QUASIUNIFORMIZATION OF BITOFOLOGICAL SPACES
BY
D. V. THoMPURAN

It has been shown by Thampuran (2) that the concept of complete recgu-
larity of a topological space can bz goneralized so as to apply to bitopo-
logical spaces. Thampuran (3) has also shown that a gage can be defined
for a quasiuniformity and that its bitopological space is completely regu-
lar. It is shown in ‘this paper that a completely regular bitopology (3,77)
is generated by the family G of all quasimetrics, continuvous relati?a to
(7,7°). that (7,T’) ic the coarsest bitopology which makes every mewber of G
continnous, that the quasiuniformity U generated by G is the finest one with
bitopology (T,7’) and that & is the gage of U. Also, every bitopslogy (7,7
has a finest completely regular bitopology (5,5’) coarser than (T,7’) and
that (S,S’) is the bitopology of all the guasimetrics that are continuocus,rel-
ative to (T,77).

Unless otherwise specifiad the terminology used in this paper has the
same meaning as in Kelley (1).

Defiﬁition.l. Let M be a set and 7,7’ two topologies for M. The
ordered triple (}M,7,T) is said to be a bitopological space. J and T’ ave
said to be the left and right topologies of this bitopological space. We

_will also call(T,T’) a bitopology for M.
When there is no possibility of confusion we will denote this bitopo-
logical space by M.

Definition 2. A function d from the Cartesian product M~M to the

non-negative reals is said to be a quasimetric iff for all x,y,z in M

(1) d(x,x) = 0 and

A

(2) a(x,¥) = a(x,2) + dlz,y).



Let T be the family of all subsets T of M such that x in T implies the
set S(d,x,r) = { y: d(y,x) <r} e T for some r > 0; then T is a topology
for M. Let T’ be the family of all subsets T of M such that x in Tlimplies
the set S8'(d,x,r) = {y: d(x,y) <r} e T for some r > 0; then T/ is also a
topology for M.

Definition 3. 7T and T’ as defined in the preceding paragraph are said
to be the left and right topologies of ¢ and (M,7,T7') is called the bitopo-
logical space of d; we will call (7,7‘) the bitopology of d.

Denote the reals by R and define a quasimetric m for R as follous:
m(x,y) = max {y - x,0} for all x,y in R. Let ® and R’ be the left and right
topologies of m.

Definition lj. m is sald to be the usual guasimetric fof the reals and
(R,ﬁ,&') the usual bitopclogical space for the reals.- |

Definition 5. Let (M,7,77), (W,S,S’) be bitopological spaces and f
a function from M to N. f is said to be continuous iff f is both_T-S and.
J!-5' coptinuous. f is said to be a homsomorphism iff f is one to one, f
is continuous and f! is continuous. M and N are said to be homeomorphic
iff there is & homeomorphism between them.

Theorem 1. Let (M,7,7‘) be a bitopological space and ¢ is a quasi-

*metric for M. Teke L = M>=M, & =T’><7T and &£’ = T><7T’. Then d considered
as a function from (L,£,£’) to (R,R,R’) is continuous iff for each x in M
and each r > O the set 8(d,x,r) €7 and s‘(d,x,r) €T

Proof. Let x in M and r > 0 imply S{d,x,r) €7 and 5'(d,x,r) € T'. Let
(x,y) € L and r > 0. Then A = 8%(d,x,r) >=5(d,y,r) is a £-neighborhood of
(x,y). Let (u,v) € A, Now d(x,y) < d(x,u) + d(u,v) + d(v,y). This implies

that d(x,y) - d(u,v) < d(x,u) + d(v,y) < r +r = 2r. Hence d is £-R contin-
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wous. We can prove similarly that d is also &°R° continuous.

To prove the converse let us assume d is continuous, x € M and X = 0.
Then d is £’-R’ continuous at {x,x) and so there is a neighborhood A of
(x,x)such that (u,v) in A implies d(w,v) - d(x,x) <r or d(ﬁ,v) < r, There
is now a J-neighborhcod B of x and there is a T ’-neighborhood C of x such
that éﬁatjc:A,, Ifu €.E_then dlu;x) < r gince x € ¢ and s0 Bc 8 (d,x.r)
If y € s (d,x,r) then there is t > O such that S{d,y,t) < S(d,x,r) and
s(d,y,t) contains a T-neighborhocd of y. Therefore S(d,x,r) is a T-neigh-
borhood of each of its points and so s(d,x,r) is T -open. It can similarly
be proved ﬁhat S’(d,x,r) is T ‘-open.

In the proof of the converse of Theorem 1 we used only the condition
that d is continuous at each (x,}:) for x € M. Ve therefore hzve:

Corollary 1. d is continuous iff d is continuous on the diagonal

{(x,x):x € M. _
. Corollary 2. Let T and T’ be the left and right topologies of d in
Theorem 1. Then d from (L,£,£°) to (R,R,R‘) is continuvous.

Here:;lfter continuity of a quasimetric d, relative to (7,7°), will be
used in the sense of Theorem 1.

Lemma 1. Let (M,7,T7‘) be a bitopological space and f a function from
M to R. For x,y in M write d(x,y) = max{f(y)-f(x),0}. Then d is a quasi-
metric for M and d is continuous iff f is continuous.

Proof. It is clear d is a quasimetric for M. f is T-R continuous iff
S(d,x,r) = [y=f(x)-f(y) <r} €7 for each x in M and each r > 0. Hence f
is J-R continuous iff 4 is T-R continuous. The part for J'-R’ continuity
can be proved in the same way.

Lemma 2. Let f be a function from the bitopological space (M,7,7%) to

the usual bitopological space (R,R,R*) for the reals. Define d as in Lemma 1.
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Let £1R and £'R’" denote the inverses under f of R and R’. Then f7')
and £71R’ are the left and right topologies of d.

Iet K = [0,1] denote the cloéed_unit interval. Then m restricted to
K is a quasimetric for K and let K have the bitopological space of this
restriction of m to K.

Definition 6. A bitopological space (M,T,T7) of (T,7) is said to be
completely regular iff for A,BcC M,

(1) A is T—closeé and y not in A imply there is a continuous function f
from M to K such that fA = 0 and f(y) = 1 and

(2) B is T'-closed and x not in B imply there is a continuous function
g from M to K such that g(x) = O and gB = 1.

Definition 7. ILet (7,T7’), (S,8’) be two bitopologies for a set M. We
will say (T7,T7°) is finer thah (s,8’) or (8,8’) is coarser than (T,T7’) iff S
is a subfamily of T and 5’ is a éubfamily of 37, |

Theorem 2. ILet (M,7,7’) be a completely regular bitopological space.
‘Then there is a family F of quasimetrics for M such that (7,7°) is the ccarsest
bitopology, for M, making each member of F continuous.

®roof. Let A be a J-closed subset of M and let y be not in A. There
is then a continuous function f frpm M to K such that fﬂ = 0 and f(y) = 1.
For all u,v in M take d(u,v) = max{f(v)-r(u),0}. Then d is a quasimetric
- for M, the bitopology of d.is coarser.than (T,7*) and x in A implies d(x,y)=1.
For each T-closed subset A of M and each y not in A there is a quasimetric d
with these properties; let D be the family of all such quasimetrics. Let b5
be the family of all S(d,x,r) for d in D,x € M and r > 0. Obviously 5 is a
subfamily of 7. Let T €T and y € T. Then the complement C of T is T-closed

and so there is a d in D such that d(x,y) = 1 for all x € C. Hence



x € S(d,x,%) c T and so 3 is a base for J. And each §'(d,x,r) €T’ for
x EMand r > 0O,

For each J'-closed set B and each x ﬁot in B there is a quasimetric e
for M such that S(e,u,r) €7, S'(e,u,r) €T’ for each u in M and each r > 0
and d(x,v) =1 for each v in B; let E be the family of all such quasimetrics.
Then the family of all S’(e,x,r) for e € E,x € M and r > 0-is a base for T,

Let F be the unio-n of D and E. It is easy to see that (7,7') is the
coafsest bitopology making each member of F continuous. This corplctes the
proof.

Let U be a quasiuniformity for M, U’ the family of all inverses of
members of U and d a quasimetric for M. Thampuran (3) has proved that d
considered as a function from (M?’~M, U’>< t) to(R,m) is uniformly continuous
ARt {(x,y)ﬁ d(x,y) < r} is a member of U for each r > 0. Uniform continuity
of a quasimetric will hereafter be used in this sense. The following corollary
to Theorem 2 then follows easily.

Corollary. Let U be the quasiuniformity generated by F. Then (7,T7’) is
the bitopology of U and each d in F is uniformly continuous.

Theorem 3. Iet (M,7,T’) be completely regular and G the family of all
continuous quasimetrics for M. Denote by U the guasiuniformity generated by
G. Then (J,T77) is the bitopology of U, i.e.,(7,T7’) is the coarsest bitopology
making each member of G continuous. Also G is the gage of U.

Proof. The F of Theorem 2 is a subfamily of G and tho bitopology of U
is clearly coarser than (7,7’) and so the first part of the theorem follows.
The second part can be proved by noticing that each member of G is in the
gage of U and that each member of the gage of U is continuous and so is in G.

Corollary. Let V be a quasiuniformity, for M, having the same bitopology
as that of U. Then the gage of V is a subfamily of G and hence U is the

finest quasiuniforwmity having the bitopology (7,77).
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Definition 8. A family G of guasimetrics for a set M is saild to be
the gags of a bitopology 1ff there is a bitopology (7,7') for M such that
G is the family of all continuous quasimetrics, relative to (7,T77). We will
also call G the gage of (T,T77).

Definition 9. ILet F be a family of quasimetrics for a set M and let U
be the quasiuniformity, for M, generated by F. The bitopology (¥,7’) of U
" is said to be the bitopology of F or the bitopology generated by F. We will
also say that F genera£es the gage of (7,77).

Let (M,T,77) be 2 bitcpological space and G the family of all continuous
quasimetrics, relative to (7,7’). Then the bitopology (S,87) of G is clearly
coarser than (7,7‘). But these bitopologies coincide iff (M,T,T’) is com-
pletely regular.

. Theorem li. A bitopological space (M,7,7’) is completely regular iff
(T,7') is the bitopology of its gage. '

Let (M,T,T') be a bitopological space and G the gage of (7,7’). Then
the bitopology of G is the finest completely regular bitopology coarser than
(T, 5%).

_Theoéem 5. Let (M,T,T’) be a bitopological space. Then th&re is a
finest completely regular bitopology_(s,s’) coarser than (7,7') and (5,5)
is the bitopology of the gage of (7,77).

Let F be a family of quasimetrics for a set M and (7,77) the bitopology
of F. Then the family of all sets of the fomm S(d,x,r) for d in F, x in M
and r > 0 is a subbase for T and the family of a1l sets of the form S‘(d,x,r)
for d in F, x in M andr > O is a subbase for T'. A quasimetric e for M
is continuous iff S(e,x,r) € T and S'(e,x,r) € T’ for each x in M and each
r > 0 and so is continuous iff for each x in M and each r > O there 1s t > 0

and there is a finite number d, ,<+-,d, of members of F such that

b=



S(d, ;x,t) N***N S (dn,x,t)(: S (e,x,r) and
Bild, xh) MR sild. b © S'(e,x,r).

Theorem 6. Let F be a family of quasimetrics for ; set M and let
G be the gage generated by F. Then a quasimetric d belongs to G iff x
in M and r > 0 imply there is t > O and there is a finite subfamily &, ,°*+,d,
of F such that N{S (d;,x,t) : i = 1,°*'n} © S (d,x,r) and

' N{s’(d;,x,t) & 1 = 1,--+n} © 8'(d,x,r).

Definition 10. Let (M,7,T7’) be a bitopological space and N a subset
of M. Denote by S,S’ the relativizations of 7,7’ to N. Then (N,S,8') is
said £o be a subspace of (M,7,7°).

Definition 11. Let I be an index set and (Mi’Ti’Ti) for i € I be a
family of bitopological spaces. Let M,7,T7’ be respectively the Cartesian
product of Mj, the product of the left topologies T; and the product of ihe
right topologies T; for i in I. Then the bitopological space (M,7,T’) is
sald to be the product of the bitopological Spaces (Mi,Ti,Ti)'for i in I.

Definition 12. .A bitopologicai space (M;T,T}) is-said to be guasi-
Hausdorff iff x,y are distinct points of M imply they have either disjoint
T ,T ‘-neighborhoods respectively or they have disjoint T°,T-neighborhoods re-
spectivelj;

Let (M,T;T') be a completely regular space and G the gage of (7,T77).
Then (7,T7’) is the coarsest bitopology for M such that the identity function
fram (M,7,7') to (M,d) is continuous for each d in G. Let P =>4{Md:d € &}
where Mﬂ = M for each d in G. ILet &, be respectively the products of the
left and right topologies of Mys for d in G. Assign to P the bitopologies
(6,6'). For u in P let uy denote the projecticn of u into the d-th coordinate
space and let f be the function from M to P defined by f(x)g = x for all x

in M and all d in G. Now f is continuous iff f followed by projection into



each coordinate space is continuous. Hence (7,T7’) is the coarsest bitopol-
ogy for M such that f is continuous. But f is one to one and therefore f is
a homeomorphism.
Now suppose the bitopological space (M,T,T’) is quasi-Hausdorff. Use
the notation of the preceding paragraph. Thampuran (3) has proved that the
quasimetric space (M,d) is isoﬁetric under a function hd to a quasi-Heusdorff
quasimetric space (Md%,d*)‘ Hence (7,T7’) is the coarsest bitopology for M
such that each hd is continuous. DIenote by N the Cartesian product of Mﬁ*
for d in G and by h the function from M to N given by h(x)y = hy(x). For
the left and right topologies of N take the products respectively of the
left and right topologies of d* for d in G. Then (7,T’) is the coarsest
biteopology for which h is continuoué. Let x,y be two distinct points of M.
If h(x) = h(y) then hy(x) = hy(y) for each d in G and hence d(x,y) = 0 = d(y,x)
for each d in G; but this implies (M,T,T’).is not quasi-Hausdorff. Therefore
h is one to one and then wve eésily see h is a homeomorphism. Thus we have:
Theorem 7. Let (M,T,7’) be completely regular and G the gage of (7,77).
Then M is.homeomorﬁhic to a subspace (the dizgonal, in fact) of the product
of all the quasimetric spaces (M,d) for d in G. If (M,7,T7’) is quasi-Hausdorff
then M is homeomorphic to a subspace of the product of all the quasi-Hausdorff

quasimetric spaces (Ma*,d*) for 4 in G.
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