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An analytical solution of the polymer MSA (mean spherical approximation) for
the polymerizing primitive model of electrolytes is obtained. The approximation is an
extension of the associative MSA proposed recently [M.Holovko and Yu.Kalyuzhnyi,
Mol.Phys., 73, 1145(1991)] to study the effects of association in ionic systems. The
model is defined by adding charges to the totally-flexible sticky two-point model of
associating monomers introduced by Wertheim. In the limiting case of an uncharged
system, our solution reduces to the solution of the Wertheim polymer PY approxi-

mation solved recently [J.Chang and S.I.Sandler, J.Chem.Phys., 102, 437(1995)].



I. INTRODUCTION

In the last decade a number of studies of model polymer fluids using integral-equation
theory have been initiated. These include the polymer RISM theory of Curro and Schweizer
[1] and its applications [2] and extensions [3,4], and the Percus-Yevick (PY) theory ex-
tended to polymer fluids by Chiew [5]. Recently the Wertheim integral-equation theory for
associating fluids [6] and our extension of this theory have also [7] been applied. In (8]
the OZ-like equation developed by Wertheim was solved analytically using the polymer PY
(PPY) approximation [6] for his totally flexible two-site model [10]. This model is defined
by a hard-sphere system with two sticky points placed randomly on a surface of each hard
sphere. Concurrently in [9] an analytical solution of the PPY type of the closure [7] for the
shielded sticky shell (SSS) model of a polymerizing fluid [11] has been obtained. The method
of solution developed in [9] is quite general and is immediately applicable to a number of
other models of polymerizing fluids, including the extension of the totally flexible two-site
model proposed in [9]. In this extension each sticky point is randomly placed on an attrac-
tive shell of diameter L < 1 with the latter shielded by a repulsive core of unit diameter. We
refer to this model as to the shielded sticky two-point (SS2P) model, the limiting version of
which, the sticky two-point (S2P) model, coincides with the totally flexible two-site model
of Wertheim [10].

In the present study we find an analytical solution of the mean spherical-like approxi-
mation for a model of a polymerizing ionic fluid. The approximation is an extension of the
associative mean spherical approximation (AMSA) earlier proposed for the description of the
effects of dimerization in the ionic fluids [12,13]. We refer to this extension as to the polymer
MSA (PMSA). The model is a polymerizing version of the primitive model of electrolytes
that is rather straightforward generalization of the S2P model to ionic systems. It consists
of an n-component mixture of charged hard spheres of species 1,...,4,...,n with number
density p, and charge Z,. The mixture is electroneutral, so that the following condition is

satisfied



Xn:paZa =0 (1)

a=1
As in the case of S2P model, each hard sphere has two sticky points A and B, (regarded
as being distinguishable) randomly positioned on its surface. Unlike the version of the S2P
model considered in 8] we preserve here the possibility of bonding between any of the two
sites which belong to the two particles of any species. Further generalization along the
same lines that yield the SS2P generalization of the S2P model is possible; however it is
not considered here. For the sake of simplicity we choose an equal diameter for each of the
hard-sphere species, although the extension of our theoretical treatment to the more general
case with arbitrary diameters is rather straightforward.

Our extension of the AMSA to the case of polymerizing ionic fluids is discussed in Section
IT of this paper. An anlytical solution of the PMSA is obtained via the Baxter factorization
technique [14] in Section III. In Section IV the simplified restricted primitive version of the
model, in which the association is allowed only between sites of different species belonging
to the oppositelly charged ions, is considered. It is also demonstrated that in the case of the
zero charges on the ions our solution reduces to that obtained in [8] via the single bonding
approximation, if the stickiness parameter in our model is chosen to be half of that used
in [8]. (This factor of 1/2 is a consequence of the positive and negative ions representing
two distinct species, even when they are discharged, whereas in [8] a single-species system

is considered.)

II. POLYMER MSA

The pair potential of our primitive model of a polymerizing electrolyte solution is given
by

Uab(12) = Unop.(r) + U (") + 3 UL (12) (2)
K,L

where 1 and 2 stand for the spatial and orientational coordinates of two ions, a and b are the

indexes for the ionic species, U sp.(r) is the hard-sphere potential, U,Ef')(r) is the Coulomb
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potential, and U@ (12) is the short-ranged site-site potential responsible for association.
Here K and L take the values A and B and denote the type of site. As usual, the Coulomb

interaction has the form

e*Z,2,
Ur) === 3)

!
&— where e is the elementary charge, Z, is the charge of the ion of a species in electron

units, and e is the dielectric constant of the continuum.

Due to the site-site interaction U@, (r) the total pair potential is strongly dependent on
the orientation of the ions. However, as was already noted in [15,9] the type of the model
considered here can be described by an orientationally-averaged version of the Wertheim
theory. The latter in conjunction with the S2P model has been discussed in [8]. Its extension
to the case of a multicomponent system is rather obvious, and therefore in what follows we
shall omit any details, refering the readers to the original publications.

For the present model the Wertheim OZ equation can be written in terms of the

orientationally-averaged partial correlation functions A%%(r) and c2%(r) in the form
H(k) = C(k) + C(k)oH(k) (4)

where [0]s, = 8,0, and the matrices H(k) and C(k) contain the elements which are
the Fourier transform of the elements of the matrices H(r) and C(r), respectivly. Here
[H(r)]as = has(r) and [C(r)]ap = cas(r). In turn hgp(r), cas(r), and o, are the matrices

which take the form

ho(r)  hEa(r) hSh(r)  AEH(r) of oy 04 05
hus(r) = h5o(r)  h%a(r) hEp(r) R4r(r) , o = op 0 o5 O
hgo(r) hEalr) hp(r) hEr(r) o3 o6 0 0
hfo(r) hEa(r) h¥p(r) Afr(r) ‘ o 0 0 0

where the lower indices @ and f in ¢} and in the correlation functions h3%(r) and A2 (r)

denote the bonded states of the correspondent particle. The case of & = 0 corresponds to
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unbonded particle, @« = A or a = B to the particle with bonded site A or B, and a = I
to the particle with both sites, A and B, bonded. The density parameters o2 are related to

the densities p2 of a-bonded particles by

05 = P50y 0a=po+Pa 95=p5+Pps
or =pa=po+pa+pp+or (5)

In our study we are using the MSA-like closure conditions [12,13] which for the present

model reads

h:’;,(r) = —8400g0, for r <1
(1) = —6a080BUS (1) + (1 — ba0)(1 — 650) BBé(r = 1), for r > 1 (6)

where = k—l—T and hereafter we assume the unit diameter for the hard-spheres.
Here, as in [8], the site-site potential is choosed to be infinitesimally short-ranged so that

its averaged Mayer function fg% (r) takes the form
ab _ ab
kr(r) = Kgp6(1 —r)

where § is the Dirac delta-function and K&, is the parameter describing the strength of the

stickiness. The constants B2 are related to the stickiness parametes K§; by

BRy, = yaoKitL, B = KZuvbo+ K¥avao, BPs = Kgpyao + Kipyko,
By = Kiyygs + Kabysa + Kuvas + Kipyia (7)
where y35 is the contact value of the function defined by
9a(r) = enap (M)l25(r) + Bap(1 = 8a0)(1 — 8p0)(r — 1)] (8)

and eh.pp (1) = exp(—BUn.ss.(r)) and g25(r) = h(r) + Saobao.
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Finally the relation between the densities p% and parameters ng are found to be [6,8]

pA=47rpoZ[B Y (ph + pB) + Bs(ph + p4) + Baresl

pB—47rpoZ[B 's(pn + 0%) + BE4(ph + pb) + Birpe]

PaPE a
= RIS + o X B2 ©)

This completes our PMSA closure conditions for the primitive model of polymerizing
electrolytes. Here, in contrast to [8], we do not restrict ourselves to the single-bonding

approximation. The latter can be easily introduced into the theory as in [8§].

III. SOLUTION OF THE PMSA FOR THE PRIMITIVE MODEL OF
POLYMERIZING ELECTROLYTES

Our solution of the OZ equation (4) together with the set of equations (6), which specify
the closure conditions and relation between the densities (9) is based upon the Baxter fac-
torization tecknique [14] and is similar to that developed in [12,13]. We begin by presenting

the OZ equation (4) in the form

[o™! = C(k)][1 + oH(k)]) = 0™ (10)

suitable for factorization
- O(k) = §7(—k)od(k) (11)
(k)1 + oH(k)] = [04"(~k)o] ™! (12)

In real r-space this set of equations can be written as

_rc:"p(r) = [qg';,(r)]' — 9o Z Zg 0256/&'/0 q,,a(t)q (r +t)dt (13)
_rh2(r) = [gh(r)] — 2t 3 26:% / % (t)(r — )RS (Ir ~ t))dt (14)



where o3 is the correspondent element of the matrix o and

4xqzh = [~ {[o™]ak — d2h(k)} expl—ikr] dk (15)

Making use of the analytical properties of the function §2%(k) together with the closure

conditions (6) yield the following long-range behaviour of the function ¢2%(r) defined by (15)
2rglh(r) = —abopexpl—pr] (¢ — 0), for r>1 (16)

where 2 is an unknown constant, which satisfies the set of algebraic equations

R 4nBe®Z,Z,
Eza:aa'rﬁagb = . (17)
c 76
obtained by substituting (16) into (13) and studing its long-range asymptotic behaviour.

Using the symmetry property of (17) and following [16] we have
a® = Zyw? (18)
where the constants wg satisfy the following set of equations

¥ S whosss =

c ~6

47 Be?
€

(19)

Next, considering equation (14) in the range 0 < r < 1 and making use of the elec-
troneutrality condition (1) and relation (18), we arrive at the second order polynomial for

the g-function
g2%(r) = -50,,a r? + (bogbt +wiIE) r+ i, for 0 < r <1 (20)

Here

al = boa — 21 )Y 05 /01 gas () dt (21)
=233l / g ()t dt (22)

Je _EZ%J“Z Jeb = / theby(2) dt (23)



and the constants cg b follow from the boundary conditions imposed on the function g2%(r)

Gap(1*) — g2p(17) = —(1 = 8a0)(1 — 8p0) B2p (24)

After some simple algebraic manipulations the set of equations (21), (22) and (24), which

define the unknowns a3, b3 and ¢2% can be written explicitly as

. .
1+ §7rp;r)a§ +wprbd + 21 YY" 05,6k, = bpa — T ) Z’: 050JS (25)
c v c
1 2 ba (o ac 2 a c JC 6
47rpTa +(§7rp1—1) +“EZ°’10 Cory = —-3-7rw02c:;0,,0 h (26)
1 a 1 a a yb ab
§a 605 + b 5op + Caﬂ = —-57;(4.)0‘21,503 — waJﬁ + (1 - 60,0)(1 - 5.30)Baﬁ (27)

where pr = Y, pa-

The rest of the 8n — 1 equations for the unknown parameters w% and J? can be obtained
from (13) considered at r = 0. Since the direct correlation functions ci%(r) are finite at
r = 0, we have

biboo + WIS + DY 0lscShcy = (1 - 6ao)nzza;6(1 ~ 640)(1 — 6s0) B2 Bs2  (28)

c 5 c ~é

bE + bybao + Wi +wpJE + 27 3 > oS scl i+

[+ 76

+(1 = 6a0) 3 3°(1 = 6,0)055 Zewi B = 0 (29)

c oy&
The contact values of y24(r), which appear in the expression (7) for B2, follow from
(14) at r — 1%
Y2 = op(al + b3) + wiJh — 2m(1 = bog) 3_ S (1 — bs0)025c2c B (30)
[
Thus the solution of the PMSA for the primitive model of polymerizing electrolyte solu-

tion reduces to the solution of the set of algebraic equations (9) and (25)-(30).



IV. SOLUTION OF THE PMSA FOR THE RESTRICTED PRIMITIVE MODEL
OF POLYMERIZING ELECTROLYTES

Substantial simplification occurs in the final equations of the previous section if for the
ionic system the restricted primitive model of particles with equal sized cores is used. In
addition, if one assume that bonding is taking place only between the sites of different species

belonging to the oppositly charged ions,
Kg, =Kgx=0, Kig=Kii#0 (31)

where + and — denote positively and negatively charged ions, the set of equations (25)-
(30) can be presented formally as two independent sets of equations. One of these sets of
equations involves the quantities related to the correspondent polymerizing uncharged hard-
sphere system, while the other describes the parameters related to the additional effects of
the electrostatic interaction. These two sets of equations, as in the case of a dimerizing ionic
system [12], are coupled via the relation between the densities (9).

Because of the symmetry of the present model and due to (19) parameters o2, which

defined the long-range behaviour of the Baxter g-functions, we have
att=a " =-al"=-0;*=0a,, and as=o0p (32)
For the density parameters we have also

ot =0;=0,, and op=o0p (33)

Now equation (19) for a, takes the form

4 fBe?

orwi 4 ogwowk + 200wewr + 200wk = (34)

where w} = —~w]

= Wa.
The set of equations (25)-(30) can be simplified by introducing instead of c2% a new set
of the unknown parameters c‘(,sﬂ) and cf,,g) defined by
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sy _ 1 - py 1 -
cf = 5(eif + k), of) = 5(etF — k). (35)

In terms of these parameters the set of equations (25)-(27) can be written as

1
(1 + §7rp;r)aa + 1l’pra + 47 Za’.rgcgi) = 600
¥

1 2
nprea+ (Gnpr Db+ 20 L oad =
i

1 1
-2-ao,505 + bobos + c((;? . -2-(1 — 8a0)(1 — 8p0)B5 (36)

where a, = a} = a7, b, = b} =],

Solution of this set of linear equation gives the following expressions for a,, b, )

o0 and
the contact values of yt(,s)(r) =1y (r) + i3 (r))
14 29r —3nr (5) at S
go= — M =T = , 37
°T (1 -nr)? bo 21 —nr)?’ ™ = 31— 1) @7
R -R s
. T N
1—1nr 2(1—nr) °° Jor a7
1 -
cf;? = 5(1 - 500)32[; , for B#£0 (38)
(8 _ _2+7r ) _ (9 _ _ Ba 39
T AT PO T T Ty o
v = 7oo{(1 = 6aa)(1 — 6s8) BIT BE; + (1 — 6an)(1 — 6p4)B25 B; ), (40)

for a#0 and B#0

where g = £pr and

Ry = ~2n(ok Bz + 00BET), Rr = —2n(20xBftg + 0oBpr)

Here we are using similar notation as that of [6,8], where K and K’ denote sites of a different

type, i.e. if K = A then K’ = B and vice versa.
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One can easily see that the above expressions essentially reduce to those obtained in the
PPY approximation in (8] if Z, = 0, Kz (BFY) = 2K3}5 g and the single bonding approximation
is utilized. The only difference is due to the fact that even in the uncharged case we still
have here a two-component system in the terminology we are using.

For the set of equations (28), (29) and contact values of the functions yaﬂ)(r) =

2(y A (r)— yap 3 () we have

aoJ( )+21r2( +2J(D))2
Ao J P + ax JP) + 27r( —+ 2JPN 87 JP) + (ox By + 00Big )ao + doBiiycax)—
——a'oB}TKaK — (ox Bk + 00Big)ag =0
2P + arJP)) + 27r( ~ +2J§ D gnp*JP)) + (ox BEiy + 0oBir)ao + coBhirak]—
—200ak B — (205 BEir + 00Bir)ae = 0
ax D +2r I ParpIP) + (oxkBEy + 0oBg)ao + 0oBEikak] =
20rJP) + an I P4 8 JP) + (20k By + 00Bi7 oo + 200BEirak] = mooBir B (41)
yc(,g) = ZanéD)+
+4r(1 - 5ﬁ0){01a(§1; +2J8P)[(1 — b49)B}7 08 + (1 — 885) B0 + B 00l+
0o ) + 2(1 = 8u0)(1 ~ ) BEF)(1 ~ b5) B oo+
2008 + 21 = 8.0)(1 ~ 6a5)B23)(1 — 664)Bi7 00) (42)

where * = gcf-ﬂ and JéD) =15, 00,(JF - J&)
Finally the relation between the densities (9) will takes the form

dn(Bkx: + BEr)ps + 47 BEkipopx — px =0 (43)

2 Brp5 + 05 + (20K — p)po + Pk =0 (44)

where p = py = p_, pa = pf = pj.
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V. CONCLUDING REMARKS

In this paper we present an analytical solution of the mean spherical-like approximation
(12,13] for a polymerizing primitive model of electrolytes. The model considered here is an
extension of the totally flexible sticky two-point mode] of Wertheim [10] to the case of systems

Can Infer penetrate Upon Qssocration
with asseeteting ionic monomers. In our version of the model bonding is allowed between
any of two sites which belong to ##8 two particles of any species. By choosing different
types of site-site interaction a number of different submodels with different distributions of
charge along the polymer chain formed due to the site-site interaction can be generated.
The uncharged version of the model with site-site bonding allowed only between the sites
of different types reduces to the totally flexible sticky two-site model considered in [8]. The
restricted primitive version of the model with sticky interaction possible only between one

pair of sites of the same type which belong to two particles of different species, reduces to

the dimerizing model studied in [12]. Both cases can be treated as special cases to which

the solution presented here.W
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