D. V. THAMPURAN

It has been shown by Thampuran (2) that the concept of complete regularity of a topological space can be generalized so as to apply to bitopological spaces. Thampuran (3) has also shown that a gage can be defined for a quasiuniformity and that its bitopological space is completely regular. It is shown in this paper that a completely regular bitopology $(\mathcal{T},\mathcal{T}')$ is generated by the family G of all quasimetrics, continuous relative to $(\mathcal{T},\mathcal{T}')$, that $(\mathcal{T},\mathcal{T}')$ is the coarsest bitopology which makes every member of G continuous, that the quasiuniformity U generated by G is the finest one with bitopology $(\mathcal{T},\mathcal{T}')$ and that G is the gage of U. Also, every bitopology $(\mathcal{T},\mathcal{T}')$ has a finest completely regular bitopology $(\mathcal{S},\mathcal{S}')$ coarser than $(\mathcal{T},\mathcal{T}')$ and that $(\mathcal{S},\mathcal{S}')$ is the bitopology of all the quasimetrics that are continuous, relative to $(\mathcal{T},\mathcal{T}')$.

Unless otherwise specified the terminology used in this paper has the same meaning as in Kelley (1).

Definition 1. Let M be a set and \mathcal{T},\mathcal{T}' two topologies for M. The ordered triple $(M,\mathcal{T},\mathcal{T}')$ is said to be a bitopological space. \mathcal{T} and \mathcal{T}' are said to be the left and right topologies of this bitopological space. We will also call $(\mathcal{T},\mathcal{T}')$ a bitopology for M.

When there is no possibility of confusion we will denote this bitopological space by M.

Definition 2. A function d from the Cartesian product M M to the non-negative reals is said to be a quasimetric iff for all x,y,z in M

(1)
$$d(x,x) = 0$$
 and

(2)
$$d(x,y) \le d(x,z) + d(z,y)$$
.

(M,d) is said to be a quasimetric space.

Let T be the family of all subsets T of M such that x in T implies the set $S(d,x,r')=\{y:d(y,x)< r\}$ T for some r>0; then T is a topology for M. Let T' be the family of all subsets T of M such that x in T implies the set $S'(d,x,r)=\{y:d(x,y)< r\}$ T for some r>0; then T' is also a topology for M.

Definition 3. I and I' as defined in the preceding paragraph are said to be the left and right topologies of d and (M,I,I') is called the bitopological space of d; we will call (I,I') the bitopology of d.

Denote the reals by R and define a quasimetric m for R as follows: $m(x,y) = max \{y - x,0\}$ for all x,y in R. Let R and R' be the left and right topologies of m.

Definition 4. m is said to be the usual quasimetric for the reals and (R,R,R') the usual bitopological space for the reals.

Definition 5. Let (M,T,T'), (N,S,S') be bitopological spaces and f a function from M to N. f is said to be continuous iff f is both T-S and T'-S' continuous. f is said to be a homeomorphism iff f is one to one, f is continuous and f^{-1} is continuous. M and N are said to be homeomorphic iff there is a homeomorphism between them.

Theorem 1. Let (M,T,T') be a bitopological space and d is a quasimetric for M. Take $L = M \sim M$, $\mathcal{E} = \mathcal{I}' \sim \mathcal{I}$ and $\mathcal{E}' = \mathcal{I} \sim \mathcal{I}'$. Then d considered as a function from $(L,\mathcal{E},\mathcal{E}')$ to (R,R,R') is continuous iff for each x in M and each r > 0 the set $S(d,x,r) \in \mathcal{I}$ and $S'(d,x,r) \in \mathcal{I}'$.

Proof. Let x in M and r > 0 imply $S(d,x,r) \in I$ and $S'(d,x,r) \in I'$. Let $(x,y) \in L$ and r > 0. Then $A = S'(d,x,r) \sim S(d,y,r)$ is a \mathcal{L} -neighborhood of (x,y). Let $(u,v) \in A$. Now $d(x,y) \leq d(x,u) + d(u,v) + d(v,y)$. This implies that $d(x,y) - d(u,v) \leq d(x,u) + d(v,y) < r + r = 2r$. Hence d is \mathcal{L} -R contin-

uous. We can prove similarly that d is also I'R' continuous.

To prove the converse let us assume d is continuous, $x \in M$ and r > 0. Then d is $\mathfrak{L}'-\mathfrak{R}'$ continuous at (x,x) and so there is a neighborhood A of (x,x) such that (u,v) in A implies d(u,v)-d(x,x)< r or d(u,v)< r. There is now a T-neighborhood B of x and there is a T'-neighborhood C of x such that $B \leadsto C \subset A$. If $u \in B$ then d(u,x) < r since $x \in C$ and so $B \subset S(d,x,r)$ If $y \in S(d,x,r)$ then there is t > 0 such that $S(d,y,t) \subset S(d,x,r)$ and S(d,y,t) contains a T-neighborhood of y. Therefore S(d,x,r) is a T-neighborhood of each of its points and so S(d,x,r) is T-open. It can similarly be proved that S'(d,x,r) is T'-open.

In the proof of the converse of Theorem 1 we used only the condition that d is continuous at each (x,x) for $x \in M$. We therefore have:

Corollary 1. d is continuous iff d is continuous on the diagonal $\{(x,x):x\in M\}$.

Corollary 2. Let T and T' be the left and right topologies of d in Theorem 1. Then d from $(L,\mathcal{Z},\mathcal{Z}')$ to (R,R,R') is continuous.

Hereafter continuity of a quasimetric d, relative to $(\mathcal{I},\mathcal{I}')$, will be used in the sense of Theorem 1.

Lemma 1. Let (M,T,T') be a bitopological space and f a function from M to R. For x,y in M write $d(x,y) = \max\{f(y)-f(x),0\}$. Then d is a quasimetric for M and d is continuous iff f is continuous.

Proof. It is clear d is a quasimetric for M. f is \mathbb{T} -R continuous iff $S(d,x,r) = \{y:f(x)-f(y) < r\} \in \mathbb{T}$ for each x in M and each r > 0. Hence f is \mathbb{T} -R continuous iff d is \mathbb{T} -R continuous. The part for \mathbb{T}' -R' continuity can be proved in the same way.

Lemma 2. Let f be a function from the bitopological space (M,T,T') to the usual bitopological space (R,R,R') for the reals. Define d as in Lemma 1.

Let $f^{-1}R$ and $f^{-1}R'$ denote the inverses under f of R and R'. Then $f^{-1}R$ and $f^{-1}R'$ are the left and right topologies of d.

Let K = [0,1] denote the closed unit interval. Then m restricted to K is a quasimetric for K and let K have the bitopological space of this restriction of M to K.

Definition 6. A bitopological space (M,T,T') or (T,T') is said to be completely regular iff for $A,B\subset M$,

- (1) A is \mathbb{J} -closed and y not in A imply there is a continuous function f from M to K such that fA = 0 and f(y) = 1 and
- (2) B is \mathfrak{I}' -closed and x not in B imply there is a continuous function g from M to K such that g(x) = 0 and gB = 1.

Definition 7. Let (T,T'), (S,S') be two bitopologies for a set M. We will say (T,T') is finer than (S,S') or (S,S') is coarser than (T,T') iff S is a subfamily of T and S' is a subfamily of T'.

Theorem 2. Let (M,T,T') be a completely regular bitopological space. Then there is a family F of quasimetrics for M such that (T,T') is the coarsest bitopology, for M, making each member of F continuous.

Proof. Let A be a J-closed subset of M and let y be not in A. There is then a continuous function f from M to K such that fA = 0 and f(y) = 1. For all u,v in M take $d(u,v) = \max\{f(v)-f(u),0\}$. Then d is a quasimetric for M, the bitopology of d is coarser than (J,J') and x in A implies d(x,y)=1. For each J-closed subset A of M and each y not in A there is a quasimetric d with these properties; let D be the family of all such quasimetrics. Let β be the family of all S(d,x,r) for d in $D,x \in M$ and r > 0. Obviously β is a subfamily of J. Let $T \in J$ and $y \in T$. Then the complement C of T is J-closed and so there is a d in D such that d(x,y) = 1 for all $x \in C$. Hence

 $x \in S(d,x,\frac{1}{2}) \subset T$ and so B is a base for J. And each $S'(d,x,r) \in J'$ for $x \in M$ and r > 0.

For each J'-closed set B and each x not in B there is a quasimetric e for M such that $S(e,u,r) \in \mathcal{I}$, $S'(e,u,r) \in \mathcal{I}'$ for each u in M and each r > 0 and d(x,v) = 1 for each v in B; let E be the family of all such quasimetrics. Then the family of all S'(e,x,r) for $e \in E,x \in M$ and r > 0 is a base for \mathcal{I}' .

Let F be the union of D and E. It is easy to see that (T,T') is the coarsest bitopology making each member of F continuous. This completes the proof.

Let U be a quasiuniformity for M, U' the family of all inverses of members of U and d a quasimetric for M. Thampuran (3) has proved that d considered as a function from $(M \times M, U' \times U)$ to (R,m) is uniformly continuous iff $\{(x,y): d(x,y) < r\}$ is a member of U for each r > 0. Uniform continuity of a quasimetric will hereafter be used in this sense. The following corollary to Theorem 2 then follows easily.

Corollary. Let u be the quasiuniformity generated by F. Then $(\mathcal{I},\mathcal{I}')$ is the bitopology of u and each d in F is uniformly continuous.

Theorem 3. Let (M,T,T') be completely regular and G the family of all continuous quasimetrics for M. Denote by U the quasiuniformity generated by G. Then (T,T') is the bitopology of U, i.e.,(T,T') is the coarsest bitopology making each member of G continuous. Also G is the gage of U.

Proof. The F of Theorem 2 is a subfamily of G and the bitopology of U is clearly coarser than (J,J') and so the first part of the theorem follows. The second part can be proved by noticing that each member of G is in the gage of U and that each member of the gage of U is continuous and so is in G.

Corollary. Let V be a quasiuniformity, for M, having the same bitopology as that of U. Then the gage of V is a subfamily of G and hence U is the finest quasiuniformity having the bitopology $(\mathcal{I},\mathcal{I}')$.

Definition 8. A family G of quasimetrics for a set M is said to be the gage of a bitopology iff there is a bitopology (T,T') for M such that G is the family of all continuous quasimetrics, relative to (T,T'). We will also call G the gage of (T,T').

Definition 9. Let F be a family of quasimetrics for a set M and let u be the quasiuniformity, for M, generated by F. The bitopology $(\mathcal{I},\mathcal{I}')$ of u is said to be the bitopology of F or the bitopology generated by F. We will also say that F generates the gage of $(\mathcal{I},\mathcal{I}')$.

Let $(M,\mathcal{I},\mathcal{I}')$ be a bitopological space and G the family of all continuous quasimetrics, relative to $(\mathcal{I},\mathcal{I}')$. Then the bitopology (S,S') of G is clearly coarser than $(\mathcal{I},\mathcal{I}')$. But these bitopologies coincide iff $(M,\mathcal{I},\mathcal{I}')$ is completely regular.

Theorem 4. A bitopological space (M,T,T') is completely regular iff (T,T') is the bitopology of its gage.

Let $(M,\mathcal{I},\mathcal{I}')$ be a bitopological space and G the gage of $(\mathcal{I},\mathcal{I}')$. Then the bitopology of G is the finest completely regular bitopology coarser than $(\mathcal{I},\mathcal{I}')$.

Theorem 5. Let $(M,\mathcal{I},\mathcal{I}')$ be a bitopological space. Then there is a finest completely regular bitopology (S,S') coarser than $(\mathcal{I},\mathcal{I}')$ and (S,S') is the bitopology of the gage of $(\mathcal{I},\mathcal{I}')$.

Let F be a family of quasimetrics for a set M and (\mathcal{I},\mathcal{I}') the bitopology of F. Then the family of all sets of the form S(d,x,r) for d in F, x in M and r>0 is a subbase for \mathcal{I} and the family of all sets of the form S'(d,x,r) for d in F, x in M and r>0 is a subbase for \mathcal{I}' . A quasimetric e for M is continuous iff $S(e,x,r)\in\mathcal{I}$ and $S'(e,x,r)\in\mathcal{I}'$ for each x in M and each r>0 and so is continuous iff for each x in M and each r>0 there is t>0 and there is a finite number d_1,\cdots,d_n of members of F such that

 $S(d_1,x,t) \cap \cdots \cap S(d_n,x,t) \subset S(e,x,r)$ and $S'(d_1,x,t) \cap \cdots \cap S'(d_n,x,t) \subset S'(e,x,r)$.

Theorem 6. Let F be a family of quasimetrics for a set M and let G be the gage generated by F. Then a quasimetric d belongs to G iff x in M and r>0 imply there is t>0 and there is a finite subfamily d_1,\cdots,d_n of F such that $\cap\{S\ (d_i,x,t)\ :\ i=1,\cdots,n\}\subset S\ (d,x,r)$ and

 $\cap \{S'(d_i,x,t) : i = 1,\cdots,n\} \subset S'(d,x,r).$

Definition 10. Let (M,T,J') be a bitopological space and N a subset of M. Denote by S,S' the relativizations of J,J' to N. Then (N,S,S') is said to be a subspace of (M,J,J').

Definition 11. Let I be an index set and (M_i, T_i, T_i') for $i \in I$ be a family of bitopological spaces. Let M, T, T' be respectively the Cartesian product of M_i , the product of the left topologies T_i and the product of the right topologies T_i' for i in I. Then the bitopological space (M, T, T_i') is said to be the product of the bitopological spaces (M_i, T_i, T_i') for i in I.

Definition 12. A bitopological space (M,T,T') is said to be quasi-Hausdorff iff x,y are distinct points of M imply they have either disjoint T,T'-neighborhoods respectively or they have disjoint T',T-neighborhoods respectively.

Let (M,T,T') be a completely regular space and G the gage of (T,T'). Then (T,T') is the coarsest bitopology for M such that the identity function from (M,T,T') to (M,d) is continuous for each d in G. Let $P = \times \{M_d : d \in G\}$ where $M_d = M$ for each d in G. Let θ, θ' be respectively the products of the left and right topologies of M_d , for d in G. Assign to P the bitopologies (θ,θ') . For u in P let u_d denote the projection of u into the d-th coordinate space and let f be the function from M to P defined by $f(x)_d = x$ for all x in M and all d in G. Now f is continuous iff f followed by projection into

each coordinate space is continuous. Hence (T,T') is the coarsest bitopology for M such that f is continuous. But f is one to one and therefore f is a homeomorphism.

Now suppose the bitopological space (M,T,T') is quasi-Hausdorff. Use the notation of the preceding paragraph. Thampuran (3) has proved that the quasimetric space (M,d) is isometric under a function h_d to a quasi-Hausdorff quasimetric space (M_d*,d*). Hence (T,T') is the coarsest bitopology for M such that each h_d is continuous. Denote by N the Cartesian product of M_d * for d in G and by h the function from M to N given by $h(x)_d = h_d(x)$. For the left and right topologies of N take the products respectively of the left and right topologies of d* for d in G. Then (T,T') is the coarsest bitopology for which h is continuous. Let x,y be two distinct points of M. If h(x) = h(y) then $h_d(x) = h_d(y)$ for each d in G and hence d(x,y) = 0 = d(y,x) for each d in G; but this implies (M,T,T') is not quasi-Hausdorff. Therefore h is one to one and then we easily see h is a homeomorphism. Thus we have:

Theorem 7. Let (M,T,T') be completely regular and G the gage of (T,T'). Then M is homeomorphic to a subspace (the diagonal, in fact) of the product of all the quasimetric spaces (M,d) for d in G. If (M,T,T') is quasi-Hausdorff then M is homeomorphic to a subspace of the product of all the quasi-Hausdorff quasimetric spaces (M,d) for d in G.

REFERENCES

- 1. J. L. Kelley, General Topology, Princeton (1968).
- 2. D. V. Thampuran, Bitopological Spaces and Complete Regularity (to appear).
- 3. D. V. Thampuran, Bitopological Spaces and Quasiuniformities (to appear).