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Abstract — Two Menger-type theorems are proven herein for transfinite graphs. They
are established under some strong restrictions on the transfinite graphs. This leads to some

open questions concerning more general Menger-type theorems for transfinite graphs.

Let us refer to a conventional graph as a “0-graph” and to their vertices as “0-vertices.”
Transfinite graphs of rank 1 (synonymously, 1-graphs) are constructed by connecting to-
gether infinite 0-graphs at their infinite extremities through 1-vertices. This can also be
done for higher ranks of transfiniteness by connecting 1-graphs at their infinite extremi-
ties through 2-vertices to obtain a 2-graph, and so on to get v-graphs where v can be any
natural-number rank or even a transfinite-ordinal rank. The theory of these structures was
originally presented in [4] and developed further in [5]. All the terminology we use herein is
explicated in those references except that we now speak of “v-vertices” instead of “v-nodes”
and “edges” instead of “branches.” Moreover, we restrict our attention herein to “pristine”
transfinite graphs, in which no vertex of any rank contains a vertex of lower rank.

There is a large literature on Menger’s theorem {1, page 121], which includes versions
appropriate for conventionally infinite graphs [2], [3]. However, there have been no such
results so far for transfinite graphs. The two Menger-type theorems stated herein are based
on the assumption that the transfinite graph G“ at hand is “stout” in addition to being
pristine.

Let us start by recalling some definitions. We confine the rank v of the transfinite graph
G"t00 < v < w, v # &, where w is the first transfinite ordinal and & is the arrow rank

preceding w. The same arguments work for ranks higher than w. A v-vertex is defined in



(5, pages 30 and 42], and a v-graph is defined in [5, pages 31 and 43]. A (v — 1)-section
of G¥ is a maximal subgraph, every two edges of which are connected through a two-ended
p-path for some rank p = 0,...,v — 1 [5, page 49]. p-paths are defined in [5, pages 33 and
44). Two p-vertices are said to be v-adjacent if they are incident to the same (v — 1)-section
[5, page 87]. Two endless paths (of any ranks) are called disjoint if no single vertex (of any
rank) is in both paths. [5, page 33].

As for new definitions, we need the following. Two two-ended v-paths are called inde-
pendent if no single vertex (of any rank) is in both paths except possibly for one or two
terminal vertices of both paths. In other words, the independent paths may meet at their
terminal vertices but no place else. A set of such pairwise independent two-ended v-paths
is also called independent.

The v-graph GY is called stout if there exists a set P“~! of pairwise disjoint endless

(v — 1)-paths satisfying the following two conditions:

e There is a bijection between P“~1 and the set of all pairs of v-adjacent nonsingleton

v-vertices.

o Each path in PY~! reaches the two v-vertices in the corresponding pair under that

bijection.

For example, the 1-graph of Fig 1(a) is stout whereas the 1-graph of Fig. 1(b) is not stout.
A two-ended v-path in G¥ that terminates at two v-vertices nj and n} is called an
nyng-path. A set of v-vertices is said to separate two given v-vertices n’ and n} if that set
contains neither ny nor ny and if every n;ny-path meets at least one v-vertex of that set.
The stoutness of G¥ enables the lifting of Menger’s conventional theorem into the context
of transfinite graphs as follows:

Theorem 1. Assume that the v-graph G” has the following properties:
(a) G is v-connected.
(b) G¥ has only finitely many nonsingleton v-vertices.

(c) G” is stout.



Let n¥% and n} be two nonsingleton v-vertices in G¥ that are not v-adjacent. Then, the
maximum number of independent n%n}-paths in G¥ is equal to the minimum number of
v-vertices that separate n and nj.

Proof. Replace each n)ny-path P” in G by an ngny-path Q" such that each endless
(v—1)-path in P¥ reaching two consecutive v-vertices of P” is replaced by the unique endless
(v ~ 1)-path in P~ reaching those two v-vertices. Let Q” be the set of those n¥ny-paths
QY. QY is a subset of all the n’n}-paths in G”. By the stoutness of G“, the maximum
number of independent n%ny-paths in G cannot be greater than the maximum number of
independent nZn}-paths in @¥, nor can it be less obviously. Let K be that number.

Now, create a “surrogate” 0-graph G*~° from G as follows. Replace bijectively each
nonsingleton v-vertex n” in G” by a 0O-vertex m® in G“~%; thus, n% and ny are replaced
by m¥ and m{ respectively. Also, replace bijectively each endless (v — 1)-path P*~! in
P¥~1 by an edge that is incident to the two O-vertices in G*~° corresponding to the two
v-vertices that PY~! reaches. This determines a bijection between the paths in @” and the
mdmf-paths in G*~0. By Menger’s theorem, K equals the minimum number of 0-vertices
in G¥™9 that separate mg and mg.

Clearly, a set of v-vertices in G” separates n) and nj if and only if the corresponding
set of 0-vertices in G0 separates mQ and m{. Therefore, K equals the minimum number
of v-vertices in G” that separate n} and ny. O

In the event that G” has infinitely many v-vertices, we can state the following.

Theorem 2. Assume that the v-graph G¥ has the following properties.
(a) G¥ is v-connected.
(b) G” has infinitely many nonsingleton v-vertices.
(c) GY is stout.

Let n} and nj be two nonsingleton v-vertices in G” that are not v-adjacent. Then, there
are infinitely many independent n¥ny-paths in G¥ if and only if no finite set of v-vertices in

G” separates ny and nj.



Proof. The “only if” part is clear, for no finite set of v-vertices other than n¥ and n}
can meet infinitely many independent n)n}-paths.

So consider the “if” part. Let Q" be the set of n¥ny-paths defined in the proof of
Theorem 1. choose any n%ny-path Qf in Q“. QY has only finitely many »-vertices. Since
no finite set of v-vertices separates n and ny, there exists an n’ny-path Py that does not
meet any of the v-vertices of QY. Since G” is stout, we can replace P} by an nyn}-path Q4
in Q¥ that does not meet any vertex (of any rank) of QY. Q% also has only finitely many
v-vertices. Therefore, there exists an n’ny-path P§ that does not meet any of the v-vertices
of @f and Q4. By the stoutness again, we can replace P§ by an n}nj-path @3 in Q" that
does not meet any of the vertices (of any ranks) of @4 and Q4. Continuing in this way, we
generate an infinite set of independent njny-paths {Q7,Q%,Q%,...} in G¥. O

All this leads to the following open questions: Can a Menger-type theorem be stated for
two vertices of different ranks? What can be said if the assumption of stoutness is dropped?

- Also, what if G¥ is not pristine? These questions appear to be much harder to answer.
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Caption for Fig. 1.

Fig. 1. Two 1-graphs. The first one shown in part (a) is stout, and the second
one shown in part (b) is not stout. The dots represent 0-vertices, the small
circles represent 1-vertices and the lines represent edges. Each pair of 1-nodes

is connected through an endless 0-path in both cases.
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