.2) becomes equivalent to the electrostatic part of eq.(4.6). Therefore,
we conclude that the conventional way of calculating the reduced association constant
may only be suitable for the case of the bonding length L/o << 1.

Fig. 4 compares the reduced association constant at different bonding length L.
It shows that the association constant increases fastest with concentration for smaller L
and higher concentration. This is mainly due the packing effects. At high concentration,
the reaction is shifted towards the side saving the most space.

Fig. 5 shows a comparison of the association constant obtained from experimental
data of monochloroacetic acids! with that of our theory!®. The theoretical result in which
the experimental Ky of monochloroacetic acid is used as input is seen to be in reasonable
agreement with the experimental data. One expects that the agreement may be improved
if unequal diameters are used for hydrogen and monochloroacetate, respectively, and we
are pursuing this application of our MIS. The figure also shows the effect of changing K|

on the reduced association-constant curve.
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FIGURE CAPTIONS

Fig.1 The association degree « as a function of poa3 obtained using the nearly exact
Boublik equation of state? (—), the MIS [(eq.(2.10)] (- - -), the AIS [eq.(2.9)] (— -
—), the KHD approximation [eq.(2.16)] (— - - —), the SIS [eq.(2.6)] (— - - - —),
and the Rasaiah-Zhu approximation [eq.(2.7)] (— - - - - —). Here oA = 08 = 0,
Ko/o® =1, and L/o = 0.5.

Fig.2 The reduced association constant K /Ky as a function of pgo3. Symbols and pa-
rameters as in Fig.1.

Fig.3 The logarithm of the contact cavity function Inyap(c) as a function of square root
of total concentration (in mole/liter) [100v/C]. Shown are the HNC approximation
(o) and the MSA [egs.(4.1-4.3)]. In the MSA, the nonelectrostatic part of cavity
function is obtained from Boublik equation of state.? Here, € = 78.54, 21 = —29 =
1, oo = 05 = 4A, T = 25°C.

Fig.4 The logarithm of the reduced association constant In(K/Kjp) as a function of free
ionic concentration, 100\/5ra) , (C in mole/liter). From top to bottom, L = 0,
L =0¢/2 and L = o respectively. o = 8A. Ko = 1.2 x 106A3. All other parameters
as in Fig.3.

Fig.5 The logarithm of the reduced association constant In(K/Kp) as a function of
free ionic concentration, 100\/5(1T , (C in mole/liter). Experimental data
for monochloroacetic acid (v),13 ¢ = 8A, Kg = 1.2 x 10843 (—); ¢ = 7A,
Ko = 1.2 x 106A3 (- - ); ¢ = 84, Ky = 108A3 (— - —). Here, L = ¢/2.
Ko = 1.2 x 10843 is the experimental result for monochloroacetic acid. All other

parameters as in Fig.3.
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