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It has h30n ShO'(ffiby Thanrpuran C?) that the concept of complete rcgu-

lari ty of a top'Jlogical space can 03 generalized so as to appl;y to bi topo-

logical spaces. Tharnpuran (3) has also shorm that a gage can be defined

for a quasiuniforrrJ. ty and that its bi topological space is cOnl.:)letely regu-

1ar. It is sho-~;n in '~his paper that a c01lpletely regular bi topology (1,1')

is generated by the family G of all quasi metrics, continuous relative to

(1,:r/)~ that (1,1') is the coarsest bitopology which mQkes every member of G

continuous, that the quasiuniformi ty U g6nerated by G is the finest one "Ii th

bi topology (T ,1') and t.~:;t J is the gage of U. Also, every bitopology (1,1')

has a finest co~~let8ly re~ular bitopology (8,3') coarser than (1,1') and

J.~. that (S,S') is the bitopology of all the quasimetrics th~t are continuous,rel-

.I..~ ativa to (1,1').

Unless other,'Dse spscified the terminology used in this paper has tho

same meaning as in Kolley (1).

Definition 1. Let M be a set and 1,T~. two topologies for M. The

ordered triple (H,:r,1') is said to be a bitopological space. 1 and l' are

said to be the left and right topologies of this bitopological space. vIe

,vall also call(T,1') a bitopology for M.

When there is no possibility of confusion vie will denoto this bi topo--

logical space by M.

Defini tion 2. A function d fr:)Y!l the Cartesian product 1{-.-:.Mto the

non-negativ~ reals is said to be a quasimetric iff for all x,y,z in M

(1)

( 2)

d(x,x) :: 0 and

d(x,y) ~ d(x,z) + d(z,y).
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(M,d) is said to be a quasimetric space.

Let r be the family of all subsets T of 11 8uch that x in T implies the

set S(d,x,r-) = { y: d(y,x) < r} c T for some l' > 0; then ::ris a topology

for 11. Let :r' be the famj.lJrof all subsets T of H such that x in T implies

the set S' (d,x,r) = (y: d(x,y) < r} c T for some l' > 0; then l' is also a

topology forM.

Definition 3. :r and j' as defined in the preceding paragraph are said

to be the left a.rJd right topologies of d and (M,1,1 i) is called the bi topo-

logical space of d; we r:ill call (1,1') the bi topology of d.

D3note the reals by R and define a quasimetric m for R as follo'\'J8:

m(x,y) = max [y - x,O} for all x,y in R. Let R.and R I be the left and right

"topologies of m.

Definition 4. m is said to be the usual quasimetric for the reals and

(R,R,R') the usual bitopological space for the reals.

Definition 5. Let (H,1,11), (N,S,S') be bitopological spaces and f.

a function from M to N. f is said to be continuous iff f is both 1 -3 and.

1'-S' continuous. f is said to be a homeomorphism iff f is one to one, f

.is continuous and f-1 is continuous. M and N are said to be homeomorphic

iff th~re is a homeomorphism between them.

Theorem 1. Let (M,1,1') be a bitopological space and d is a quasi-

. metric for H. Take L = M ;:>o"-M, ~ = 1'-><.1 and~' = j~:r/. Then d considered

as a function from (L,~,~') to (R,~,~') is continuous iff for each x in M

and. each l' > 0 the set S(d,x,r) E j and.S'(d,x,r) E 1 '.

Proof. Let x in M and. r > 0 imply S(d,x,r) E 1 and S'(d,x,r) E ji. r~et

(x,y) ELand r > O. 'l'hen A = S'(d,x,r) ;><.S(d,y,r) is a .r-neighborhood of

(X,y). Le t (u, v) EA. Now d(x,y) ~ d(x,u) + d(u,v) + d(v,y). This implies

that d(x,y) - d(u,v) ~ d(x,u) +d(v,y) < r + r = 21'. Hence d is ~-R contin-
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UOU8. We can prove similarly that d is also ~!R.1 conti~uous.

To prove the converse let us aSSU1!l8d is continuous, x E M and I' > O.

Then d is J: '-~' continuous at (x,x) and so there is a neighborhood A of

(x,x)such that (u,v) in A implies dCu,v) - dCx,x) <I' or deu,v) <I'. There

is now a :r-neighborhood B of x and there is a j ,-neighborhood C of x such

that B: :. C c A., If U E B then d(u,x) < I' since x E C and so Be S (d,x,r)

If yES (d,x,r) then there is t > 0 such that S(d,y,t) ,C S(d,x,r) and

S(d,y, t) contains' a:r -neighborhood of y. Therefore Sed,x,r) is a j-neigh-

b orhood of each of its points an d so S( d,x,r) is 1-open. It can similarly

be proved that S'(d,x,r) is :r'-open.

In the proof of the converse of Theorem 1 vle used only the condi tj.on

that d is continuous at each ex,x) for x E M. We therefore have:

Corollary 1. d is continuous iff d is continuous on the diagonal

. .[(x,x):x E M).

Corollary 2. Let:r and:r' be the left and right topologies of d in

Theorem 1. Then d from (L,~,~') to CR,~,R') is continuous.

Hereafter continuity of a quasimetric d, relative to (1,j'), vdll be

used in ~~e sense of Theorem 1.

1emmal. Let (M,1,j') be a bitopologicalspace and f a function from

11 to R. For x,y in 11 write d(x,y) = maxtf(y) -f(x) ,OJ. Then d is a quasi-

metric for M and d is continuous iff f is continuous.

Proof. It is clear d is a quasimetric for 11. f is 1 -6t continuous iff

S(d,x,r) = (y:f(x)-f(y) < I' J E j for each x in M and each I' > O. Hence f

is j-R continuous iff d is 1-R continuous. The part for j'-R' continuity

can be proved in the same way.

Lemma2. Let f be a function from the bitopological space (M,1,1') to

the usual bitopological space (R,R,R') for the reals. fufine d as in Lemma1.
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Let rl R and r-1 r,>," denote the inverses under f of Rand R '. -1 'Then f R

and f-1~, I are the left and right topologies of d.

Let K == (O,lJ denote the closed unit interval. Then m restricted to

K is a quasimetric for K and let K have the bitopological space of this

restriction of m to K.

Definition 6. A bitopological space (M,j,j') or (j,j') is said to be

completely regular iff for A, Be M,
,

.(1) A is j -closed and y not in A imply there is a continuol1s function f

from M to K such that fA = 0 and fey) ==1 and

(2) B is 1 '-closed and x not in B i.mply there is a continuous function

g from M to K such that g(x) == ° andgB ==1.

Definition 7. Let (1,j'), (S, S') be two bi topologies fOT a set M. We

will say (j,j') is finer than (S,S') or (S,S') is coarser than (1,j') iff S

is a subfa..'Tlily of j and S' is a subfamily of 1'.

Theorem 2. Let eM,j,j') be a completely regular bitopological space.

Then there is a f8J.mly F of quasimetrics for 1'1sueb that (j,1') is the coarsest

bitopology, for M, making each member of F continuous.

1?roof. Let A.be a j -closed subset of M and let y be not in A. There

is then a continuous function f from M to K such that fA == 0 and fey) ==1.

For all u,v in M'take d(u,v) == max[f(v)-f(u),O}. Then d is a quasimetric

. for M, the bitopology of d is coarser than (1,1 ') and x in A imp~i.es d(x,y)=1.

For each 1 -closed subset A of M and each y not in A there is a quasimetric d

with these properties; let D be the family of all such quasimetrics. Let (j

be the family of all S( d,x,r) for d in D,x E M and l' > O. Obviously B is a

subfamily of 1. Let T E 1 and yET. Then the complement C of T is 1 -closed

and so there is a d in D such that d(x,y) :: 1 for all x E c. Hence
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x E S(d,x,~) c T and so B is a base for 1.
I'

)
I

And each S l d,x,r E 1 for

x E M and r > O.

For. each 1 '-closed set B and each x not in B there is a quasimctric e

for M such that S(e,u,r) E 1, S'(e,u,r) E 11 for each u in M and oach I'> 0

and d(x,v) = 1 for each v in B; let E be the family of all such quasimetrics.

Then the family of all S'(e,x,r) for e E E,x El1 and r > O.is a base for 1'.

Let F be the uni on of D and E. It is easy to see that (1,1') is the

cOarsest bitopology n;aking each member of 1<'cor..tinuous. This- complotes the

proof.

Let U be a quasiuniforJT'.i ty for M, U' the family of all inverses of

members of U and d a quasimetric for M. Thampuran (3) has proved that d

considered as a function from (M, M, U '..,;.\1) to(R,m) is uniformly continuous

iff [(x,y): d(x,y) < r} is a member of U for each I'> O. Uluform continuity

of a quasimetric will hereafter be used in this sense. The folloi.rlng corollary

-to Theorem 2 then folloY-Tseasily.

Corollary. Let U be the quasiuniformity generated by F. Then (1,1') is

the bi topology of U and each d in F is unifor7!ly continuous.

Theorem 3. Let (M,1.,1') be completely regular and G the family of all

continuous quasimetrics for M. Denote by U the quasiuniform.ity generated by

G. Then (1,1~) is the bitopology of U, i.e.,(1,1') is the coarsest bitopology

making each member of G continuous. Also G is the gage of U.

Proof. The F of Theorem 2 is a subfamily of G and tho bitopology of U

is clearly coarser than (1,1') and so the first part of the theorem follows.

The second part can be proved by noticing that each member of G is in the

gage of U and that each member of the gage of U is continuous and so is in G.

Coro]~ary . Let V be a quasiuniformity, for M, having tho samo bitopolo[0'

as that of U.. Then the gage of V is a subfamily of G and henceU h~ the

finest qu~siun~formity having the bitopology (1,1').

-5-

-



''''-'-.-'' .-. -'."- ,_.

Definition 8. A family G of quasimetrics for a set M is said to be

the gage of a bitopology iff there is a bitopology (1,'T') for M such that

G is the family of all continuous quasimetrics, relative to (1,1').
We will

also call G the gage of (1,11).

Definition 9. Let F be a family of quasimetrics for a set 11 and let U

be the quasiuniformity, for M, generated by F. The bitopology (1,1/) of U

is said to be the bitopology of F or the bitopology generated by F.

also say that F generates the gage of (1,1').

We will

Let (M,1,11).be a bitopological space and G the family of all continuous

quasimetrics, relative to (1,1')~ Then the bitopology (S,S') of G is clearly

coarser than (1,1'). But these bitopologies coincide iff (M,1,1') is com-

pletely regular.

. Theorem 4. A bitopological space (M,1,1') is completely regular iff

(1,1') is thebitopolo~J of its gage.

Let (M,1,1') be a bitopological' space and G the gage of (1,1').
Then

the bitopology of G is tile finest completely regular bitopology coarser than

(1 ,T I) .

.Theorem S. Let (M,1,1') be a bitopological space. Then there is a

.finest completely regular bitopology (S,S') coarser than (1,1') and (S,S')

is the bitopology of the gage of (1,1.1).

Let F be a fannly of quasimetrics for a set M and (1,1') the bitopology

Then the family of all sets of the fOl~[ S(d,x,r) for d in F, x in Mof F.

and r> 0 is a subbase for 1 and the family of all sets of the form S'(d,x:r)

for d in F, x in M and r > 0 is a subbase for 1'. A quasimetric e for M

is continuous iff S(e,x,r) E 1 and S'(e,x,r) E l' for each x in H and each

r > 0 and so is continuous iff for each x in M and each r > 0 there is t > 0

and there is a finite numbe r d1,"', dn of members of F such that
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SCdl,X,t) n...n S (dn,x,t) c S (e,x,r) arid

S'(dIJx"t) n~,"n S'(dn,x,t) c S'(e,x,r). ., ...

"heorem 6. Let F be a family of quasimetrics for a set M and let

G be the gage generated by F. Then a quasimetric d belongs to G iff x

in 11and r > 0 imply there is t > 0 a.nd there is a finite subfamily d1,..., dn

of F such that n[s (di,x,t) : i:: 1,"'Jl) C S (d,x,r) and

n[S'(di,x,t) : i:: l,...,n} C S'(d,x,r).

Definition 10. Let (11,1,1') be a bitopological space and N a subset

of M. Denote by S,S' the relativizations of 1,1' to N. Thon (N,S,S') is

said to be a subspace of (H,1,1').

D3fini tion 11. Let I be an index set and (M. ,1. ,1:) for i E I be a~ ~ ..L

family of bitopological spaces. Let M,1,1' be respectively the Cartesian

product of Mi, the product of the left topologies 1i and the product of the

right topologies 1{ for i in I. Then the bitopological space (M,1,1') is

said to be the product of the bi topological spaces (¥~,1 i,1.j) for i in I.

Definition 12. A bitopological space (M,1,1') is said to be quasi-

Hausdorff iff x,y are distinct points of M imply they have either disjoint

1,1'-neighborho~ respectively or they have disjoint 1',1-neighborhoods re-

spectively.

Let (M,1,1') be a completely regular space and G the gage of (1,1').

Then (1,1') is the coarsest bitopology for M such that the identity function

fran (M,1,1') to(H, d) is continuous for each d in G. Let P =><{Md:d E G1

where Md = M for each d in G. Let (f,{j.l be respectively the products of the

. left and right topologies of 11d' for d in G. Assign to P the bitopologies

(8, {i'). For u in P let ud denote the projecticn of u into the d-th coordinate

space and let f be the function from M to P defined by f(x)d = x for all x

in 11 and all d in G. Now f if) continuous iff f followed by projection into
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each coordinate space is continuous. Hence (1,1') is the coarsest bitopol-

ogy for M such that f is continuous. But f is one to one and therefore f is

a homeomorphism.

Now suppose the bitopological space (M,1,1') is quasi-Hausdorff. Use

the notation of the preceding paragraph. Thampuran (J) has proved. that the

quasimetric space (N, d) is isometric under a function hd to a qu.asi-Heusdorff

quasimetric' space (Md.~'d~t).. Hence (1,1') is the coarsest bitopology for M

such that each hd is continuous. tenote by N the Cartesian product of Md.~~

for d in G and by h the function from M to N given by h(x)d = hd(x).

the left and right topologies of N take the products respecti.vely of the

For

left and right topologies of d* for dinG. Then (1,1') is the coarsest

bitopology for which h is continuous. Let x,y be two distinct points of M.

If hex) = hey) then hd(x) = hd(Y) for each d in G and hence d(x,y) = 0 = d(y,x)

for each d in G; but this implies (M,1,1') is not quasi-Hausdorff. Therefore

h is one to one and then we easily see h is a homeomorphism. Thus we have:

Theorem 7. Let (M,1,1') be completely regular and G the gage of (1,1').

Then M is homeomorphic to a subspace (the diagonal, in fact) of the product

of all the quasimetric spaces (M,d) for d in G. If (M,1,1') is quasi-Hausdorff

then M is homeomorphic to a subspace of the product of all the quasi-Hausdorff

quasimetric spaces (Md~~d*)
for d in G.
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