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spaces and the method of

through proximity spaces. Bo

completely regular spaces,

spaces can Dbe Zgeneralized s

of symmetry, end this will
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Products of such binary rel
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set A of B we will write

a sub

L

o

chA = E~— Ao I b < 2 >< 2 and (4,B) { b we will

Lab]

Lso write (A,B) € cb; if

for {4,B).

A = {x] we will write (x,B)



Let r 2P‘b¢ QE be such that for all subsets
Ky Py 0D of B gnd-all x in E

l.‘(A,B} £ ¥ dmpldes (B,A] & ¥

2. (E,0) € cor

B, CAB) £ Ty A . G, B D imply (C,D) & r

4, CA ) B,C) & v implies (A;0) & » or (B;C) € 1

SrEes U B 7{ /Qf implies (A,B) E r

6. (x,4) g cr implies there is 5 <_ B such that
(x,S) & cr and (cS,A) & cr.

Definition 1, A binary relation r defined zs above
is said to be a regular relation for E. The ordered pair
(E,r) is ssgid to be a2 regular spsce.

We will usually write E for (E,r) if the context
makes the meaning clear.

Let ] be the family of all subsets T of E such

m

that x in T

is a topology for E.

Definition 2. Let (E,r) be a regular spac

tovology “J

implies (x,eT) & cr.It is obvious that 7

G L8

obtained as above is called the topology of

or of (E,rj and (E,r, %} ) the topological space of r.

Then (Z,r) is considered as a topological space

will write (Z,r, 7} ). Let k be the Kuratowski closure

function of the topolosy

J

. de will denote (E,r, 7J )

also by (E,r,k) or by E alone if the nmeaning is clear.
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Let k¥ denote the interior fanetion of k. Then k = .cke.

—

£ 4 = {x] we will write kx for KA.

/. ( e | 3 .
Theorem L. ki = i}: : (x,ch) g cr| where & C K.
Proof. Let B = {x s {x,cA) © cr} . Now
' g ! 2 fn - o " n
XA < B ¢ A, Hence if kB = B then kA = B. Let x & B.

Shen (x,cA) & cr and so (x,C) & cr, (eC,chA) g cr for

am

some subset C of E. Then y € c¢C 1lmp

s

soy €& B from which it follows cC < B. Hence ¢B < C

and so (x,¢B) € cr which implies kB = B.

Corollary. ki = {x: (x,4) E r}

£ () xB = /;ﬁ and kA () B = )75 s Blsg tx,8) & CF

fr

implies (kx, kA) € cr for from (x,4) € cr we get

T

%,0) € pr, (eC,A) € cr for some subset C of ¥ and then

(
(x,D) € cr, (ecD,C) & ecr and (cC,A) & cr for some

-

suhset D of B; hence kx ¢ c¢D, kA ¢ C and so (kx, kA) ¢

Definition 3. A tovolozy “J for B is sa2id to be
regular iff A is a closed subset of E and x is a point,
of B, not in A imply x and A have disjoint neighborhoods.

A topology J for T is said to be ¢ ripletely regular iff

A is a closged subset of E and x is 2 point not in A inply
there is a continuous function f from E to the closed

unit interval [O,]] aueh thaet fl(x) — 0 and fA = 1.

CI.
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Theorem 2. The tonaology of a regular relation
. * d ek & :

)
)]

resular.

Proof. Let r be a regular relation for B snd (B,r,kJ
the topological space of ». Let A = %A and x ¢ ch. Then
(x,A} ® cor and so (x,B) €& er, (¢B;A) & or for gome
subset B of E. Hence there is a subset C of E such that
(%,0) € -er 'a.nc‘; (eC,B) € cr. Evidently x & ckC and
L < kB. Now ckC and l:’B are disjoint open sets since they

are subsets respectively of c¢C and B.

Definition 4. Let (E,r,k) be & regular space.

k set B is said to be & r-neighborhood of a set 4L iff

(A,cB) & cr.
A r-neighborhood is obviocusly a neighborhood

If (x,A) & er then x and A have dis joint r-neighbor-
hoods, because (x,A) & cr implies there are subsets B,C of B
such that (x,C) ¢ cor, (e¢C,B} & cr, (¢B,A) & cr and then

c¢C and B are disjoint r-neighborhoods respec tively of x

En d. .\‘:"‘L [

Theorem 3, If A is a r-neighborhood of x then there

is an open r-neighborhood B of x and 2 closed r-neigzhbor-

[ =1

Hoed € of x sheh thet 0. < B « A,

5

Proof e are given (x,cA) g cr. Hemce (x,kch) £ cx



end 80 B = ckeA is an open r-neighborhood of x. Now (x,cB)
thd go (x,D) & c¢r, {(eD, ¢B). & ecr for some subgset D. Then
¢ = keD is such that (x,¢C) £ cr and so.-C is a ¢cloged
r-neighborhood of x. We also knew that keD and ¢B are

Let B D) A denote

A ::‘{X} we will write B .23

o
-

ws}

It is clear that uniform

are regular spaces. A regular

AEF 1t 45 1,

a

=

eorem A, Let A be

properties

spaces and proximity spaces

space (F,r,k’ is Haunsdorff

suhset of a regular smace

(BE,r,k). Then kA is the intersection of &ll the r-neigh-

-~

borhoods of A.

Proof. Let B be the intersection of 211

the r-neigh-

borhoods of A; then ki is 2 subset of B. Supoose

-y

X £ B ~ kA, Thi

8
C of A suech that x is not in

and hence x ig in € which is

implies there is a r-n

ighborhood

D

-

C. But B is a subset of C

a

contradiction.

< er
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Corollary. The interior of A is the union of all
the sets for which A is a r-neighborhood.

Definition 5. A subset S of a topological space E
o

is said to be compact iff every open cover of S has a

finite subcover. A subspace S of E is compact iff S

o
~
]

a subset of B is compact

L3

Theoren 5. Let A,B be subsets of (B,r,k) such.that

A is compact and A and kB are disjoint. Then (A,%B) € cr.

Proof, x in A implies (x,kB) € cr and so there is

D

C such that (x,0), (eC, kB) & cr. Then ckC ig an open
set containing x; the family of all such ckC for x in A

'q o o Ria £ & and = o= Pini+te <« .t" Y -

is en open ccver of A and sc has a finite subcover

D yeass D4y saye Let D = D () .. D . Fow (D ,kB) €
1 n 1 n !

for each i = 1,..., n and so (D,kB) ¢ cr. Hence

(A,kB) e cr.

Corollary. A,B are disjoint closed subsets of a
compact (B,r,k) imply (A,B) & ecr,
Theorem 6., Let %) be a regular topology for E.

Then 7 is the topology of a reguler relation r for L.

Proof. Let k¥ be the Kuratowski closure function

of %] . Por subsets A,B of & write (A,B) & r iff



kA, kB are not disjoint.

Definition 6. Let ® bhe a subset of a regular space

B,r)s For subsets A,B of P write (A;B) €& s iff (4;B) £ s

Then (F,s) is called a subspace of (I,r).
Definition 7. A regular space (H,r,k) is called a

X

r-extension of a regular space (F,g,h) iff P is dense in

E and (P,s) is a subsnace of (B,r).

A subsvace (F,s) of a regular space (B,r) is
obviously regular; also the topology of s is the

relativization of the topology of r to F.

=]
e
@
&
pan
j—

ar space

(F,s,h) does not always seen toc be dense in a compact

o

regular space (E,r,k) for then the topology of h would

N
)
tin 3
(o)
a2
ct
i
®

he completely regular, heing the relativizat:
comnletely regular topology of k and so0 all regular spaces

do not have compect r-extensions.

Definition 8. Let (&,r), (F,s) be two regular

n
et
m
@]
4]
w

and f a function from E to P, Then f is gaid to be 2
r-mapping or r-function iff A,B ¢ =% and (A,B) & T

imply (fA, fB) €& s. A r-function f is called a r-homeomor-
phism iff f is one to one and both f and its inverse are
r-functions. Two regulsr spaces are said to be r-homeo-

morphic iff. there is a r-homeomorphism betveen them.

Lemma. Let £ be & function from a regular space
o 4



(Byr,k) to a regular srace (F,s,h). Then £ is continuous
TEP abx Ay & pradnnly (Bl ), TA) & 8 F68 % 9% BEng A 3,
Theorem 7. BEvery r-function from (B,r.k) to (¥,s,h)
is continuous.
The converse of Theorem 7 is obviously not valid.
(t is easy to see that a function f from (Z,r) to (F,s)
is & r-function iff A,B < %, and (4,B) & cs imply
iy s .
(£ &, £ B) & or. 1t dis also elear that it £ .48 &
function from a proximity space (E,8) to a proximity space
/ f
(B, S ) then f is a & -function iff f is a r-function;
this shows that r-functions are generalizations of
(" L { | : . y T - ==
¢ -Tunctions .and 1at regular spaces have symmetry and
form a class of spaces, more genersl than proximity spaces,
which admit of such generaligzations,

Let (E,kJ), (F,h)

.Define r@rn} ar relations

AyB . E imply (4,B) ¢
C,D < F imply (C,D) ¢

function £ from (E,r,k)

continuoug.
Let s be the inte
relations for E. Then s

regular relation except

A,

definition of a regular

be regular topological spaces.

Yo Par B.P g8 Tollons:
- )

r iff k& () kB # ¢ end
s iff nC () hD # ¢ . Then a
to (F,s,h) is a r-function iff £ is

£ 4
famil

rsection of a y of regular

2]l the properties of a

has

perhaps the fourth condition in the

relation. Similarly the union of
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a2 family of regular reiations for E will have all the

properties of a regular relation except perhaps the sixth

condition in the definition of a regular relation.

Definition 9. Let A be & set. Then a finite fanily

Aj,‘.., A , of subsets of A and whose union is A, is said

o be a pertition of A.

Definition 10, Let r,s be two regular relations
for a set B. Then r is said to be finer than s (or s is

coarser than r) iff (A,B) & r implies (4,B) & s.

Theorem 8, Let s be the intersection of a fanmily
P of regular relations for a set &. Denote by u the union
of all the regular relations finer than-each member of F,
Define r as follows: if A,B < E then (A,B) & r iff

B yensy A Bnd B.sussy B &Pe partitions of A avd B imply
1 bt 1 T

b

(A, B) € s for some i = l,..., m and some j = 1
i J
Then r = u and r is the coarsest regular relation finer

than each member of R,

Definition 11. Let P be a family of regular relations
for E. Then the coarsest reguler relation, finer than
each member of P, is said to be generated by F.

Definition 12, A topology 7 for E is said to

(=)

- - cet
be finer than a topology <« for E (or © is coarser



than ﬁj Y AFE cw) 4is 'a subf

Let r be the rezular relation generated by a family

g

F of regular relations for a set E. Then the topology
of r is the coarsest tepology finer than that of each
member of F.
Definitibn 13, A family R of binary relations

b- € 2 == 2 is said to be a regular family for E iff

1. each member of F satisfies the first five conditions

in the definition of a regular relation
2. syt are in F imply there is u in P such that u

is finer than s and +

o
=
j=

3. 8 in Poand (x,A) g ©s imply there is 4 in F
a subset C of E such that (x,C) & ct and
(CO,.-{"L) E C‘tt

The ordered pair (E,R) will a2lso be called 2 regular space.

A regular reletion is a regular femily conteining

only one nmember.

Definition 14, Let R be a regular family for E.
Then the family €} , of &ll subsets T of E such that
x in T implies (x, ¢T) € cs for some s in R,(which is a
topology for E) is said to be the topology of R and we
will denote the resulting topological space by (E,R, T )

or simply by E.
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Definition 15. Let B be a regular family for E.
by {(A,B} is in r iff (4,B) is in each menmber
.0f Rwhich is a regular relation) is called the regular

relation generated by H.

The topology of a regular family R coincides with
the topology of the rezular relation generated by R.

Let ® be a family of regular relstions for a get E

ite

For each finite subfanily G of F there is a coarsest

s

be the family of all such g for each finite subfamily G

of F.. Then R is a regular family. Alsoc R and F generate
the same regular relation.

Definition 16. Let R,S be two regular families

+

for BE. Then R is said to be

£

iner than S (or S is coarser

U

than R) iff for each s in S there is r in R such that

r < g.-de will say R and §' are-equivalent iff each is

finer than the other.

- . 5 . s oo l-}\
Definition 17. Let (E,R), (E,R) be regular spaces
’\
eand £ a function from % to E. Then f is said to be (R,R)-con-
. 3 / / : .
tinuous iff for each r in R there is r in R such that

e . . . . ~ o . . [/
(A, BJ 1es in o dimplies (f4, £B) ig din ».

jood ; b
Let (&,R) (E,R) be regular spaces and f a function

. . / ;
from ¥ to E. Denote by r,r the regular reletions generated



/ : : / ; Sae Ay
'y R,R. Then £ from (E,r) to (&,r) is a r-function
! H -
if £ is (R,R})-continunous but the converse is not

o |

necessarily true.

b7
Let E be a set, (B,

'l y { .
from B to E. For each r in R w“wte (A,B) € r for subsets

- / . o
A,B of ® iff (fA,TB) & r; let R be the family of all

1 Wl

guch r. Then R is 2 resuler femily for B and £ is (R,RJ)-con-

tinuous. Also if S is a regular family for E such that

’ T&r L
f is (S,R)-continuous then S is finer then R. Write

]

Let E be a set and R, a regular family, for E, for
i
each i in an index set I. Denote by S the union of R for
' 1

i in I, Por & finite subfamily T of S define (A,B) & + iff

D
X
=
t
e
Ci..
|..J
O
=
l.."
a
)
e
)
b
(o

A ye00 A and B EREEE B are
1 m 1 n

(A ,'B ) is in each member of T for some a = l,...,1 and

B imply

gome b = lsyessy ni let R be the family of &ll such t for
each finite subfamily T of S. Then R is a regular family
for B finer than each R.,, i &€ I and R is coarser than
.each regular family for Ewhich is finer than each Ri;

in this sense we can say R is the coarsest resular family

finer than each R . Cbviously R is unigue up to eguivalence,
i

Next, let E be a set and £ o function from E to
i1
/ s .
a regular space (B,, R ) for each i in an index set I. Let
= i 4 4
R. = £ R . Denote by R the coarsest regular family finer

than each R, for i in I. Then R is the coarsest regular
1

1} a regular space and £ a function
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family for E such that each £ is (R,R )-continuous.

Definition 18. Let {E_, R ) be a family of regular
spaces for each 1 in an index set I. Denote by E the
Cartesian product of E, for i in I. Let R be the coarsest

E such that projection into the i-th

=
o

‘regular family

coordinate space is (R,R, J-continuous for esch i in 1I.
5 ;

Then R is said to be the product of the resular families

or i in I and (E,R) is said to be the product regular

u
b ]
i

i
e

v}
o B

m
Q

1t ig clear that 2 product R is unique up to
equivalence. It is easy to see that the topology of the
product regular family is the product of the topoclogies
of the regular families R, for 1 in I.

B g

Let (E,R), (F,S) and (G,T) be regular spaces. Let

f be a (R,S)-continuous function from R} to F and g a
(S, T)-continuous function from # to G. Then the composition
gf is a (R,T)-continvous function from E to G. The next

theorem is easy to prove,

Theorem 9, Let £ be a function from a reguler

spece (F,S) to a product (E,R) of regular spaces. Then f
is (S,R)-continuous iff the composition p f is S,Ri}—ounw
i

tinuous for each i in I (using the notation of Definition 18)

end this property determines the equivalence class of K.
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Regular spaces do possess a property of functional
separation similar to that of completely regular spaces

and is proved in another of my papers.

Heferences

.

l. V. A. Efremovich, Infinitesimel spaces, Dokl., Akad, Nauk
SSSR 76(1951) 341 - 343 (Russian)

2. --- , Geometry of proximity, I, Hat. Sb. 31 (73) (1.952)
189 - 200 (Russian) |

3s Zs Ps

Nk

. s - .
famazic, Introduction to general topo

=
o
&

Groningen (1963)

4. Yu. M. Smirnov, On proximity spaces, Mat. Sb. 31 (73)
(1952) 543 - 574 (Russian)

5. A. Well, Sur les espacses a structure uniforme et sur 1z

. - [ = . - .
‘topologie generale, Act., sci. et ind., 551, Paris (1937)



